/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015-2020 Intel Corporation * Copyright 2020 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RTE_CRYPTO_SCHEDULER #include #include #endif #include #include "test.h" #include "test_cryptodev.h" #include "test_cryptodev_blockcipher.h" #include "test_cryptodev_aes_test_vectors.h" #include "test_cryptodev_des_test_vectors.h" #include "test_cryptodev_hash_test_vectors.h" #include "test_cryptodev_kasumi_test_vectors.h" #include "test_cryptodev_kasumi_hash_test_vectors.h" #include "test_cryptodev_snow3g_test_vectors.h" #include "test_cryptodev_snow3g_hash_test_vectors.h" #include "test_cryptodev_zuc_test_vectors.h" #include "test_cryptodev_aead_test_vectors.h" #include "test_cryptodev_hmac_test_vectors.h" #include "test_cryptodev_mixed_test_vectors.h" #ifdef RTE_LIB_SECURITY #include "test_cryptodev_security_ipsec.h" #include "test_cryptodev_security_ipsec_test_vectors.h" #include "test_cryptodev_security_pdcp_test_vectors.h" #include "test_cryptodev_security_pdcp_sdap_test_vectors.h" #include "test_cryptodev_security_pdcp_test_func.h" #include "test_cryptodev_security_docsis_test_vectors.h" #define SDAP_DISABLED 0 #define SDAP_ENABLED 1 #endif #define VDEV_ARGS_SIZE 100 #define MAX_NB_SESSIONS 4 #define MAX_DRV_SERVICE_CTX_SIZE 256 #define MAX_RAW_DEQUEUE_COUNT 65535 #define IN_PLACE 0 #define OUT_OF_PLACE 1 static int gbl_driver_id; static enum rte_security_session_action_type gbl_action_type = RTE_SECURITY_ACTION_TYPE_NONE; enum cryptodev_api_test_type global_api_test_type = CRYPTODEV_API_TEST; struct crypto_unittest_params { struct rte_crypto_sym_xform cipher_xform; struct rte_crypto_sym_xform auth_xform; struct rte_crypto_sym_xform aead_xform; #ifdef RTE_LIB_SECURITY struct rte_security_docsis_xform docsis_xform; #endif union { struct rte_cryptodev_sym_session *sess; #ifdef RTE_LIB_SECURITY struct rte_security_session *sec_session; #endif }; #ifdef RTE_LIB_SECURITY enum rte_security_session_action_type type; #endif struct rte_crypto_op *op; struct rte_mbuf *obuf, *ibuf; uint8_t *digest; }; #define ALIGN_POW2_ROUNDUP(num, align) \ (((num) + (align) - 1) & ~((align) - 1)) #define ADD_STATIC_TESTSUITE(index, parent_ts, child_ts, num_child_ts) \ for (j = 0; j < num_child_ts; index++, j++) \ parent_ts.unit_test_suites[index] = child_ts[j] #define ADD_BLOCKCIPHER_TESTSUITE(index, parent_ts, blk_types, num_blk_types) \ for (j = 0; j < num_blk_types; index++, j++) \ parent_ts.unit_test_suites[index] = \ build_blockcipher_test_suite(blk_types[j]) #define FREE_BLOCKCIPHER_TESTSUITE(index, parent_ts, num_blk_types) \ for (j = index; j < index + num_blk_types; j++) \ free_blockcipher_test_suite(parent_ts.unit_test_suites[j]) /* * Forward declarations. */ static int test_AES_CBC_HMAC_SHA512_decrypt_create_session_params( struct crypto_unittest_params *ut_params, uint8_t *cipher_key, uint8_t *hmac_key); static int test_AES_CBC_HMAC_SHA512_decrypt_perform(struct rte_cryptodev_sym_session *sess, struct crypto_unittest_params *ut_params, struct crypto_testsuite_params *ts_param, const uint8_t *cipher, const uint8_t *digest, const uint8_t *iv); static int security_proto_supported(enum rte_security_session_action_type action, enum rte_security_session_protocol proto); static int dev_configure_and_start(uint64_t ff_disable); static struct rte_mbuf * setup_test_string(struct rte_mempool *mpool, const char *string, size_t len, uint8_t blocksize) { struct rte_mbuf *m = rte_pktmbuf_alloc(mpool); size_t t_len = len - (blocksize ? (len % blocksize) : 0); if (m) { char *dst; memset(m->buf_addr, 0, m->buf_len); dst = rte_pktmbuf_append(m, t_len); if (!dst) { rte_pktmbuf_free(m); return NULL; } if (string != NULL) rte_memcpy(dst, string, t_len); else memset(dst, 0, t_len); } return m; } /* Get number of bytes in X bits (rounding up) */ static uint32_t ceil_byte_length(uint32_t num_bits) { if (num_bits % 8) return ((num_bits >> 3) + 1); else return (num_bits >> 3); } static void post_process_raw_dp_op(void *user_data, uint32_t index __rte_unused, uint8_t is_op_success) { struct rte_crypto_op *op = user_data; op->status = is_op_success ? RTE_CRYPTO_OP_STATUS_SUCCESS : RTE_CRYPTO_OP_STATUS_ERROR; } static struct crypto_testsuite_params testsuite_params = { NULL }; struct crypto_testsuite_params *p_testsuite_params = &testsuite_params; static struct crypto_unittest_params unittest_params; void process_sym_raw_dp_op(uint8_t dev_id, uint16_t qp_id, struct rte_crypto_op *op, uint8_t is_cipher, uint8_t is_auth, uint8_t len_in_bits, uint8_t cipher_iv_len) { struct rte_crypto_sym_op *sop = op->sym; struct rte_crypto_op *ret_op = NULL; struct rte_crypto_vec data_vec[UINT8_MAX], dest_data_vec[UINT8_MAX]; struct rte_crypto_va_iova_ptr cipher_iv, digest, aad_auth_iv; union rte_crypto_sym_ofs ofs; struct rte_crypto_sym_vec vec; struct rte_crypto_sgl sgl, dest_sgl; uint32_t max_len; union rte_cryptodev_session_ctx sess; uint64_t auth_end_iova; uint32_t count = 0; struct rte_crypto_raw_dp_ctx *ctx; uint32_t cipher_offset = 0, cipher_len = 0, auth_offset = 0, auth_len = 0; int32_t n; uint32_t n_success; int ctx_service_size; int32_t status = 0; int enqueue_status, dequeue_status; struct crypto_unittest_params *ut_params = &unittest_params; int is_sgl = sop->m_src->nb_segs > 1; int is_oop = 0; ctx_service_size = rte_cryptodev_get_raw_dp_ctx_size(dev_id); if (ctx_service_size < 0) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } ctx = malloc(ctx_service_size); if (!ctx) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } /* Both are enums, setting crypto_sess will suit any session type */ sess.crypto_sess = op->sym->session; if (rte_cryptodev_configure_raw_dp_ctx(dev_id, qp_id, ctx, op->sess_type, sess, 0) < 0) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } cipher_iv.iova = 0; cipher_iv.va = NULL; aad_auth_iv.iova = 0; aad_auth_iv.va = NULL; digest.iova = 0; digest.va = NULL; sgl.vec = data_vec; vec.num = 1; vec.src_sgl = &sgl; vec.iv = &cipher_iv; vec.digest = &digest; vec.aad = &aad_auth_iv; vec.status = &status; ofs.raw = 0; if ((sop->m_dst != NULL) && (sop->m_dst != sop->m_src)) is_oop = 1; if (is_cipher && is_auth) { cipher_offset = sop->cipher.data.offset; cipher_len = sop->cipher.data.length; auth_offset = sop->auth.data.offset; auth_len = sop->auth.data.length; max_len = RTE_MAX(cipher_offset + cipher_len, auth_offset + auth_len); if (len_in_bits) { max_len = max_len >> 3; cipher_offset = cipher_offset >> 3; auth_offset = auth_offset >> 3; cipher_len = cipher_len >> 3; auth_len = auth_len >> 3; } ofs.ofs.cipher.head = cipher_offset; ofs.ofs.cipher.tail = max_len - cipher_offset - cipher_len; ofs.ofs.auth.head = auth_offset; ofs.ofs.auth.tail = max_len - auth_offset - auth_len; cipher_iv.va = rte_crypto_op_ctod_offset(op, void *, IV_OFFSET); cipher_iv.iova = rte_crypto_op_ctophys_offset(op, IV_OFFSET); aad_auth_iv.va = rte_crypto_op_ctod_offset( op, void *, IV_OFFSET + cipher_iv_len); aad_auth_iv.iova = rte_crypto_op_ctophys_offset(op, IV_OFFSET + cipher_iv_len); digest.va = (void *)sop->auth.digest.data; digest.iova = sop->auth.digest.phys_addr; if (is_sgl) { uint32_t remaining_off = auth_offset + auth_len; struct rte_mbuf *sgl_buf = sop->m_src; if (is_oop) sgl_buf = sop->m_dst; while (remaining_off >= rte_pktmbuf_data_len(sgl_buf) && sgl_buf->next != NULL) { remaining_off -= rte_pktmbuf_data_len(sgl_buf); sgl_buf = sgl_buf->next; } auth_end_iova = (uint64_t)rte_pktmbuf_iova_offset( sgl_buf, remaining_off); } else { auth_end_iova = rte_pktmbuf_iova(op->sym->m_src) + auth_offset + auth_len; } /* Then check if digest-encrypted conditions are met */ if ((auth_offset + auth_len < cipher_offset + cipher_len) && (digest.iova == auth_end_iova) && is_sgl) max_len = RTE_MAX(max_len, auth_offset + auth_len + ut_params->auth_xform.auth.digest_length); } else if (is_cipher) { cipher_offset = sop->cipher.data.offset; cipher_len = sop->cipher.data.length; max_len = cipher_len + cipher_offset; if (len_in_bits) { max_len = max_len >> 3; cipher_offset = cipher_offset >> 3; cipher_len = cipher_len >> 3; } ofs.ofs.cipher.head = cipher_offset; ofs.ofs.cipher.tail = max_len - cipher_offset - cipher_len; cipher_iv.va = rte_crypto_op_ctod_offset(op, void *, IV_OFFSET); cipher_iv.iova = rte_crypto_op_ctophys_offset(op, IV_OFFSET); } else if (is_auth) { auth_offset = sop->auth.data.offset; auth_len = sop->auth.data.length; max_len = auth_len + auth_offset; if (len_in_bits) { max_len = max_len >> 3; auth_offset = auth_offset >> 3; auth_len = auth_len >> 3; } ofs.ofs.auth.head = auth_offset; ofs.ofs.auth.tail = max_len - auth_offset - auth_len; aad_auth_iv.va = rte_crypto_op_ctod_offset( op, void *, IV_OFFSET + cipher_iv_len); aad_auth_iv.iova = rte_crypto_op_ctophys_offset(op, IV_OFFSET + cipher_iv_len); digest.va = (void *)sop->auth.digest.data; digest.iova = sop->auth.digest.phys_addr; } else { /* aead */ cipher_offset = sop->aead.data.offset; cipher_len = sop->aead.data.length; max_len = cipher_len + cipher_offset; if (len_in_bits) { max_len = max_len >> 3; cipher_offset = cipher_offset >> 3; cipher_len = cipher_len >> 3; } ofs.ofs.cipher.head = cipher_offset; ofs.ofs.cipher.tail = max_len - cipher_offset - cipher_len; cipher_iv.va = rte_crypto_op_ctod_offset(op, void *, IV_OFFSET); cipher_iv.iova = rte_crypto_op_ctophys_offset(op, IV_OFFSET); aad_auth_iv.va = (void *)sop->aead.aad.data; aad_auth_iv.iova = sop->aead.aad.phys_addr; digest.va = (void *)sop->aead.digest.data; digest.iova = sop->aead.digest.phys_addr; } n = rte_crypto_mbuf_to_vec(sop->m_src, 0, max_len, data_vec, RTE_DIM(data_vec)); if (n < 0 || n > sop->m_src->nb_segs) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } sgl.num = n; /* Out of place */ if (is_oop) { dest_sgl.vec = dest_data_vec; vec.dest_sgl = &dest_sgl; n = rte_crypto_mbuf_to_vec(sop->m_dst, 0, max_len, dest_data_vec, RTE_DIM(dest_data_vec)); if (n < 0 || n > sop->m_dst->nb_segs) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } dest_sgl.num = n; } else vec.dest_sgl = NULL; if (rte_cryptodev_raw_enqueue_burst(ctx, &vec, ofs, (void **)&op, &enqueue_status) < 1) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } if (enqueue_status == 0) { status = rte_cryptodev_raw_enqueue_done(ctx, 1); if (status < 0) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } } else if (enqueue_status < 0) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } n = n_success = 0; while (count++ < MAX_RAW_DEQUEUE_COUNT && n == 0) { n = rte_cryptodev_raw_dequeue_burst(ctx, NULL, 1, post_process_raw_dp_op, (void **)&ret_op, 0, &n_success, &dequeue_status); if (dequeue_status < 0) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } if (n == 0) rte_pause(); } if (n == 1 && dequeue_status == 0) { if (rte_cryptodev_raw_dequeue_done(ctx, 1) < 0) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; goto exit; } } op->status = (count == MAX_RAW_DEQUEUE_COUNT + 1 || ret_op != op || ret_op->status == RTE_CRYPTO_OP_STATUS_ERROR || n_success < 1) ? RTE_CRYPTO_OP_STATUS_ERROR : RTE_CRYPTO_OP_STATUS_SUCCESS; exit: free(ctx); } static void process_cpu_aead_op(uint8_t dev_id, struct rte_crypto_op *op) { int32_t n, st; struct rte_crypto_sym_op *sop; union rte_crypto_sym_ofs ofs; struct rte_crypto_sgl sgl; struct rte_crypto_sym_vec symvec; struct rte_crypto_va_iova_ptr iv_ptr, aad_ptr, digest_ptr; struct rte_crypto_vec vec[UINT8_MAX]; sop = op->sym; n = rte_crypto_mbuf_to_vec(sop->m_src, sop->aead.data.offset, sop->aead.data.length, vec, RTE_DIM(vec)); if (n < 0 || n != sop->m_src->nb_segs) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } sgl.vec = vec; sgl.num = n; symvec.src_sgl = &sgl; symvec.iv = &iv_ptr; symvec.digest = &digest_ptr; symvec.aad = &aad_ptr; symvec.status = &st; symvec.num = 1; /* for CPU crypto the IOVA address is not required */ iv_ptr.va = rte_crypto_op_ctod_offset(op, void *, IV_OFFSET); digest_ptr.va = (void *)sop->aead.digest.data; aad_ptr.va = (void *)sop->aead.aad.data; ofs.raw = 0; n = rte_cryptodev_sym_cpu_crypto_process(dev_id, sop->session, ofs, &symvec); if (n != 1) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; else op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } static void process_cpu_crypt_auth_op(uint8_t dev_id, struct rte_crypto_op *op) { int32_t n, st; struct rte_crypto_sym_op *sop; union rte_crypto_sym_ofs ofs; struct rte_crypto_sgl sgl; struct rte_crypto_sym_vec symvec; struct rte_crypto_va_iova_ptr iv_ptr, digest_ptr; struct rte_crypto_vec vec[UINT8_MAX]; sop = op->sym; n = rte_crypto_mbuf_to_vec(sop->m_src, sop->auth.data.offset, sop->auth.data.length, vec, RTE_DIM(vec)); if (n < 0 || n != sop->m_src->nb_segs) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return; } sgl.vec = vec; sgl.num = n; symvec.src_sgl = &sgl; symvec.iv = &iv_ptr; symvec.digest = &digest_ptr; symvec.status = &st; symvec.num = 1; iv_ptr.va = rte_crypto_op_ctod_offset(op, void *, IV_OFFSET); digest_ptr.va = (void *)sop->auth.digest.data; ofs.raw = 0; ofs.ofs.cipher.head = sop->cipher.data.offset - sop->auth.data.offset; ofs.ofs.cipher.tail = (sop->auth.data.offset + sop->auth.data.length) - (sop->cipher.data.offset + sop->cipher.data.length); n = rte_cryptodev_sym_cpu_crypto_process(dev_id, sop->session, ofs, &symvec); if (n != 1) op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; else op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; } static struct rte_crypto_op * process_crypto_request(uint8_t dev_id, struct rte_crypto_op *op) { RTE_VERIFY(gbl_action_type != RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO); if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) { RTE_LOG(ERR, USER1, "Error sending packet for encryption\n"); return NULL; } op = NULL; while (rte_cryptodev_dequeue_burst(dev_id, 0, &op, 1) == 0) rte_pause(); if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { RTE_LOG(DEBUG, USER1, "Operation status %d\n", op->status); return NULL; } return op; } static int testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct rte_cryptodev_info info; uint32_t i = 0, nb_devs, dev_id; uint16_t qp_id; memset(ts_params, 0, sizeof(*ts_params)); ts_params->mbuf_pool = rte_mempool_lookup("CRYPTO_MBUFPOOL"); if (ts_params->mbuf_pool == NULL) { /* Not already created so create */ ts_params->mbuf_pool = rte_pktmbuf_pool_create( "CRYPTO_MBUFPOOL", NUM_MBUFS, MBUF_CACHE_SIZE, 0, MBUF_SIZE, rte_socket_id()); if (ts_params->mbuf_pool == NULL) { RTE_LOG(ERR, USER1, "Can't create CRYPTO_MBUFPOOL\n"); return TEST_FAILED; } } ts_params->large_mbuf_pool = rte_mempool_lookup( "CRYPTO_LARGE_MBUFPOOL"); if (ts_params->large_mbuf_pool == NULL) { /* Not already created so create */ ts_params->large_mbuf_pool = rte_pktmbuf_pool_create( "CRYPTO_LARGE_MBUFPOOL", 1, 0, 0, UINT16_MAX, rte_socket_id()); if (ts_params->large_mbuf_pool == NULL) { RTE_LOG(ERR, USER1, "Can't create CRYPTO_LARGE_MBUFPOOL\n"); return TEST_FAILED; } } ts_params->op_mpool = rte_crypto_op_pool_create( "MBUF_CRYPTO_SYM_OP_POOL", RTE_CRYPTO_OP_TYPE_SYMMETRIC, NUM_MBUFS, MBUF_CACHE_SIZE, DEFAULT_NUM_XFORMS * sizeof(struct rte_crypto_sym_xform) + MAXIMUM_IV_LENGTH, rte_socket_id()); if (ts_params->op_mpool == NULL) { RTE_LOG(ERR, USER1, "Can't create CRYPTO_OP_POOL\n"); return TEST_FAILED; } nb_devs = rte_cryptodev_count(); if (nb_devs < 1) { RTE_LOG(WARNING, USER1, "No crypto devices found?\n"); return TEST_SKIPPED; } if (rte_cryptodev_device_count_by_driver(gbl_driver_id) < 1) { RTE_LOG(WARNING, USER1, "No %s devices found?\n", rte_cryptodev_driver_name_get(gbl_driver_id)); return TEST_SKIPPED; } /* Create list of valid crypto devs */ for (i = 0; i < nb_devs; i++) { rte_cryptodev_info_get(i, &info); if (info.driver_id == gbl_driver_id) ts_params->valid_devs[ts_params->valid_dev_count++] = i; } if (ts_params->valid_dev_count < 1) return TEST_FAILED; /* Set up all the qps on the first of the valid devices found */ dev_id = ts_params->valid_devs[0]; rte_cryptodev_info_get(dev_id, &info); ts_params->conf.nb_queue_pairs = info.max_nb_queue_pairs; ts_params->conf.socket_id = SOCKET_ID_ANY; ts_params->conf.ff_disable = RTE_CRYPTODEV_FF_SECURITY; unsigned int session_size = rte_cryptodev_sym_get_private_session_size(dev_id); #ifdef RTE_LIB_SECURITY unsigned int security_session_size = rte_security_session_get_size( rte_cryptodev_get_sec_ctx(dev_id)); if (session_size < security_session_size) session_size = security_session_size; #endif /* * Create mempool with maximum number of sessions. */ if (info.sym.max_nb_sessions != 0 && info.sym.max_nb_sessions < MAX_NB_SESSIONS) { RTE_LOG(ERR, USER1, "Device does not support " "at least %u sessions\n", MAX_NB_SESSIONS); return TEST_FAILED; } ts_params->session_mpool = rte_cryptodev_sym_session_pool_create( "test_sess_mp", MAX_NB_SESSIONS, 0, 0, 0, SOCKET_ID_ANY); TEST_ASSERT_NOT_NULL(ts_params->session_mpool, "session mempool allocation failed"); ts_params->session_priv_mpool = rte_mempool_create( "test_sess_mp_priv", MAX_NB_SESSIONS, session_size, 0, 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0); TEST_ASSERT_NOT_NULL(ts_params->session_priv_mpool, "session mempool allocation failed"); TEST_ASSERT_SUCCESS(rte_cryptodev_configure(dev_id, &ts_params->conf), "Failed to configure cryptodev %u with %u qps", dev_id, ts_params->conf.nb_queue_pairs); ts_params->qp_conf.nb_descriptors = MAX_NUM_OPS_INFLIGHT; ts_params->qp_conf.mp_session = ts_params->session_mpool; ts_params->qp_conf.mp_session_private = ts_params->session_priv_mpool; for (qp_id = 0; qp_id < info.max_nb_queue_pairs; qp_id++) { TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( dev_id, qp_id, &ts_params->qp_conf, rte_cryptodev_socket_id(dev_id)), "Failed to setup queue pair %u on cryptodev %u", qp_id, dev_id); } return TEST_SUCCESS; } static void testsuite_teardown(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; int res; if (ts_params->mbuf_pool != NULL) { RTE_LOG(DEBUG, USER1, "CRYPTO_MBUFPOOL count %u\n", rte_mempool_avail_count(ts_params->mbuf_pool)); } if (ts_params->op_mpool != NULL) { RTE_LOG(DEBUG, USER1, "CRYPTO_OP_POOL count %u\n", rte_mempool_avail_count(ts_params->op_mpool)); } /* Free session mempools */ if (ts_params->session_priv_mpool != NULL) { rte_mempool_free(ts_params->session_priv_mpool); ts_params->session_priv_mpool = NULL; } if (ts_params->session_mpool != NULL) { rte_mempool_free(ts_params->session_mpool); ts_params->session_mpool = NULL; } res = rte_cryptodev_close(ts_params->valid_devs[0]); if (res) RTE_LOG(ERR, USER1, "Crypto device close error %d\n", res); } static int check_capabilities_supported(enum rte_crypto_sym_xform_type type, const int *algs, uint16_t num_algs) { uint8_t dev_id = testsuite_params.valid_devs[0]; bool some_alg_supported = FALSE; uint16_t i; for (i = 0; i < num_algs && !some_alg_supported; i++) { struct rte_cryptodev_sym_capability_idx alg = { type, {algs[i]} }; if (rte_cryptodev_sym_capability_get(dev_id, &alg) != NULL) some_alg_supported = TRUE; } if (!some_alg_supported) return TEST_SKIPPED; return 0; } int check_cipher_capabilities_supported(const enum rte_crypto_cipher_algorithm *ciphers, uint16_t num_ciphers) { return check_capabilities_supported(RTE_CRYPTO_SYM_XFORM_CIPHER, (const int *) ciphers, num_ciphers); } int check_auth_capabilities_supported(const enum rte_crypto_auth_algorithm *auths, uint16_t num_auths) { return check_capabilities_supported(RTE_CRYPTO_SYM_XFORM_AUTH, (const int *) auths, num_auths); } int check_aead_capabilities_supported(const enum rte_crypto_aead_algorithm *aeads, uint16_t num_aeads) { return check_capabilities_supported(RTE_CRYPTO_SYM_XFORM_AEAD, (const int *) aeads, num_aeads); } static int null_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_NULL }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_NULL }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO)) { RTE_LOG(INFO, USER1, "Feature flag requirements for NULL " "testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for NULL " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int crypto_gen_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO)) { RTE_LOG(INFO, USER1, "Feature flag requirements for Crypto Gen " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } #ifdef RTE_LIB_SECURITY static int ipsec_proto_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_cryptodev_info dev_info; int ret = 0; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SECURITY)) { RTE_LOG(INFO, USER1, "Feature flag requirements for IPsec Proto " "testsuite not met\n"); return TEST_SKIPPED; } /* Reconfigure to enable security */ ret = dev_configure_and_start(0); if (ret != TEST_SUCCESS) return ret; /* Set action type */ ut_params->type = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL; if (security_proto_supported( RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL, RTE_SECURITY_PROTOCOL_IPSEC) < 0) { RTE_LOG(INFO, USER1, "Capability requirements for IPsec Proto " "test not met\n"); ret = TEST_SKIPPED; } /* * Stop the device. Device would be started again by individual test * case setup routine. */ rte_cryptodev_stop(ts_params->valid_devs[0]); return ret; } static int pdcp_proto_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_NULL, RTE_CRYPTO_CIPHER_AES_CTR, RTE_CRYPTO_CIPHER_ZUC_EEA3, RTE_CRYPTO_CIPHER_SNOW3G_UEA2 }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_NULL, RTE_CRYPTO_AUTH_SNOW3G_UIA2, RTE_CRYPTO_AUTH_AES_CMAC, RTE_CRYPTO_AUTH_ZUC_EIA3 }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SECURITY)) { RTE_LOG(INFO, USER1, "Feature flag requirements for PDCP Proto " "testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for PDCP Proto " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int docsis_proto_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_AES_DOCSISBPI }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SECURITY)) { RTE_LOG(INFO, USER1, "Feature flag requirements for DOCSIS " "Proto testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for DOCSIS Proto " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } #endif static int aes_ccm_auth_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_aead_algorithm aeads[] = { RTE_CRYPTO_AEAD_AES_CCM }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for AES CCM " "testsuite not met\n"); return TEST_SKIPPED; } if (check_aead_capabilities_supported(aeads, RTE_DIM(aeads)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for AES CCM " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int aes_gcm_auth_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_aead_algorithm aeads[] = { RTE_CRYPTO_AEAD_AES_GCM }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO)) { RTE_LOG(INFO, USER1, "Feature flag requirements for AES GCM " "testsuite not met\n"); return TEST_SKIPPED; } if (check_aead_capabilities_supported(aeads, RTE_DIM(aeads)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for AES GCM " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int aes_gmac_auth_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_AES_GMAC }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for AES GMAC " "testsuite not met\n"); return TEST_SKIPPED; } if (check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for AES GMAC " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int chacha20_poly1305_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_aead_algorithm aeads[] = { RTE_CRYPTO_AEAD_CHACHA20_POLY1305 }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for " "Chacha20-Poly1305 testsuite not met\n"); return TEST_SKIPPED; } if (check_aead_capabilities_supported(aeads, RTE_DIM(aeads)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for " "Chacha20-Poly1305 testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int snow3g_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_SNOW3G_UEA2 }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_SNOW3G_UIA2 }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO)) { RTE_LOG(INFO, USER1, "Feature flag requirements for Snow3G " "testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for Snow3G " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int zuc_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_ZUC_EEA3 }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_ZUC_EIA3 }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO)) { RTE_LOG(INFO, USER1, "Feature flag requirements for ZUC " "testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for ZUC " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int hmac_md5_auth_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_MD5_HMAC }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for HMAC MD5 " "Auth testsuite not met\n"); return TEST_SKIPPED; } if (check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for HMAC MD5 " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int kasumi_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_KASUMI_F8 }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_KASUMI_F9 }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for Kasumi " "testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for Kasumi " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int negative_aes_gcm_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_aead_algorithm aeads[] = { RTE_CRYPTO_AEAD_AES_GCM }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for Negative " "AES GCM testsuite not met\n"); return TEST_SKIPPED; } if (check_aead_capabilities_supported(aeads, RTE_DIM(aeads)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for Negative " "AES GCM testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int negative_aes_gmac_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_AES_GMAC }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for Negative " "AES GMAC testsuite not met\n"); return TEST_SKIPPED; } if (check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for Negative " "AES GMAC testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int mixed_cipher_hash_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; uint64_t feat_flags; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_NULL, RTE_CRYPTO_CIPHER_AES_CTR, RTE_CRYPTO_CIPHER_ZUC_EEA3, RTE_CRYPTO_CIPHER_SNOW3G_UEA2 }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_NULL, RTE_CRYPTO_AUTH_SNOW3G_UIA2, RTE_CRYPTO_AUTH_AES_CMAC, RTE_CRYPTO_AUTH_ZUC_EIA3 }; rte_cryptodev_info_get(dev_id, &dev_info); feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || (global_api_test_type == CRYPTODEV_RAW_API_TEST)) { RTE_LOG(INFO, USER1, "Feature flag requirements for Mixed " "Cipher Hash testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for Mixed " "Cipher Hash testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int esn_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_AES_CBC }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_SHA1_HMAC }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for ESN " "testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for ESN " "testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int multi_session_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_AES_CBC }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_SHA512_HMAC }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO)) { RTE_LOG(INFO, USER1, "Feature flag requirements for Multi " "Session testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for Multi " "Session testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int negative_hmac_sha1_testsuite_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t dev_id = ts_params->valid_devs[0]; struct rte_cryptodev_info dev_info; const enum rte_crypto_cipher_algorithm ciphers[] = { RTE_CRYPTO_CIPHER_AES_CBC }; const enum rte_crypto_auth_algorithm auths[] = { RTE_CRYPTO_AUTH_SHA1_HMAC }; rte_cryptodev_info_get(dev_id, &dev_info); if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) || ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && !(dev_info.feature_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { RTE_LOG(INFO, USER1, "Feature flag requirements for Negative " "HMAC SHA1 testsuite not met\n"); return TEST_SKIPPED; } if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0 && check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) { RTE_LOG(INFO, USER1, "Capability requirements for Negative " "HMAC SHA1 testsuite not met\n"); return TEST_SKIPPED; } return 0; } static int dev_configure_and_start(uint64_t ff_disable) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint16_t qp_id; /* Clear unit test parameters before running test */ memset(ut_params, 0, sizeof(*ut_params)); /* Reconfigure device to default parameters */ ts_params->conf.socket_id = SOCKET_ID_ANY; ts_params->conf.ff_disable = ff_disable; ts_params->qp_conf.nb_descriptors = MAX_NUM_OPS_INFLIGHT; ts_params->qp_conf.mp_session = ts_params->session_mpool; ts_params->qp_conf.mp_session_private = ts_params->session_priv_mpool; TEST_ASSERT_SUCCESS(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed to configure cryptodev %u", ts_params->valid_devs[0]); for (qp_id = 0; qp_id < ts_params->conf.nb_queue_pairs ; qp_id++) { TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &ts_params->qp_conf, rte_cryptodev_socket_id(ts_params->valid_devs[0])), "Failed to setup queue pair %u on cryptodev %u", qp_id, ts_params->valid_devs[0]); } rte_cryptodev_stats_reset(ts_params->valid_devs[0]); /* Start the device */ TEST_ASSERT_SUCCESS(rte_cryptodev_start(ts_params->valid_devs[0]), "Failed to start cryptodev %u", ts_params->valid_devs[0]); return TEST_SUCCESS; } int ut_setup(void) { /* Configure and start the device with security feature disabled */ return dev_configure_and_start(RTE_CRYPTODEV_FF_SECURITY); } static int ut_setup_security(void) { /* Configure and start the device with no features disabled */ return dev_configure_and_start(0); } void ut_teardown(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; /* free crypto session structure */ #ifdef RTE_LIB_SECURITY if (ut_params->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) { if (ut_params->sec_session) { rte_security_session_destroy(rte_cryptodev_get_sec_ctx (ts_params->valid_devs[0]), ut_params->sec_session); ut_params->sec_session = NULL; } } else #endif { if (ut_params->sess) { rte_cryptodev_sym_session_clear( ts_params->valid_devs[0], ut_params->sess); rte_cryptodev_sym_session_free(ut_params->sess); ut_params->sess = NULL; } } /* free crypto operation structure */ if (ut_params->op) rte_crypto_op_free(ut_params->op); /* * free mbuf - both obuf and ibuf are usually the same, * so check if they point at the same address is necessary, * to avoid freeing the mbuf twice. */ if (ut_params->obuf) { rte_pktmbuf_free(ut_params->obuf); if (ut_params->ibuf == ut_params->obuf) ut_params->ibuf = 0; ut_params->obuf = 0; } if (ut_params->ibuf) { rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = 0; } if (ts_params->mbuf_pool != NULL) RTE_LOG(DEBUG, USER1, "CRYPTO_MBUFPOOL count %u\n", rte_mempool_avail_count(ts_params->mbuf_pool)); /* Stop the device */ rte_cryptodev_stop(ts_params->valid_devs[0]); } static int test_device_configure_invalid_dev_id(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint16_t dev_id, num_devs = 0; TEST_ASSERT((num_devs = rte_cryptodev_count()) >= 1, "Need at least %d devices for test", 1); /* valid dev_id values */ dev_id = ts_params->valid_devs[0]; /* Stop the device in case it's started so it can be configured */ rte_cryptodev_stop(dev_id); TEST_ASSERT_SUCCESS(rte_cryptodev_configure(dev_id, &ts_params->conf), "Failed test for rte_cryptodev_configure: " "invalid dev_num %u", dev_id); /* invalid dev_id values */ dev_id = num_devs; TEST_ASSERT_FAIL(rte_cryptodev_configure(dev_id, &ts_params->conf), "Failed test for rte_cryptodev_configure: " "invalid dev_num %u", dev_id); dev_id = 0xff; TEST_ASSERT_FAIL(rte_cryptodev_configure(dev_id, &ts_params->conf), "Failed test for rte_cryptodev_configure:" "invalid dev_num %u", dev_id); return TEST_SUCCESS; } static int test_device_configure_invalid_queue_pair_ids(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint16_t orig_nb_qps = ts_params->conf.nb_queue_pairs; /* Stop the device in case it's started so it can be configured */ rte_cryptodev_stop(ts_params->valid_devs[0]); /* valid - max value queue pairs */ ts_params->conf.nb_queue_pairs = orig_nb_qps; TEST_ASSERT_SUCCESS(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed to configure cryptodev: dev_id %u, qp_id %u", ts_params->valid_devs[0], ts_params->conf.nb_queue_pairs); /* valid - one queue pairs */ ts_params->conf.nb_queue_pairs = 1; TEST_ASSERT_SUCCESS(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed to configure cryptodev: dev_id %u, qp_id %u", ts_params->valid_devs[0], ts_params->conf.nb_queue_pairs); /* invalid - zero queue pairs */ ts_params->conf.nb_queue_pairs = 0; TEST_ASSERT_FAIL(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed test for rte_cryptodev_configure, dev_id %u," " invalid qps: %u", ts_params->valid_devs[0], ts_params->conf.nb_queue_pairs); /* invalid - max value supported by field queue pairs */ ts_params->conf.nb_queue_pairs = UINT16_MAX; TEST_ASSERT_FAIL(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed test for rte_cryptodev_configure, dev_id %u," " invalid qps: %u", ts_params->valid_devs[0], ts_params->conf.nb_queue_pairs); /* invalid - max value + 1 queue pairs */ ts_params->conf.nb_queue_pairs = orig_nb_qps + 1; TEST_ASSERT_FAIL(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed test for rte_cryptodev_configure, dev_id %u," " invalid qps: %u", ts_params->valid_devs[0], ts_params->conf.nb_queue_pairs); /* revert to original testsuite value */ ts_params->conf.nb_queue_pairs = orig_nb_qps; return TEST_SUCCESS; } static int test_queue_pair_descriptor_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct rte_cryptodev_qp_conf qp_conf = { .nb_descriptors = MAX_NUM_OPS_INFLIGHT }; uint16_t qp_id; /* Stop the device in case it's started so it can be configured */ rte_cryptodev_stop(ts_params->valid_devs[0]); TEST_ASSERT_SUCCESS(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed to configure cryptodev %u", ts_params->valid_devs[0]); /* * Test various ring sizes on this device. memzones can't be * freed so are re-used if ring is released and re-created. */ qp_conf.nb_descriptors = MIN_NUM_OPS_INFLIGHT; /* min size*/ qp_conf.mp_session = ts_params->session_mpool; qp_conf.mp_session_private = ts_params->session_priv_mpool; for (qp_id = 0; qp_id < ts_params->conf.nb_queue_pairs; qp_id++) { TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id( ts_params->valid_devs[0])), "Failed test for " "rte_cryptodev_queue_pair_setup: num_inflights " "%u on qp %u on cryptodev %u", qp_conf.nb_descriptors, qp_id, ts_params->valid_devs[0]); } qp_conf.nb_descriptors = (uint32_t)(MAX_NUM_OPS_INFLIGHT / 2); for (qp_id = 0; qp_id < ts_params->conf.nb_queue_pairs; qp_id++) { TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id( ts_params->valid_devs[0])), "Failed test for" " rte_cryptodev_queue_pair_setup: num_inflights" " %u on qp %u on cryptodev %u", qp_conf.nb_descriptors, qp_id, ts_params->valid_devs[0]); } qp_conf.nb_descriptors = MAX_NUM_OPS_INFLIGHT; /* valid */ for (qp_id = 0; qp_id < ts_params->conf.nb_queue_pairs; qp_id++) { TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id( ts_params->valid_devs[0])), "Failed test for " "rte_cryptodev_queue_pair_setup: num_inflights" " %u on qp %u on cryptodev %u", qp_conf.nb_descriptors, qp_id, ts_params->valid_devs[0]); } qp_conf.nb_descriptors = DEFAULT_NUM_OPS_INFLIGHT; for (qp_id = 0; qp_id < ts_params->conf.nb_queue_pairs; qp_id++) { TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id( ts_params->valid_devs[0])), "Failed test for" " rte_cryptodev_queue_pair_setup:" "num_inflights %u on qp %u on cryptodev %u", qp_conf.nb_descriptors, qp_id, ts_params->valid_devs[0]); } /* test invalid queue pair id */ qp_conf.nb_descriptors = DEFAULT_NUM_OPS_INFLIGHT; /*valid */ qp_id = ts_params->conf.nb_queue_pairs; /*invalid */ TEST_ASSERT_FAIL(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id(ts_params->valid_devs[0])), "Failed test for rte_cryptodev_queue_pair_setup:" "invalid qp %u on cryptodev %u", qp_id, ts_params->valid_devs[0]); qp_id = 0xffff; /*invalid*/ TEST_ASSERT_FAIL(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id(ts_params->valid_devs[0])), "Failed test for rte_cryptodev_queue_pair_setup:" "invalid qp %u on cryptodev %u", qp_id, ts_params->valid_devs[0]); return TEST_SUCCESS; } /* ***** Plaintext data for tests ***** */ const char catch_22_quote_1[] = "There was only one catch and that was Catch-22, which " "specified that a concern for one's safety in the face of " "dangers that were real and immediate was the process of a " "rational mind. Orr was crazy and could be grounded. All he " "had to do was ask; and as soon as he did, he would no longer " "be crazy and would have to fly more missions. Orr would be " "crazy to fly more missions and sane if he didn't, but if he " "was sane he had to fly them. If he flew them he was crazy " "and didn't have to; but if he didn't want to he was sane and " "had to. Yossarian was moved very deeply by the absolute " "simplicity of this clause of Catch-22 and let out a " "respectful whistle. \"That's some catch, that Catch-22\", he " "observed. \"It's the best there is,\" Doc Daneeka agreed."; const char catch_22_quote[] = "What a lousy earth! He wondered how many people were " "destitute that same night even in his own prosperous country, " "how many homes were shanties, how many husbands were drunk " "and wives socked, and how many children were bullied, abused, " "or abandoned. How many families hungered for food they could " "not afford to buy? How many hearts were broken? How many " "suicides would take place that same night, how many people " "would go insane? How many cockroaches and landlords would " "triumph? How many winners were losers, successes failures, " "and rich men poor men? How many wise guys were stupid? How " "many happy endings were unhappy endings? How many honest men " "were liars, brave men cowards, loyal men traitors, how many " "sainted men were corrupt, how many people in positions of " "trust had sold their souls to bodyguards, how many had never " "had souls? How many straight-and-narrow paths were crooked " "paths? How many best families were worst families and how " "many good people were bad people? When you added them all up " "and then subtracted, you might be left with only the children, " "and perhaps with Albert Einstein and an old violinist or " "sculptor somewhere."; #define QUOTE_480_BYTES (480) #define QUOTE_512_BYTES (512) #define QUOTE_768_BYTES (768) #define QUOTE_1024_BYTES (1024) /* ***** SHA1 Hash Tests ***** */ #define HMAC_KEY_LENGTH_SHA1 (DIGEST_BYTE_LENGTH_SHA1) static uint8_t hmac_sha1_key[] = { 0xF8, 0x2A, 0xC7, 0x54, 0xDB, 0x96, 0x18, 0xAA, 0xC3, 0xA1, 0x53, 0xF6, 0x1F, 0x17, 0x60, 0xBD, 0xDE, 0xF4, 0xDE, 0xAD }; /* ***** SHA224 Hash Tests ***** */ #define HMAC_KEY_LENGTH_SHA224 (DIGEST_BYTE_LENGTH_SHA224) /* ***** AES-CBC Cipher Tests ***** */ #define CIPHER_KEY_LENGTH_AES_CBC (16) #define CIPHER_IV_LENGTH_AES_CBC (CIPHER_KEY_LENGTH_AES_CBC) static uint8_t aes_cbc_key[] = { 0xE4, 0x23, 0x33, 0x8A, 0x35, 0x64, 0x61, 0xE2, 0x49, 0x03, 0xDD, 0xC6, 0xB8, 0xCA, 0x55, 0x7A }; static uint8_t aes_cbc_iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; /* ***** AES-CBC / HMAC-SHA1 Hash Tests ***** */ static const uint8_t catch_22_quote_2_512_bytes_AES_CBC_ciphertext[] = { 0x8B, 0x4D, 0xDA, 0x1B, 0xCF, 0x04, 0xA0, 0x31, 0xB4, 0xBF, 0xBD, 0x68, 0x43, 0x20, 0x7E, 0x76, 0xB1, 0x96, 0x8B, 0xA2, 0x7C, 0xA2, 0x83, 0x9E, 0x39, 0x5A, 0x2F, 0x7E, 0x92, 0xB4, 0x48, 0x1A, 0x3F, 0x6B, 0x5D, 0xDF, 0x52, 0x85, 0x5F, 0x8E, 0x42, 0x3C, 0xFB, 0xE9, 0x1A, 0x24, 0xD6, 0x08, 0xDD, 0xFD, 0x16, 0xFB, 0xE9, 0x55, 0xEF, 0xF0, 0xA0, 0x8D, 0x13, 0xAB, 0x81, 0xC6, 0x90, 0x01, 0xB5, 0x18, 0x84, 0xB3, 0xF6, 0xE6, 0x11, 0x57, 0xD6, 0x71, 0xC6, 0x3C, 0x3F, 0x2F, 0x33, 0xEE, 0x24, 0x42, 0x6E, 0xAC, 0x0B, 0xCA, 0xEC, 0xF9, 0x84, 0xF8, 0x22, 0xAA, 0x60, 0xF0, 0x32, 0xA9, 0x75, 0x75, 0x3B, 0xCB, 0x70, 0x21, 0x0A, 0x8D, 0x0F, 0xE0, 0xC4, 0x78, 0x2B, 0xF8, 0x97, 0xE3, 0xE4, 0x26, 0x4B, 0x29, 0xDA, 0x88, 0xCD, 0x46, 0xEC, 0xAA, 0xF9, 0x7F, 0xF1, 0x15, 0xEA, 0xC3, 0x87, 0xE6, 0x31, 0xF2, 0xCF, 0xDE, 0x4D, 0x80, 0x70, 0x91, 0x7E, 0x0C, 0xF7, 0x26, 0x3A, 0x92, 0x4F, 0x18, 0x83, 0xC0, 0x8F, 0x59, 0x01, 0xA5, 0x88, 0xD1, 0xDB, 0x26, 0x71, 0x27, 0x16, 0xF5, 0xEE, 0x10, 0x82, 0xAC, 0x68, 0x26, 0x9B, 0xE2, 0x6D, 0xD8, 0x9A, 0x80, 0xDF, 0x04, 0x31, 0xD5, 0xF1, 0x35, 0x5C, 0x3B, 0xDD, 0x9A, 0x65, 0xBA, 0x58, 0x34, 0x85, 0x61, 0x1C, 0x42, 0x10, 0x76, 0x73, 0x02, 0x42, 0xC9, 0x23, 0x18, 0x8E, 0xB4, 0x6F, 0xB4, 0xA3, 0x54, 0x6E, 0x88, 0x3B, 0x62, 0x7C, 0x02, 0x8D, 0x4C, 0x9F, 0xC8, 0x45, 0xF4, 0xC9, 0xDE, 0x4F, 0xEB, 0x22, 0x83, 0x1B, 0xE4, 0x49, 0x37, 0xE4, 0xAD, 0xE7, 0xCD, 0x21, 0x54, 0xBC, 0x1C, 0xC2, 0x04, 0x97, 0xB4, 0x10, 0x61, 0xF0, 0xE4, 0xEF, 0x27, 0x63, 0x3A, 0xDA, 0x91, 0x41, 0x25, 0x62, 0x1C, 0x5C, 0xB6, 0x38, 0x4A, 0x88, 0x71, 0x59, 0x5A, 0x8D, 0xA0, 0x09, 0xAF, 0x72, 0x94, 0xD7, 0x79, 0x5C, 0x60, 0x7C, 0x8F, 0x4C, 0xF5, 0xD9, 0xA1, 0x39, 0x6D, 0x81, 0x28, 0xEF, 0x13, 0x28, 0xDF, 0xF5, 0x3E, 0xF7, 0x8E, 0x09, 0x9C, 0x78, 0x18, 0x79, 0xB8, 0x68, 0xD7, 0xA8, 0x29, 0x62, 0xAD, 0xDE, 0xE1, 0x61, 0x76, 0x1B, 0x05, 0x16, 0xCD, 0xBF, 0x02, 0x8E, 0xA6, 0x43, 0x6E, 0x92, 0x55, 0x4F, 0x60, 0x9C, 0x03, 0xB8, 0x4F, 0xA3, 0x02, 0xAC, 0xA8, 0xA7, 0x0C, 0x1E, 0xB5, 0x6B, 0xF8, 0xC8, 0x4D, 0xDE, 0xD2, 0xB0, 0x29, 0x6E, 0x40, 0xE6, 0xD6, 0xC9, 0xE6, 0xB9, 0x0F, 0xB6, 0x63, 0xF5, 0xAA, 0x2B, 0x96, 0xA7, 0x16, 0xAC, 0x4E, 0x0A, 0x33, 0x1C, 0xA6, 0xE6, 0xBD, 0x8A, 0xCF, 0x40, 0xA9, 0xB2, 0xFA, 0x63, 0x27, 0xFD, 0x9B, 0xD9, 0xFC, 0xD5, 0x87, 0x8D, 0x4C, 0xB6, 0xA4, 0xCB, 0xE7, 0x74, 0x55, 0xF4, 0xFB, 0x41, 0x25, 0xB5, 0x4B, 0x0A, 0x1B, 0xB1, 0xD6, 0xB7, 0xD9, 0x47, 0x2A, 0xC3, 0x98, 0x6A, 0xC4, 0x03, 0x73, 0x1F, 0x93, 0x6E, 0x53, 0x19, 0x25, 0x64, 0x15, 0x83, 0xF9, 0x73, 0x2A, 0x74, 0xB4, 0x93, 0x69, 0xC4, 0x72, 0xFC, 0x26, 0xA2, 0x9F, 0x43, 0x45, 0xDD, 0xB9, 0xEF, 0x36, 0xC8, 0x3A, 0xCD, 0x99, 0x9B, 0x54, 0x1A, 0x36, 0xC1, 0x59, 0xF8, 0x98, 0xA8, 0xCC, 0x28, 0x0D, 0x73, 0x4C, 0xEE, 0x98, 0xCB, 0x7C, 0x58, 0x7E, 0x20, 0x75, 0x1E, 0xB7, 0xC9, 0xF8, 0xF2, 0x0E, 0x63, 0x9E, 0x05, 0x78, 0x1A, 0xB6, 0xA8, 0x7A, 0xF9, 0x98, 0x6A, 0xA6, 0x46, 0x84, 0x2E, 0xF6, 0x4B, 0xDC, 0x9B, 0x8F, 0x9B, 0x8F, 0xEE, 0xB4, 0xAA, 0x3F, 0xEE, 0xC0, 0x37, 0x27, 0x76, 0xC7, 0x95, 0xBB, 0x26, 0x74, 0x69, 0x12, 0x7F, 0xF1, 0xBB, 0xFF, 0xAE, 0xB5, 0x99, 0x6E, 0xCB, 0x0C }; static const uint8_t catch_22_quote_2_512_bytes_AES_CBC_HMAC_SHA1_digest[] = { 0x9a, 0x4f, 0x88, 0x1b, 0xb6, 0x8f, 0xd8, 0x60, 0x42, 0x1a, 0x7d, 0x3d, 0xf5, 0x82, 0x80, 0xf1, 0x18, 0x8c, 0x1d, 0x32 }; /* Multisession Vector context Test */ /*Begin Session 0 */ static uint8_t ms_aes_cbc_key0[] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; static uint8_t ms_aes_cbc_iv0[] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; static const uint8_t ms_aes_cbc_cipher0[] = { 0x3C, 0xE4, 0xEE, 0x42, 0xB6, 0x9B, 0xC3, 0x38, 0x5F, 0xAD, 0x54, 0xDC, 0xA8, 0x32, 0x81, 0xDC, 0x7A, 0x6F, 0x85, 0x58, 0x07, 0x35, 0xED, 0xEB, 0xAD, 0x79, 0x79, 0x96, 0xD3, 0x0E, 0xA6, 0xD9, 0xAA, 0x86, 0xA4, 0x8F, 0xB5, 0xD6, 0x6E, 0x6D, 0x0C, 0x91, 0x2F, 0xC4, 0x67, 0x98, 0x0E, 0xC4, 0x8D, 0x83, 0x68, 0x69, 0xC4, 0xD3, 0x94, 0x34, 0xC4, 0x5D, 0x60, 0x55, 0x22, 0x87, 0x8F, 0x6F, 0x17, 0x8E, 0x75, 0xE4, 0x02, 0xF5, 0x1B, 0x99, 0xC8, 0x39, 0xA9, 0xAB, 0x23, 0x91, 0x12, 0xED, 0x08, 0xE7, 0xD9, 0x25, 0x89, 0x24, 0x4F, 0x8D, 0x68, 0xF3, 0x10, 0x39, 0x0A, 0xEE, 0x45, 0x24, 0xDF, 0x7A, 0x9D, 0x00, 0x25, 0xE5, 0x35, 0x71, 0x4E, 0x40, 0x59, 0x6F, 0x0A, 0x13, 0xB3, 0x72, 0x1D, 0x98, 0x63, 0x94, 0x89, 0xA5, 0x39, 0x8E, 0xD3, 0x9C, 0x8A, 0x7F, 0x71, 0x2F, 0xC7, 0xCD, 0x81, 0x05, 0xDC, 0xC0, 0x8D, 0xCE, 0x6D, 0x18, 0x30, 0xC4, 0x72, 0x51, 0xF0, 0x27, 0xC8, 0xF6, 0x60, 0x5B, 0x7C, 0xB2, 0xE3, 0x49, 0x0C, 0x29, 0xC6, 0x9F, 0x39, 0x57, 0x80, 0x55, 0x24, 0x2C, 0x9B, 0x0F, 0x5A, 0xB3, 0x89, 0x55, 0x31, 0x96, 0x0D, 0xCD, 0xF6, 0x51, 0x03, 0x2D, 0x89, 0x26, 0x74, 0x44, 0xD6, 0xE8, 0xDC, 0xEA, 0x44, 0x55, 0x64, 0x71, 0x9C, 0x9F, 0x5D, 0xBA, 0x39, 0x46, 0xA8, 0x17, 0xA1, 0x9C, 0x52, 0x9D, 0xBC, 0x6B, 0x4A, 0x98, 0xE6, 0xEA, 0x33, 0xEC, 0x58, 0xB4, 0x43, 0xF0, 0x32, 0x45, 0xA4, 0xC1, 0x55, 0xB7, 0x5D, 0xB5, 0x59, 0xB2, 0xE3, 0x96, 0xFF, 0xA5, 0xAF, 0xE1, 0x86, 0x1B, 0x42, 0xE6, 0x3B, 0xA0, 0x90, 0x4A, 0xE8, 0x8C, 0x21, 0x7F, 0x36, 0x1E, 0x5B, 0x65, 0x25, 0xD1, 0xC1, 0x5A, 0xCA, 0x3D, 0x10, 0xED, 0x2D, 0x79, 0xD0, 0x0F, 0x58, 0x44, 0x69, 0x81, 0xF5, 0xD4, 0xC9, 0x0F, 0x90, 0x76, 0x1F, 0x54, 0xD2, 0xD5, 0x97, 0xCE, 0x2C, 0xE3, 0xEF, 0xF4, 0xB7, 0xC6, 0x3A, 0x87, 0x7F, 0x83, 0x2A, 0xAF, 0xCD, 0x90, 0x12, 0xA7, 0x7D, 0x85, 0x1D, 0x62, 0xD3, 0x85, 0x25, 0x05, 0xDB, 0x45, 0x92, 0xA3, 0xF6, 0xA2, 0xA8, 0x41, 0xE4, 0x25, 0x86, 0x87, 0x67, 0x24, 0xEC, 0x89, 0x23, 0x2A, 0x9B, 0x20, 0x4D, 0x93, 0xEE, 0xE2, 0x2E, 0xC1, 0x0B, 0x15, 0x33, 0xCF, 0x00, 0xD1, 0x1A, 0xDA, 0x93, 0xFD, 0x28, 0x21, 0x5B, 0xCF, 0xD1, 0xF3, 0x5A, 0x81, 0xBA, 0x82, 0x5E, 0x2F, 0x61, 0xB4, 0x05, 0x71, 0xB5, 0xF4, 0x39, 0x3C, 0x1F, 0x60, 0x00, 0x7A, 0xC4, 0xF8, 0x35, 0x20, 0x6C, 0x3A, 0xCC, 0x03, 0x8F, 0x7B, 0xA2, 0xB6, 0x65, 0x8A, 0xB6, 0x5F, 0xFD, 0x25, 0xD3, 0x5F, 0x92, 0xF9, 0xAE, 0x17, 0x9B, 0x5E, 0x6E, 0x9A, 0xE4, 0x55, 0x10, 0x25, 0x07, 0xA4, 0xAF, 0x21, 0x69, 0x13, 0xD8, 0xFA, 0x31, 0xED, 0xF7, 0xA7, 0xA7, 0x3B, 0xB8, 0x96, 0x8E, 0x10, 0x86, 0x74, 0xD8, 0xB1, 0x34, 0x9E, 0x9B, 0x6A, 0x26, 0xA8, 0xD4, 0xD0, 0xB5, 0xF6, 0xDE, 0xE7, 0xCA, 0x06, 0xDC, 0xA3, 0x6F, 0xEE, 0x6B, 0x1E, 0xB5, 0x30, 0x99, 0x23, 0xF9, 0x76, 0xF0, 0xA0, 0xCF, 0x3B, 0x94, 0x7B, 0x19, 0x8D, 0xA5, 0x0C, 0x18, 0xA6, 0x1D, 0x07, 0x89, 0xBE, 0x5B, 0x61, 0xE5, 0xF1, 0x42, 0xDB, 0xD4, 0x2E, 0x02, 0x1F, 0xCE, 0xEF, 0x92, 0xB1, 0x1B, 0x56, 0x50, 0xF2, 0x16, 0xE5, 0xE7, 0x4F, 0xFD, 0xBB, 0x3E, 0xD2, 0xFC, 0x3C, 0xC6, 0x0F, 0xF9, 0x12, 0x4E, 0xCB, 0x1E, 0x0C, 0x15, 0x84, 0x2A, 0x14, 0x8A, 0x02, 0xE4, 0x7E, 0x95, 0x5B, 0x86, 0xDB, 0x9B, 0x62, 0x5B, 0x19, 0xD2, 0x17, 0xFA, 0x13, 0xBB, 0x6B, 0x3F, 0x45, 0x9F, 0xBF }; static uint8_t ms_hmac_key0[] = { 0xFF, 0x1A, 0x7D, 0x3D, 0xF5, 0x82, 0x80, 0xF1, 0xF1, 0x35, 0x5C, 0x3B, 0xDD, 0x9A, 0x65, 0xBA, 0x58, 0x34, 0x85, 0x65, 0x1C, 0x42, 0x50, 0x76, 0x9A, 0xAF, 0x88, 0x1B, 0xB6, 0x8F, 0xF8, 0x60, 0xA2, 0x5A, 0x7F, 0x3F, 0xF4, 0x72, 0x70, 0xF1, 0xF5, 0x35, 0x4C, 0x3B, 0xDD, 0x90, 0x65, 0xB0, 0x47, 0x3A, 0x75, 0x61, 0x5C, 0xA2, 0x10, 0x76, 0x9A, 0xAF, 0x77, 0x5B, 0xB6, 0x7F, 0xF7, 0x60 }; static const uint8_t ms_hmac_digest0[] = { 0x43, 0x52, 0xED, 0x34, 0xAB, 0x36, 0xB2, 0x51, 0xFB, 0xA3, 0xA6, 0x7C, 0x38, 0xFC, 0x42, 0x8F, 0x57, 0x64, 0xAB, 0x81, 0xA7, 0x89, 0xB7, 0x6C, 0xA0, 0xDC, 0xB9, 0x4D, 0xC4, 0x30, 0xF9, 0xD4, 0x10, 0x82, 0x55, 0xD0, 0xAB, 0x32, 0xFB, 0x56, 0x0D, 0xE4, 0x68, 0x3D, 0x76, 0xD0, 0x7B, 0xE4, 0xA6, 0x2C, 0x34, 0x9E, 0x8C, 0x41, 0xF8, 0x23, 0x28, 0x1B, 0x3A, 0x90, 0x26, 0x34, 0x47, 0x90 }; /* End Session 0 */ /* Begin session 1 */ static uint8_t ms_aes_cbc_key1[] = { 0xf1, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; static uint8_t ms_aes_cbc_iv1[] = { 0xf1, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; static const uint8_t ms_aes_cbc_cipher1[] = { 0x5A, 0x7A, 0x67, 0x5D, 0xB8, 0xE1, 0xDC, 0x71, 0x39, 0xA8, 0x74, 0x93, 0x9C, 0x4C, 0xFE, 0x23, 0x61, 0xCD, 0xA4, 0xB3, 0xD9, 0xCE, 0x99, 0x09, 0x2A, 0x23, 0xF3, 0x29, 0xBF, 0x4C, 0xB4, 0x6A, 0x1B, 0x6B, 0x73, 0x4D, 0x48, 0x0C, 0xCF, 0x6C, 0x5E, 0x34, 0x9E, 0x7F, 0xBC, 0x8F, 0xCC, 0x8F, 0x75, 0x1D, 0x3D, 0x77, 0x10, 0x76, 0xC8, 0xB9, 0x99, 0x6F, 0xD6, 0x56, 0x75, 0xA9, 0xB2, 0x66, 0xC2, 0x24, 0x2B, 0x9C, 0xFE, 0x40, 0x8E, 0x43, 0x20, 0x97, 0x1B, 0xFA, 0xD0, 0xCF, 0x04, 0xAB, 0xBB, 0xF6, 0x5D, 0xF5, 0xA0, 0x19, 0x7C, 0x23, 0x5D, 0x80, 0x8C, 0x49, 0xF6, 0x76, 0x88, 0x29, 0x27, 0x4C, 0x59, 0x2B, 0x43, 0xA6, 0xB2, 0x26, 0x27, 0x78, 0xBE, 0x1B, 0xE1, 0x4F, 0x5A, 0x1F, 0xFC, 0x68, 0x08, 0xE7, 0xC4, 0xD1, 0x34, 0x68, 0xB7, 0x13, 0x14, 0x41, 0x62, 0x6B, 0x1F, 0x77, 0x0C, 0x68, 0x1D, 0x0D, 0xED, 0x89, 0xAA, 0xD8, 0x97, 0x02, 0xBA, 0x5E, 0xD4, 0x84, 0x25, 0x97, 0x03, 0xA5, 0xA6, 0x13, 0x66, 0x02, 0xF4, 0xC3, 0xF3, 0xD3, 0xCC, 0x95, 0xC3, 0x87, 0x46, 0x90, 0x1F, 0x6E, 0x14, 0xA8, 0x00, 0xF2, 0x6F, 0xD5, 0xA1, 0xAD, 0xD5, 0x40, 0xA2, 0x0F, 0x32, 0x7E, 0x99, 0xA3, 0xF5, 0x53, 0xC3, 0x26, 0xA1, 0x45, 0x01, 0x88, 0x57, 0x84, 0x3E, 0x7B, 0x4E, 0x0B, 0x3C, 0xB5, 0x3E, 0x9E, 0xE9, 0x78, 0x77, 0xC5, 0xC0, 0x89, 0xA8, 0xF8, 0xF1, 0xA5, 0x2D, 0x5D, 0xF9, 0xC6, 0xFB, 0xCB, 0x05, 0x23, 0xBD, 0x6E, 0x5E, 0x14, 0xC6, 0x57, 0x73, 0xCF, 0x98, 0xBD, 0x10, 0x8B, 0x18, 0xA6, 0x01, 0x5B, 0x13, 0xAE, 0x8E, 0xDE, 0x1F, 0xB5, 0xB7, 0x40, 0x6C, 0xC1, 0x1E, 0xA1, 0x19, 0x20, 0x9E, 0x95, 0xE0, 0x2F, 0x1C, 0xF5, 0xD9, 0xD0, 0x2B, 0x1E, 0x82, 0x25, 0x62, 0xB4, 0xEB, 0xA1, 0x1F, 0xCE, 0x44, 0xA1, 0xCB, 0x92, 0x01, 0x6B, 0xE4, 0x26, 0x23, 0xE3, 0xC5, 0x67, 0x35, 0x55, 0xDA, 0xE5, 0x27, 0xEE, 0x8D, 0x12, 0x84, 0xB7, 0xBA, 0xA7, 0x1C, 0xD6, 0x32, 0x3F, 0x67, 0xED, 0xFB, 0x5B, 0x8B, 0x52, 0x46, 0x8C, 0xF9, 0x69, 0xCD, 0xAE, 0x79, 0xAA, 0x37, 0x78, 0x49, 0xEB, 0xC6, 0x8E, 0x76, 0x63, 0x84, 0xFF, 0x9D, 0x22, 0x99, 0x51, 0xB7, 0x5E, 0x83, 0x4C, 0x8B, 0xDF, 0x5A, 0x07, 0xCC, 0xBA, 0x42, 0xA5, 0x98, 0xB6, 0x47, 0x0E, 0x66, 0xEB, 0x23, 0x0E, 0xBA, 0x44, 0xA8, 0xAA, 0x20, 0x71, 0x79, 0x9C, 0x77, 0x5F, 0xF5, 0xFE, 0xEC, 0xEF, 0xC6, 0x64, 0x3D, 0x84, 0xD0, 0x2B, 0xA7, 0x0A, 0xC3, 0x72, 0x5B, 0x9C, 0xFA, 0xA8, 0x87, 0x95, 0x94, 0x11, 0x38, 0xA7, 0x1E, 0x58, 0xE3, 0x73, 0xC6, 0xC9, 0xD1, 0x7B, 0x92, 0xDB, 0x0F, 0x49, 0x74, 0xC2, 0xA2, 0x0E, 0x35, 0x57, 0xAC, 0xDB, 0x9A, 0x1C, 0xCF, 0x5A, 0x32, 0x3E, 0x26, 0x9B, 0xEC, 0xB3, 0xEF, 0x9C, 0xFE, 0xBE, 0x52, 0xAC, 0xB1, 0x29, 0xDD, 0xFD, 0x07, 0xE2, 0xEE, 0xED, 0xE4, 0x46, 0x37, 0xFE, 0xD1, 0xDC, 0xCD, 0x02, 0xF9, 0x31, 0xB0, 0xFB, 0x36, 0xB7, 0x34, 0xA4, 0x76, 0xE8, 0x57, 0xBF, 0x99, 0x92, 0xC7, 0xAF, 0x98, 0x10, 0xE2, 0x70, 0xCA, 0xC9, 0x2B, 0x82, 0x06, 0x96, 0x88, 0x0D, 0xB3, 0xAC, 0x9E, 0x6D, 0x43, 0xBC, 0x5B, 0x31, 0xCF, 0x65, 0x8D, 0xA6, 0xC7, 0xFE, 0x73, 0xE1, 0x54, 0xF7, 0x10, 0xF9, 0x86, 0xF7, 0xDF, 0xA1, 0xA1, 0xD8, 0xAE, 0x35, 0xB3, 0x90, 0xDC, 0x6F, 0x43, 0x7A, 0x8B, 0xE0, 0xFE, 0x8F, 0x33, 0x4D, 0x29, 0x6C, 0x45, 0x53, 0x73, 0xDD, 0x21, 0x0B, 0x85, 0x30, 0xB5, 0xA5, 0xF3, 0x5D, 0xEC, 0x79, 0x61, 0x9D, 0x9E, 0xB3 }; static uint8_t ms_hmac_key1[] = { 0xFE, 0x1A, 0x7D, 0x3D, 0xF5, 0x82, 0x80, 0xF1, 0xF1, 0x35, 0x5C, 0x3B, 0xDD, 0x9A, 0x65, 0xBA, 0x58, 0x34, 0x85, 0x65, 0x1C, 0x42, 0x50, 0x76, 0x9A, 0xAF, 0x88, 0x1B, 0xB6, 0x8F, 0xF8, 0x60, 0xA2, 0x5A, 0x7F, 0x3F, 0xF4, 0x72, 0x70, 0xF1, 0xF5, 0x35, 0x4C, 0x3B, 0xDD, 0x90, 0x65, 0xB0, 0x47, 0x3A, 0x75, 0x61, 0x5C, 0xA2, 0x10, 0x76, 0x9A, 0xAF, 0x77, 0x5B, 0xB6, 0x7F, 0xF7, 0x60 }; static const uint8_t ms_hmac_digest1[] = { 0xCE, 0x6E, 0x5F, 0x77, 0x96, 0x9A, 0xB1, 0x69, 0x2D, 0x5E, 0xF3, 0x2F, 0x32, 0x10, 0xCB, 0x50, 0x0E, 0x09, 0x56, 0x25, 0x07, 0x34, 0xC9, 0x20, 0xEC, 0x13, 0x43, 0x23, 0x5C, 0x08, 0x8B, 0xCD, 0xDC, 0x86, 0x8C, 0xEE, 0x0A, 0x95, 0x2E, 0xB9, 0x8C, 0x7B, 0x02, 0x7A, 0xD4, 0xE1, 0x49, 0xB4, 0x45, 0xB5, 0x52, 0x37, 0xC6, 0xFF, 0xFE, 0xAA, 0x0A, 0x87, 0xB8, 0x51, 0xF9, 0x2A, 0x01, 0x8F }; /* End Session 1 */ /* Begin Session 2 */ static uint8_t ms_aes_cbc_key2[] = { 0xff, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; static uint8_t ms_aes_cbc_iv2[] = { 0xff, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; static const uint8_t ms_aes_cbc_cipher2[] = { 0xBB, 0x3C, 0x68, 0x25, 0xFD, 0xB6, 0xA2, 0x91, 0x20, 0x56, 0xF6, 0x30, 0x35, 0xFC, 0x9E, 0x97, 0xF2, 0x90, 0xFC, 0x7E, 0x3E, 0x0A, 0x75, 0xC8, 0x4C, 0xF2, 0x2D, 0xAC, 0xD3, 0x93, 0xF0, 0xC5, 0x14, 0x88, 0x8A, 0x23, 0xC2, 0x59, 0x9A, 0x98, 0x4B, 0xD5, 0x2C, 0xDA, 0x43, 0xA9, 0x34, 0x69, 0x7C, 0x6D, 0xDB, 0xDC, 0xCB, 0xC0, 0xA0, 0x09, 0xA7, 0x86, 0x16, 0x4B, 0xBF, 0xA8, 0xB6, 0xCF, 0x7F, 0x74, 0x1F, 0x22, 0xF0, 0xF6, 0xBB, 0x44, 0x8B, 0x4C, 0x9E, 0x23, 0xF8, 0x9F, 0xFC, 0x5B, 0x9E, 0x9C, 0x2A, 0x79, 0x30, 0x8F, 0xBF, 0xA9, 0x68, 0xA1, 0x20, 0x71, 0x7C, 0x77, 0x22, 0x34, 0x07, 0xCD, 0xC6, 0xF6, 0x50, 0x0A, 0x08, 0x99, 0x17, 0x98, 0xE3, 0x93, 0x8A, 0xB0, 0xEE, 0xDF, 0xC2, 0xBA, 0x3B, 0x44, 0x73, 0xDF, 0xDD, 0xDC, 0x14, 0x4D, 0x3B, 0xBB, 0x5E, 0x58, 0xC1, 0x26, 0xA7, 0xAE, 0x47, 0xF3, 0x24, 0x6D, 0x4F, 0xD3, 0x6E, 0x3E, 0x33, 0xE6, 0x7F, 0xCA, 0x50, 0xAF, 0x5D, 0x3D, 0xA0, 0xDD, 0xC9, 0xF3, 0x30, 0xD3, 0x6E, 0x8B, 0x2E, 0x12, 0x24, 0x34, 0xF0, 0xD3, 0xC7, 0x8D, 0x23, 0x29, 0xAA, 0x05, 0xE1, 0xFA, 0x2E, 0xF6, 0x8D, 0x37, 0x86, 0xC0, 0x6D, 0x13, 0x2D, 0x98, 0xF3, 0x52, 0x39, 0x22, 0xCE, 0x38, 0xC2, 0x1A, 0x72, 0xED, 0xFB, 0xCC, 0xE4, 0x71, 0x5A, 0x0C, 0x0D, 0x09, 0xF8, 0xE8, 0x1B, 0xBC, 0x53, 0xC8, 0xD8, 0x8F, 0xE5, 0x98, 0x5A, 0xB1, 0x06, 0xA6, 0x5B, 0xE6, 0xA2, 0x88, 0x21, 0x9E, 0x36, 0xC0, 0x34, 0xF9, 0xFB, 0x3B, 0x0A, 0x22, 0x00, 0x00, 0x39, 0x48, 0x8D, 0x23, 0x74, 0x62, 0x72, 0x91, 0xE6, 0x36, 0xAA, 0x77, 0x9C, 0x72, 0x9D, 0xA8, 0xC3, 0xA9, 0xD5, 0x44, 0x72, 0xA6, 0xB9, 0x28, 0x8F, 0x64, 0x4C, 0x8A, 0x64, 0xE6, 0x4E, 0xFA, 0xEF, 0x87, 0xDE, 0x7B, 0x22, 0x44, 0xB0, 0xDF, 0x2E, 0x5F, 0x0B, 0xA5, 0xF2, 0x24, 0x07, 0x5C, 0x2D, 0x39, 0xB7, 0x3D, 0x8A, 0xE5, 0x0E, 0x9D, 0x4E, 0x50, 0xED, 0x03, 0x99, 0x8E, 0xF0, 0x06, 0x55, 0x4E, 0xA2, 0x24, 0xE7, 0x17, 0x46, 0xDF, 0x6C, 0xCD, 0xC6, 0x44, 0xE8, 0xF9, 0xB9, 0x1B, 0x36, 0xF6, 0x7F, 0x10, 0xA4, 0x7D, 0x90, 0xBD, 0xE4, 0xAA, 0xD6, 0x9E, 0x18, 0x9D, 0x22, 0x35, 0xD6, 0x55, 0x54, 0xAA, 0xF7, 0x22, 0xA3, 0x3E, 0xEF, 0xC8, 0xA2, 0x34, 0x8D, 0xA9, 0x37, 0x63, 0xA6, 0xC3, 0x57, 0xCB, 0x0C, 0x49, 0x7D, 0x02, 0xBE, 0xAA, 0x13, 0x75, 0xB7, 0x4E, 0x52, 0x62, 0xA5, 0xC2, 0x33, 0xC7, 0x6C, 0x1B, 0xF6, 0x34, 0xF6, 0x09, 0xA5, 0x0C, 0xC7, 0xA2, 0x61, 0x48, 0x62, 0x7D, 0x17, 0x15, 0xE3, 0x95, 0xC8, 0x63, 0xD2, 0xA4, 0x43, 0xA9, 0x49, 0x07, 0xB2, 0x3B, 0x2B, 0x62, 0x7D, 0xCB, 0x51, 0xB3, 0x25, 0x33, 0x47, 0x0E, 0x14, 0x67, 0xDC, 0x6A, 0x9B, 0x51, 0xAC, 0x9D, 0x8F, 0xA2, 0x2B, 0x57, 0x8C, 0x5C, 0x5F, 0x76, 0x23, 0x92, 0x0F, 0x84, 0x46, 0x0E, 0x40, 0x85, 0x38, 0x60, 0xFA, 0x61, 0x20, 0xC5, 0xE3, 0xF1, 0x70, 0xAC, 0x1B, 0xBF, 0xC4, 0x2B, 0xC5, 0x67, 0xD1, 0x43, 0xC5, 0x17, 0x74, 0x71, 0x69, 0x6F, 0x82, 0x89, 0x19, 0x8A, 0x70, 0x43, 0x92, 0x01, 0xC4, 0x63, 0x7E, 0xB1, 0x59, 0x4E, 0xCD, 0xEA, 0x93, 0xA4, 0x52, 0x53, 0x9B, 0x61, 0x5B, 0xD2, 0x3E, 0x19, 0x39, 0xB7, 0x32, 0xEA, 0x8E, 0xF8, 0x1D, 0x76, 0x5C, 0xB2, 0x73, 0x2D, 0x91, 0xC0, 0x18, 0xED, 0x25, 0x2A, 0x53, 0x64, 0xF0, 0x92, 0x31, 0x55, 0x21, 0xA8, 0x24, 0xA9, 0xD1, 0x02, 0xF6, 0x6C, 0x2B, 0x70, 0xA9, 0x59, 0xC1, 0xD6, 0xC3, 0x57, 0x5B, 0x92 }; static uint8_t ms_hmac_key2[] = { 0xFC, 0x1A, 0x7D, 0x3D, 0xF5, 0x82, 0x80, 0xF1, 0xF1, 0x35, 0x5C, 0x3B, 0xDD, 0x9A, 0x65, 0xBA, 0x58, 0x34, 0x85, 0x65, 0x1C, 0x42, 0x50, 0x76, 0x9A, 0xAF, 0x88, 0x1B, 0xB6, 0x8F, 0xF8, 0x60, 0xA2, 0x5A, 0x7F, 0x3F, 0xF4, 0x72, 0x70, 0xF1, 0xF5, 0x35, 0x4C, 0x3B, 0xDD, 0x90, 0x65, 0xB0, 0x47, 0x3A, 0x75, 0x61, 0x5C, 0xA2, 0x10, 0x76, 0x9A, 0xAF, 0x77, 0x5B, 0xB6, 0x7F, 0xF7, 0x60 }; static const uint8_t ms_hmac_digest2[] = { 0xA5, 0x0F, 0x9C, 0xFB, 0x08, 0x62, 0x59, 0xFF, 0x80, 0x2F, 0xEB, 0x4B, 0xE1, 0x46, 0x21, 0xD6, 0x02, 0x98, 0xF2, 0x8E, 0xF4, 0xEC, 0xD4, 0x77, 0x86, 0x4C, 0x31, 0x28, 0xC8, 0x25, 0x80, 0x27, 0x3A, 0x72, 0x5D, 0x6A, 0x56, 0x8A, 0xD3, 0x82, 0xB0, 0xEC, 0x31, 0x6D, 0x8B, 0x6B, 0xB4, 0x24, 0xE7, 0x62, 0xC1, 0x52, 0xBC, 0x14, 0x1B, 0x8E, 0xEC, 0x9A, 0xF1, 0x47, 0x80, 0xD2, 0xB0, 0x59 }; /* End Session 2 */ static int test_AES_CBC_HMAC_SHA1_encrypt_digest(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int status; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SHA1_HMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_AES_CBC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Generate test mbuf data and space for digest */ ut_params->ibuf = setup_test_string(ts_params->mbuf_pool, catch_22_quote, QUOTE_512_BYTES, 0); ut_params->digest = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, DIGEST_BYTE_LENGTH_SHA1); TEST_ASSERT_NOT_NULL(ut_params->digest, "no room to append digest"); /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = &ut_params->auth_xform; ut_params->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; ut_params->cipher_xform.cipher.key.data = aes_cbc_key; ut_params->cipher_xform.cipher.key.length = CIPHER_KEY_LENGTH_AES_CBC; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = CIPHER_IV_LENGTH_AES_CBC; /* Setup HMAC Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; ut_params->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; ut_params->auth_xform.auth.key.length = HMAC_KEY_LENGTH_SHA1; ut_params->auth_xform.auth.key.data = hmac_sha1_key; ut_params->auth_xform.auth.digest_length = DIGEST_BYTE_LENGTH_SHA1; ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); /* Create crypto session*/ status = rte_cryptodev_sym_session_init(ts_params->valid_devs[0], ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "Session init failed"); /* Generate crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* Set crypto operation authentication parameters */ sym_op->auth.digest.data = ut_params->digest; sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, QUOTE_512_BYTES); sym_op->auth.data.offset = 0; sym_op->auth.data.length = QUOTE_512_BYTES; /* Copy IV at the end of the crypto operation */ rte_memcpy(rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET), aes_cbc_iv, CIPHER_IV_LENGTH_AES_CBC); /* Set crypto operation cipher parameters */ sym_op->cipher.data.offset = 0; sym_op->cipher.data.length = QUOTE_512_BYTES; /* Process crypto operation */ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); /* Validate obuf */ uint8_t *ciphertext = rte_pktmbuf_mtod(ut_params->op->sym->m_src, uint8_t *); TEST_ASSERT_BUFFERS_ARE_EQUAL(ciphertext, catch_22_quote_2_512_bytes_AES_CBC_ciphertext, QUOTE_512_BYTES, "ciphertext data not as expected"); uint8_t *digest = ciphertext + QUOTE_512_BYTES; TEST_ASSERT_BUFFERS_ARE_EQUAL(digest, catch_22_quote_2_512_bytes_AES_CBC_HMAC_SHA1_digest, gbl_driver_id == rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD)) ? TRUNCATED_DIGEST_BYTE_LENGTH_SHA1 : DIGEST_BYTE_LENGTH_SHA1, "Generated digest data not as expected"); return TEST_SUCCESS; } /* ***** AES-CBC / HMAC-SHA512 Hash Tests ***** */ #define HMAC_KEY_LENGTH_SHA512 (DIGEST_BYTE_LENGTH_SHA512) static uint8_t hmac_sha512_key[] = { 0x42, 0x1a, 0x7d, 0x3d, 0xf5, 0x82, 0x80, 0xf1, 0xF1, 0x35, 0x5C, 0x3B, 0xDD, 0x9A, 0x65, 0xBA, 0x58, 0x34, 0x85, 0x65, 0x1C, 0x42, 0x50, 0x76, 0x9a, 0xaf, 0x88, 0x1b, 0xb6, 0x8f, 0xf8, 0x60, 0xa2, 0x5a, 0x7f, 0x3f, 0xf4, 0x72, 0x70, 0xf1, 0xF5, 0x35, 0x4C, 0x3B, 0xDD, 0x90, 0x65, 0xB0, 0x47, 0x3a, 0x75, 0x61, 0x5C, 0xa2, 0x10, 0x76, 0x9a, 0xaf, 0x77, 0x5b, 0xb6, 0x7f, 0xf7, 0x60 }; static const uint8_t catch_22_quote_2_512_bytes_AES_CBC_HMAC_SHA512_digest[] = { 0x5D, 0x54, 0x66, 0xC1, 0x6E, 0xBC, 0x04, 0xB8, 0x46, 0xB8, 0x08, 0x6E, 0xE0, 0xF0, 0x43, 0x48, 0x37, 0x96, 0x9C, 0xC6, 0x9C, 0xC2, 0x1E, 0xE8, 0xF2, 0x0C, 0x0B, 0xEF, 0x86, 0xA2, 0xE3, 0x70, 0x95, 0xC8, 0xB3, 0x06, 0x47, 0xA9, 0x90, 0xE8, 0xA0, 0xC6, 0x72, 0x69, 0x05, 0xC0, 0x0D, 0x0E, 0x21, 0x96, 0x65, 0x93, 0x74, 0x43, 0x2A, 0x1D, 0x2E, 0xBF, 0xC2, 0xC2, 0xEE, 0xCC, 0x2F, 0x0A }; static int test_AES_CBC_HMAC_SHA512_decrypt_create_session_params( struct crypto_unittest_params *ut_params, uint8_t *cipher_key, uint8_t *hmac_key); static int test_AES_CBC_HMAC_SHA512_decrypt_perform(struct rte_cryptodev_sym_session *sess, struct crypto_unittest_params *ut_params, struct crypto_testsuite_params *ts_params, const uint8_t *cipher, const uint8_t *digest, const uint8_t *iv); static int test_AES_CBC_HMAC_SHA512_decrypt_create_session_params( struct crypto_unittest_params *ut_params, uint8_t *cipher_key, uint8_t *hmac_key) { /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = NULL; ut_params->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; ut_params->cipher_xform.cipher.key.data = cipher_key; ut_params->cipher_xform.cipher.key.length = CIPHER_KEY_LENGTH_AES_CBC; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = CIPHER_IV_LENGTH_AES_CBC; /* Setup HMAC Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = &ut_params->cipher_xform; ut_params->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY; ut_params->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA512_HMAC; ut_params->auth_xform.auth.key.data = hmac_key; ut_params->auth_xform.auth.key.length = HMAC_KEY_LENGTH_SHA512; ut_params->auth_xform.auth.digest_length = DIGEST_BYTE_LENGTH_SHA512; return TEST_SUCCESS; } static int test_AES_CBC_HMAC_SHA512_decrypt_perform(struct rte_cryptodev_sym_session *sess, struct crypto_unittest_params *ut_params, struct crypto_testsuite_params *ts_params, const uint8_t *cipher, const uint8_t *digest, const uint8_t *iv) { /* Generate test mbuf data and digest */ ut_params->ibuf = setup_test_string(ts_params->mbuf_pool, (const char *) cipher, QUOTE_512_BYTES, 0); ut_params->digest = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, DIGEST_BYTE_LENGTH_SHA512); TEST_ASSERT_NOT_NULL(ut_params->digest, "no room to append digest"); rte_memcpy(ut_params->digest, digest, DIGEST_BYTE_LENGTH_SHA512); /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); rte_crypto_op_attach_sym_session(ut_params->op, sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; sym_op->auth.digest.data = ut_params->digest; sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, QUOTE_512_BYTES); sym_op->auth.data.offset = 0; sym_op->auth.data.length = QUOTE_512_BYTES; /* Copy IV at the end of the crypto operation */ rte_memcpy(rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET), iv, CIPHER_IV_LENGTH_AES_CBC); sym_op->cipher.data.offset = 0; sym_op->cipher.data.length = QUOTE_512_BYTES; /* Process crypto operation */ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); ut_params->obuf = ut_params->op->sym->m_src; /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), catch_22_quote, QUOTE_512_BYTES, "Plaintext data not as expected"); /* Validate obuf */ TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "Digest verification failed"); return TEST_SUCCESS; } /* ***** SNOW 3G Tests ***** */ static int create_wireless_algo_hash_session(uint8_t dev_id, const uint8_t *key, const uint8_t key_len, const uint8_t iv_len, const uint8_t auth_len, enum rte_crypto_auth_operation op, enum rte_crypto_auth_algorithm algo) { uint8_t hash_key[key_len]; int status; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; memcpy(hash_key, key, key_len); debug_hexdump(stdout, "key:", key, key_len); /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.op = op; ut_params->auth_xform.auth.algo = algo; ut_params->auth_xform.auth.key.length = key_len; ut_params->auth_xform.auth.key.data = hash_key; ut_params->auth_xform.auth.digest_length = auth_len; ut_params->auth_xform.auth.iv.offset = IV_OFFSET; ut_params->auth_xform.auth.iv.length = iv_len; ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "session init failed"); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); return 0; } static int create_wireless_algo_cipher_session(uint8_t dev_id, enum rte_crypto_cipher_operation op, enum rte_crypto_cipher_algorithm algo, const uint8_t *key, const uint8_t key_len, uint8_t iv_len) { uint8_t cipher_key[key_len]; int status; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; memcpy(cipher_key, key, key_len); /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = NULL; ut_params->cipher_xform.cipher.algo = algo; ut_params->cipher_xform.cipher.op = op; ut_params->cipher_xform.cipher.key.data = cipher_key; ut_params->cipher_xform.cipher.key.length = key_len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = iv_len; debug_hexdump(stdout, "key:", key, key_len); /* Create Crypto session */ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "session init failed"); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); return 0; } static int create_wireless_algo_cipher_operation(const uint8_t *iv, uint8_t iv_len, unsigned int cipher_len, unsigned int cipher_offset) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* iv */ rte_memcpy(rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET), iv, iv_len); sym_op->cipher.data.length = cipher_len; sym_op->cipher.data.offset = cipher_offset; return 0; } static int create_wireless_algo_cipher_operation_oop(const uint8_t *iv, uint8_t iv_len, unsigned int cipher_len, unsigned int cipher_offset) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; sym_op->m_dst = ut_params->obuf; /* iv */ rte_memcpy(rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET), iv, iv_len); sym_op->cipher.data.length = cipher_len; sym_op->cipher.data.offset = cipher_offset; return 0; } static int create_wireless_algo_cipher_auth_session(uint8_t dev_id, enum rte_crypto_cipher_operation cipher_op, enum rte_crypto_auth_operation auth_op, enum rte_crypto_auth_algorithm auth_algo, enum rte_crypto_cipher_algorithm cipher_algo, const uint8_t *key, uint8_t key_len, uint8_t auth_iv_len, uint8_t auth_len, uint8_t cipher_iv_len) { uint8_t cipher_auth_key[key_len]; int status; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; memcpy(cipher_auth_key, key, key_len); /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.op = auth_op; ut_params->auth_xform.auth.algo = auth_algo; ut_params->auth_xform.auth.key.length = key_len; /* Hash key = cipher key */ ut_params->auth_xform.auth.key.data = cipher_auth_key; ut_params->auth_xform.auth.digest_length = auth_len; /* Auth IV will be after cipher IV */ ut_params->auth_xform.auth.iv.offset = IV_OFFSET + cipher_iv_len; ut_params->auth_xform.auth.iv.length = auth_iv_len; /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = &ut_params->auth_xform; ut_params->cipher_xform.cipher.algo = cipher_algo; ut_params->cipher_xform.cipher.op = cipher_op; ut_params->cipher_xform.cipher.key.data = cipher_auth_key; ut_params->cipher_xform.cipher.key.length = key_len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = cipher_iv_len; debug_hexdump(stdout, "key:", key, key_len); /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "session init failed"); return 0; } static int create_wireless_cipher_auth_session(uint8_t dev_id, enum rte_crypto_cipher_operation cipher_op, enum rte_crypto_auth_operation auth_op, enum rte_crypto_auth_algorithm auth_algo, enum rte_crypto_cipher_algorithm cipher_algo, const struct wireless_test_data *tdata) { const uint8_t key_len = tdata->key.len; uint8_t cipher_auth_key[key_len]; int status; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; const uint8_t *key = tdata->key.data; const uint8_t auth_len = tdata->digest.len; uint8_t cipher_iv_len = tdata->cipher_iv.len; uint8_t auth_iv_len = tdata->auth_iv.len; memcpy(cipher_auth_key, key, key_len); /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.op = auth_op; ut_params->auth_xform.auth.algo = auth_algo; ut_params->auth_xform.auth.key.length = key_len; /* Hash key = cipher key */ ut_params->auth_xform.auth.key.data = cipher_auth_key; ut_params->auth_xform.auth.digest_length = auth_len; /* Auth IV will be after cipher IV */ ut_params->auth_xform.auth.iv.offset = IV_OFFSET + cipher_iv_len; ut_params->auth_xform.auth.iv.length = auth_iv_len; /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = &ut_params->auth_xform; ut_params->cipher_xform.cipher.algo = cipher_algo; ut_params->cipher_xform.cipher.op = cipher_op; ut_params->cipher_xform.cipher.key.data = cipher_auth_key; ut_params->cipher_xform.cipher.key.length = key_len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = cipher_iv_len; debug_hexdump(stdout, "key:", key, key_len); /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "session init failed"); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); return 0; } static int create_zuc_cipher_auth_encrypt_generate_session(uint8_t dev_id, const struct wireless_test_data *tdata) { return create_wireless_cipher_auth_session(dev_id, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, RTE_CRYPTO_AUTH_ZUC_EIA3, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata); } static int create_wireless_algo_auth_cipher_session(uint8_t dev_id, enum rte_crypto_cipher_operation cipher_op, enum rte_crypto_auth_operation auth_op, enum rte_crypto_auth_algorithm auth_algo, enum rte_crypto_cipher_algorithm cipher_algo, const uint8_t *key, const uint8_t key_len, uint8_t auth_iv_len, uint8_t auth_len, uint8_t cipher_iv_len) { uint8_t auth_cipher_key[key_len]; int status; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; memcpy(auth_cipher_key, key, key_len); /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.auth.op = auth_op; ut_params->auth_xform.next = &ut_params->cipher_xform; ut_params->auth_xform.auth.algo = auth_algo; ut_params->auth_xform.auth.key.length = key_len; ut_params->auth_xform.auth.key.data = auth_cipher_key; ut_params->auth_xform.auth.digest_length = auth_len; /* Auth IV will be after cipher IV */ ut_params->auth_xform.auth.iv.offset = IV_OFFSET + cipher_iv_len; ut_params->auth_xform.auth.iv.length = auth_iv_len; /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = NULL; ut_params->cipher_xform.cipher.algo = cipher_algo; ut_params->cipher_xform.cipher.op = cipher_op; ut_params->cipher_xform.cipher.key.data = auth_cipher_key; ut_params->cipher_xform.cipher.key.length = key_len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = cipher_iv_len; debug_hexdump(stdout, "key:", key, key_len); /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); if (cipher_op == RTE_CRYPTO_CIPHER_OP_DECRYPT) { ut_params->auth_xform.next = NULL; ut_params->cipher_xform.next = &ut_params->auth_xform; status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); } else status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "session init failed"); return 0; } static int create_wireless_algo_hash_operation(const uint8_t *auth_tag, unsigned int auth_tag_len, const uint8_t *iv, unsigned int iv_len, unsigned int data_pad_len, enum rte_crypto_auth_operation op, unsigned int auth_len, unsigned int auth_offset) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* iv */ rte_memcpy(rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET), iv, iv_len); /* digest */ sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, auth_tag_len); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append auth tag"); ut_params->digest = sym_op->auth.digest.data; sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, data_pad_len); if (op == RTE_CRYPTO_AUTH_OP_GENERATE) memset(sym_op->auth.digest.data, 0, auth_tag_len); else rte_memcpy(sym_op->auth.digest.data, auth_tag, auth_tag_len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, auth_tag_len); sym_op->auth.data.length = auth_len; sym_op->auth.data.offset = auth_offset; return 0; } static int create_wireless_cipher_hash_operation(const struct wireless_test_data *tdata, enum rte_crypto_auth_operation op) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; const uint8_t *auth_tag = tdata->digest.data; const unsigned int auth_tag_len = tdata->digest.len; unsigned int plaintext_len = ceil_byte_length(tdata->plaintext.len); unsigned int data_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); const uint8_t *cipher_iv = tdata->cipher_iv.data; const uint8_t cipher_iv_len = tdata->cipher_iv.len; const uint8_t *auth_iv = tdata->auth_iv.data; const uint8_t auth_iv_len = tdata->auth_iv.len; const unsigned int cipher_len = tdata->validCipherLenInBits.len; const unsigned int auth_len = tdata->validAuthLenInBits.len; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* digest */ sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, auth_tag_len); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append auth tag"); ut_params->digest = sym_op->auth.digest.data; sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, data_pad_len); if (op == RTE_CRYPTO_AUTH_OP_GENERATE) memset(sym_op->auth.digest.data, 0, auth_tag_len); else rte_memcpy(sym_op->auth.digest.data, auth_tag, auth_tag_len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, auth_tag_len); /* Copy cipher and auth IVs at the end of the crypto operation */ uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); rte_memcpy(iv_ptr, cipher_iv, cipher_iv_len); iv_ptr += cipher_iv_len; rte_memcpy(iv_ptr, auth_iv, auth_iv_len); sym_op->cipher.data.length = cipher_len; sym_op->cipher.data.offset = 0; sym_op->auth.data.length = auth_len; sym_op->auth.data.offset = 0; return 0; } static int create_zuc_cipher_hash_generate_operation( const struct wireless_test_data *tdata) { return create_wireless_cipher_hash_operation(tdata, RTE_CRYPTO_AUTH_OP_GENERATE); } static int create_wireless_algo_cipher_hash_operation(const uint8_t *auth_tag, const unsigned auth_tag_len, const uint8_t *auth_iv, uint8_t auth_iv_len, unsigned data_pad_len, enum rte_crypto_auth_operation op, const uint8_t *cipher_iv, uint8_t cipher_iv_len, const unsigned cipher_len, const unsigned cipher_offset, const unsigned auth_len, const unsigned auth_offset) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; enum rte_crypto_cipher_algorithm cipher_algo = ut_params->cipher_xform.cipher.algo; enum rte_crypto_auth_algorithm auth_algo = ut_params->auth_xform.auth.algo; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* digest */ sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, auth_tag_len); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append auth tag"); ut_params->digest = sym_op->auth.digest.data; if (rte_pktmbuf_is_contiguous(ut_params->ibuf)) { sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, data_pad_len); } else { struct rte_mbuf *m = ut_params->ibuf; unsigned int offset = data_pad_len; while (offset > m->data_len && m->next != NULL) { offset -= m->data_len; m = m->next; } sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( m, offset); } if (op == RTE_CRYPTO_AUTH_OP_GENERATE) memset(sym_op->auth.digest.data, 0, auth_tag_len); else rte_memcpy(sym_op->auth.digest.data, auth_tag, auth_tag_len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, auth_tag_len); /* Copy cipher and auth IVs at the end of the crypto operation */ uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); rte_memcpy(iv_ptr, cipher_iv, cipher_iv_len); iv_ptr += cipher_iv_len; rte_memcpy(iv_ptr, auth_iv, auth_iv_len); if (cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { sym_op->cipher.data.length = cipher_len; sym_op->cipher.data.offset = cipher_offset; } else { sym_op->cipher.data.length = cipher_len >> 3; sym_op->cipher.data.offset = cipher_offset >> 3; } if (auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { sym_op->auth.data.length = auth_len; sym_op->auth.data.offset = auth_offset; } else { sym_op->auth.data.length = auth_len >> 3; sym_op->auth.data.offset = auth_offset >> 3; } return 0; } static int create_wireless_algo_auth_cipher_operation( const uint8_t *auth_tag, unsigned int auth_tag_len, const uint8_t *cipher_iv, uint8_t cipher_iv_len, const uint8_t *auth_iv, uint8_t auth_iv_len, unsigned int data_pad_len, unsigned int cipher_len, unsigned int cipher_offset, unsigned int auth_len, unsigned int auth_offset, uint8_t op_mode, uint8_t do_sgl, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; enum rte_crypto_cipher_algorithm cipher_algo = ut_params->cipher_xform.cipher.algo; enum rte_crypto_auth_algorithm auth_algo = ut_params->auth_xform.auth.algo; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation mbufs */ sym_op->m_src = ut_params->ibuf; if (op_mode == OUT_OF_PLACE) sym_op->m_dst = ut_params->obuf; /* digest */ if (!do_sgl) { sym_op->auth.digest.data = rte_pktmbuf_mtod_offset( (op_mode == IN_PLACE ? ut_params->ibuf : ut_params->obuf), uint8_t *, data_pad_len); sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( (op_mode == IN_PLACE ? ut_params->ibuf : ut_params->obuf), data_pad_len); memset(sym_op->auth.digest.data, 0, auth_tag_len); } else { uint16_t remaining_off = (auth_offset >> 3) + (auth_len >> 3); struct rte_mbuf *sgl_buf = (op_mode == IN_PLACE ? sym_op->m_src : sym_op->m_dst); while (remaining_off >= rte_pktmbuf_data_len(sgl_buf)) { remaining_off -= rte_pktmbuf_data_len(sgl_buf); sgl_buf = sgl_buf->next; } sym_op->auth.digest.data = rte_pktmbuf_mtod_offset(sgl_buf, uint8_t *, remaining_off); sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset(sgl_buf, remaining_off); memset(sym_op->auth.digest.data, 0, remaining_off); while (sgl_buf->next != NULL) { memset(rte_pktmbuf_mtod(sgl_buf, uint8_t *), 0, rte_pktmbuf_data_len(sgl_buf)); sgl_buf = sgl_buf->next; } } /* Copy digest for the verification */ if (verify) memcpy(sym_op->auth.digest.data, auth_tag, auth_tag_len); /* Copy cipher and auth IVs at the end of the crypto operation */ uint8_t *iv_ptr = rte_crypto_op_ctod_offset( ut_params->op, uint8_t *, IV_OFFSET); rte_memcpy(iv_ptr, cipher_iv, cipher_iv_len); iv_ptr += cipher_iv_len; rte_memcpy(iv_ptr, auth_iv, auth_iv_len); /* Only copy over the offset data needed from src to dst in OOP, * if the auth and cipher offsets are not aligned */ if (op_mode == OUT_OF_PLACE) { if (cipher_offset > auth_offset) rte_memcpy( rte_pktmbuf_mtod_offset( sym_op->m_dst, uint8_t *, auth_offset >> 3), rte_pktmbuf_mtod_offset( sym_op->m_src, uint8_t *, auth_offset >> 3), ((cipher_offset >> 3) - (auth_offset >> 3))); } if (cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 || cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 || cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) { sym_op->cipher.data.length = cipher_len; sym_op->cipher.data.offset = cipher_offset; } else { sym_op->cipher.data.length = cipher_len >> 3; sym_op->cipher.data.offset = cipher_offset >> 3; } if (auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 || auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 || auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { sym_op->auth.data.length = auth_len; sym_op->auth.data.offset = auth_offset; } else { sym_op->auth.data.length = auth_len >> 3; sym_op->auth.data.offset = auth_offset >> 3; } return 0; } static int test_snow3g_authentication(const struct snow3g_hash_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned plaintext_pad_len; unsigned plaintext_len; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA) && ((tdata->validAuthLenInBits.len % 8) != 0)) { printf("Device doesn't support NON-Byte Aligned Data.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SNOW3G_UIA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_hash_session(ts_params->valid_devs[0], tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, RTE_CRYPTO_AUTH_OP_GENERATE, RTE_CRYPTO_AUTH_SNOW3G_UIA2); if (retval < 0) return retval; /* alloc mbuf and set payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); /* Create SNOW 3G operation */ retval = create_wireless_algo_hash_operation(NULL, tdata->digest.len, tdata->auth_iv.data, tdata->auth_iv.len, plaintext_pad_len, RTE_CRYPTO_AUTH_OP_GENERATE, tdata->validAuthLenInBits.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 1, 0); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); ut_params->obuf = ut_params->op->sym->m_src; TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, DIGEST_BYTE_LENGTH_SNOW3G_UIA2, "SNOW 3G Generated auth tag not as expected"); return 0; } static int test_snow3g_authentication_verify(const struct snow3g_hash_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned plaintext_pad_len; unsigned plaintext_len; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA) && ((tdata->validAuthLenInBits.len % 8) != 0)) { printf("Device doesn't support NON-Byte Aligned Data.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SNOW3G_UIA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_hash_session(ts_params->valid_devs[0], tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, RTE_CRYPTO_AUTH_OP_VERIFY, RTE_CRYPTO_AUTH_SNOW3G_UIA2); if (retval < 0) return retval; /* alloc mbuf and set payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); /* Create SNOW 3G operation */ retval = create_wireless_algo_hash_operation(tdata->digest.data, tdata->digest.len, tdata->auth_iv.data, tdata->auth_iv.len, plaintext_pad_len, RTE_CRYPTO_AUTH_OP_VERIFY, tdata->validAuthLenInBits.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 1, 0); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_src; ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; /* Validate obuf */ if (ut_params->op->status == RTE_CRYPTO_OP_STATUS_SUCCESS) return 0; else return -1; return 0; } static int test_kasumi_authentication(const struct kasumi_hash_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned plaintext_pad_len; unsigned plaintext_len; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_KASUMI_F9; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_hash_session(ts_params->valid_devs[0], tdata->key.data, tdata->key.len, 0, tdata->digest.len, RTE_CRYPTO_AUTH_OP_GENERATE, RTE_CRYPTO_AUTH_KASUMI_F9); if (retval < 0) return retval; /* alloc mbuf and set payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); /* Create KASUMI operation */ retval = create_wireless_algo_hash_operation(NULL, tdata->digest.len, NULL, 0, plaintext_pad_len, RTE_CRYPTO_AUTH_OP_GENERATE, tdata->plaintext.len, 0); if (retval < 0) return retval; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 1, 0); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); ut_params->obuf = ut_params->op->sym->m_src; TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, DIGEST_BYTE_LENGTH_KASUMI_F9, "KASUMI Generated auth tag not as expected"); return 0; } static int test_kasumi_authentication_verify(const struct kasumi_hash_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned plaintext_pad_len; unsigned plaintext_len; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_KASUMI_F9; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_hash_session(ts_params->valid_devs[0], tdata->key.data, tdata->key.len, 0, tdata->digest.len, RTE_CRYPTO_AUTH_OP_VERIFY, RTE_CRYPTO_AUTH_KASUMI_F9); if (retval < 0) return retval; /* alloc mbuf and set payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); /* Create KASUMI operation */ retval = create_wireless_algo_hash_operation(tdata->digest.data, tdata->digest.len, NULL, 0, plaintext_pad_len, RTE_CRYPTO_AUTH_OP_VERIFY, tdata->plaintext.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 1, 0); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_src; ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; /* Validate obuf */ if (ut_params->op->status == RTE_CRYPTO_OP_STATUS_SUCCESS) return 0; else return -1; return 0; } static int test_snow3g_hash_generate_test_case_1(void) { return test_snow3g_authentication(&snow3g_hash_test_case_1); } static int test_snow3g_hash_generate_test_case_2(void) { return test_snow3g_authentication(&snow3g_hash_test_case_2); } static int test_snow3g_hash_generate_test_case_3(void) { return test_snow3g_authentication(&snow3g_hash_test_case_3); } static int test_snow3g_hash_generate_test_case_4(void) { return test_snow3g_authentication(&snow3g_hash_test_case_4); } static int test_snow3g_hash_generate_test_case_5(void) { return test_snow3g_authentication(&snow3g_hash_test_case_5); } static int test_snow3g_hash_generate_test_case_6(void) { return test_snow3g_authentication(&snow3g_hash_test_case_6); } static int test_snow3g_hash_verify_test_case_1(void) { return test_snow3g_authentication_verify(&snow3g_hash_test_case_1); } static int test_snow3g_hash_verify_test_case_2(void) { return test_snow3g_authentication_verify(&snow3g_hash_test_case_2); } static int test_snow3g_hash_verify_test_case_3(void) { return test_snow3g_authentication_verify(&snow3g_hash_test_case_3); } static int test_snow3g_hash_verify_test_case_4(void) { return test_snow3g_authentication_verify(&snow3g_hash_test_case_4); } static int test_snow3g_hash_verify_test_case_5(void) { return test_snow3g_authentication_verify(&snow3g_hash_test_case_5); } static int test_snow3g_hash_verify_test_case_6(void) { return test_snow3g_authentication_verify(&snow3g_hash_test_case_6); } static int test_kasumi_hash_generate_test_case_1(void) { return test_kasumi_authentication(&kasumi_hash_test_case_1); } static int test_kasumi_hash_generate_test_case_2(void) { return test_kasumi_authentication(&kasumi_hash_test_case_2); } static int test_kasumi_hash_generate_test_case_3(void) { return test_kasumi_authentication(&kasumi_hash_test_case_3); } static int test_kasumi_hash_generate_test_case_4(void) { return test_kasumi_authentication(&kasumi_hash_test_case_4); } static int test_kasumi_hash_generate_test_case_5(void) { return test_kasumi_authentication(&kasumi_hash_test_case_5); } static int test_kasumi_hash_generate_test_case_6(void) { return test_kasumi_authentication(&kasumi_hash_test_case_6); } static int test_kasumi_hash_verify_test_case_1(void) { return test_kasumi_authentication_verify(&kasumi_hash_test_case_1); } static int test_kasumi_hash_verify_test_case_2(void) { return test_kasumi_authentication_verify(&kasumi_hash_test_case_2); } static int test_kasumi_hash_verify_test_case_3(void) { return test_kasumi_authentication_verify(&kasumi_hash_test_case_3); } static int test_kasumi_hash_verify_test_case_4(void) { return test_kasumi_authentication_verify(&kasumi_hash_test_case_4); } static int test_kasumi_hash_verify_test_case_5(void) { return test_kasumi_authentication_verify(&kasumi_hash_test_case_5); } static int test_kasumi_encryption(const struct kasumi_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned plaintext_pad_len; unsigned plaintext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create KASUMI operation */ retval = create_wireless_algo_cipher_operation(tdata->cipher_iv.data, tdata->cipher_iv.len, RTE_ALIGN_CEIL(tdata->validCipherLenInBits.len, 8), tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext + (tdata->validCipherOffsetInBits.len >> 3); debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); const uint8_t *reference_ciphertext = tdata->ciphertext.data + (tdata->validCipherOffsetInBits.len >> 3); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, reference_ciphertext, tdata->validCipherLenInBits.len, "KASUMI Ciphertext data not as expected"); return 0; } static int test_kasumi_encryption_sgl(const struct kasumi_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned int plaintext_pad_len; unsigned int plaintext_len; uint8_t buffer[10000]; const uint8_t *ciphertext; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) { printf("Device doesn't support in-place scatter-gather. " "Test Skipped.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 10, 0); pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); /* Create KASUMI operation */ retval = create_wireless_algo_cipher_operation(tdata->cipher_iv.data, tdata->cipher_iv.len, RTE_ALIGN_CEIL(tdata->validCipherLenInBits.len, 8), tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_len, buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, tdata->validCipherOffsetInBits.len >> 3, plaintext_len, buffer); /* Validate obuf */ debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); const uint8_t *reference_ciphertext = tdata->ciphertext.data + (tdata->validCipherOffsetInBits.len >> 3); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, reference_ciphertext, tdata->validCipherLenInBits.len, "KASUMI Ciphertext data not as expected"); return 0; } static int test_kasumi_encryption_oop(const struct kasumi_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned plaintext_pad_len; unsigned plaintext_len; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; /* Data-path service does not support OOP */ if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); rte_pktmbuf_append(ut_params->obuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create KASUMI operation */ retval = create_wireless_algo_cipher_operation_oop(tdata->cipher_iv.data, tdata->cipher_iv.len, RTE_ALIGN_CEIL(tdata->validCipherLenInBits.len, 8), tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext + (tdata->validCipherOffsetInBits.len >> 3); debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); const uint8_t *reference_ciphertext = tdata->ciphertext.data + (tdata->validCipherOffsetInBits.len >> 3); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, reference_ciphertext, tdata->validCipherLenInBits.len, "KASUMI Ciphertext data not as expected"); return 0; } static int test_kasumi_encryption_oop_sgl(const struct kasumi_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned int plaintext_pad_len; unsigned int plaintext_len; const uint8_t *ciphertext; uint8_t buffer[2048]; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) { printf("Device doesn't support out-of-place scatter-gather " "in both input and output mbufs. " "Test Skipped.\n"); return TEST_SKIPPED; } /* Create KASUMI session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 10, 0); ut_params->obuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 3, 0); /* Append data which is padded to a multiple */ /* of the algorithms block size */ pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); /* Create KASUMI operation */ retval = create_wireless_algo_cipher_operation_oop(tdata->cipher_iv.data, tdata->cipher_iv.len, RTE_ALIGN_CEIL(tdata->validCipherLenInBits.len, 8), tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_pad_len, buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, tdata->validCipherOffsetInBits.len >> 3, plaintext_pad_len, buffer); const uint8_t *reference_ciphertext = tdata->ciphertext.data + (tdata->validCipherOffsetInBits.len >> 3); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, reference_ciphertext, tdata->validCipherLenInBits.len, "KASUMI Ciphertext data not as expected"); return 0; } static int test_kasumi_decryption_oop(const struct kasumi_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *ciphertext, *plaintext; unsigned ciphertext_pad_len; unsigned ciphertext_len; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); ciphertext_len = ceil_byte_length(tdata->ciphertext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 8); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); rte_pktmbuf_append(ut_params->obuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); /* Create KASUMI operation */ retval = create_wireless_algo_cipher_operation_oop(tdata->cipher_iv.data, tdata->cipher_iv.len, RTE_ALIGN_CEIL(tdata->validCipherLenInBits.len, 8), tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext + (tdata->validCipherOffsetInBits.len >> 3); debug_hexdump(stdout, "plaintext:", plaintext, ciphertext_len); const uint8_t *reference_plaintext = tdata->plaintext.data + (tdata->validCipherOffsetInBits.len >> 3); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, reference_plaintext, tdata->validCipherLenInBits.len, "KASUMI Plaintext data not as expected"); return 0; } static int test_kasumi_decryption(const struct kasumi_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *ciphertext, *plaintext; unsigned ciphertext_pad_len; unsigned ciphertext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); ciphertext_len = ceil_byte_length(tdata->ciphertext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 8); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); /* Create KASUMI operation */ retval = create_wireless_algo_cipher_operation(tdata->cipher_iv.data, tdata->cipher_iv.len, RTE_ALIGN_CEIL(tdata->validCipherLenInBits.len, 8), tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, 0); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext + (tdata->validCipherOffsetInBits.len >> 3); debug_hexdump(stdout, "plaintext:", plaintext, ciphertext_len); const uint8_t *reference_plaintext = tdata->plaintext.data + (tdata->validCipherOffsetInBits.len >> 3); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, reference_plaintext, tdata->validCipherLenInBits.len, "KASUMI Plaintext data not as expected"); return 0; } static int test_snow3g_encryption(const struct snow3g_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned plaintext_pad_len; unsigned plaintext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create SNOW 3G operation */ retval = create_wireless_algo_cipher_operation(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->validCipherLenInBits.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLenInBits.len, "SNOW 3G Ciphertext data not as expected"); return 0; } static int test_snow3g_encryption_oop(const struct snow3g_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint8_t *plaintext, *ciphertext; int retval; unsigned plaintext_pad_len; unsigned plaintext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device does not support RAW data-path APIs.\n"); return -ENOTSUP; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer in mempool"); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); rte_pktmbuf_append(ut_params->obuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create SNOW 3G operation */ retval = create_wireless_algo_cipher_operation_oop(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->validCipherLenInBits.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLenInBits.len, "SNOW 3G Ciphertext data not as expected"); return 0; } static int test_snow3g_encryption_oop_sgl(const struct snow3g_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned int plaintext_pad_len; unsigned int plaintext_len; uint8_t buffer[10000]; const uint8_t *ciphertext; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) { printf("Device doesn't support out-of-place scatter-gather " "in both input and output mbufs. " "Test Skipped.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device does not support RAW data-path APIs.\n"); return -ENOTSUP; } /* Create SNOW 3G session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 10, 0); ut_params->obuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 3, 0); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer in mempool"); pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); /* Create SNOW 3G operation */ retval = create_wireless_algo_cipher_operation_oop(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->validCipherLenInBits.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_len, buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLenInBits.len, "SNOW 3G Ciphertext data not as expected"); return 0; } /* Shift right a buffer by "offset" bits, "offset" < 8 */ static void buffer_shift_right(uint8_t *buffer, uint32_t length, uint8_t offset) { uint8_t curr_byte, prev_byte; uint32_t length_in_bytes = ceil_byte_length(length + offset); uint8_t lower_byte_mask = (1 << offset) - 1; unsigned i; prev_byte = buffer[0]; buffer[0] >>= offset; for (i = 1; i < length_in_bytes; i++) { curr_byte = buffer[i]; buffer[i] = ((prev_byte & lower_byte_mask) << (8 - offset)) | (curr_byte >> offset); prev_byte = curr_byte; } } static int test_snow3g_encryption_offset_oop(const struct snow3g_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint8_t *plaintext, *ciphertext; int retval; uint32_t plaintext_len; uint32_t plaintext_pad_len; uint8_t extra_offset = 4; uint8_t *expected_ciphertext_shifted; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA) && ((tdata->validDataLenInBits.len % 8) != 0)) { printf("Device doesn't support NON-Byte Aligned Data.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer in mempool"); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len + extra_offset); /* * Append data which is padded to a * multiple of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *) rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); rte_pktmbuf_append(ut_params->obuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, (tdata->plaintext.len >> 3)); buffer_shift_right(plaintext, tdata->plaintext.len, extra_offset); #ifdef RTE_APP_TEST_DEBUG rte_hexdump(stdout, "plaintext:", plaintext, tdata->plaintext.len); #endif /* Create SNOW 3G operation */ retval = create_wireless_algo_cipher_operation_oop(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->validCipherLenInBits.len, extra_offset); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; #ifdef RTE_APP_TEST_DEBUG rte_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); #endif expected_ciphertext_shifted = rte_malloc(NULL, plaintext_len, 8); TEST_ASSERT_NOT_NULL(expected_ciphertext_shifted, "failed to reserve memory for ciphertext shifted\n"); memcpy(expected_ciphertext_shifted, tdata->ciphertext.data, ceil_byte_length(tdata->ciphertext.len)); buffer_shift_right(expected_ciphertext_shifted, tdata->ciphertext.len, extra_offset); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT_OFFSET( ciphertext, expected_ciphertext_shifted, tdata->validDataLenInBits.len, extra_offset, "SNOW 3G Ciphertext data not as expected"); return 0; } static int test_snow3g_decryption(const struct snow3g_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned ciphertext_pad_len; unsigned ciphertext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); ciphertext_len = ceil_byte_length(tdata->ciphertext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); /* Create SNOW 3G operation */ retval = create_wireless_algo_cipher_operation(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->validCipherLenInBits.len, tdata->cipher.offset_bits); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext; debug_hexdump(stdout, "plaintext:", plaintext, ciphertext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT(plaintext, tdata->plaintext.data, tdata->validDataLenInBits.len, "SNOW 3G Plaintext data not as expected"); return 0; } static int test_snow3g_decryption_oop(const struct snow3g_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned ciphertext_pad_len; unsigned ciphertext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device does not support RAW data-path APIs.\n"); return -ENOTSUP; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer"); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer"); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); memset(rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->obuf)); ciphertext_len = ceil_byte_length(tdata->ciphertext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); rte_pktmbuf_append(ut_params->obuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); /* Create SNOW 3G operation */ retval = create_wireless_algo_cipher_operation_oop(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->validCipherLenInBits.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext; debug_hexdump(stdout, "plaintext:", plaintext, ciphertext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT(plaintext, tdata->plaintext.data, tdata->validDataLenInBits.len, "SNOW 3G Plaintext data not as expected"); return 0; } static int test_zuc_cipher_auth(const struct wireless_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned int plaintext_pad_len; unsigned int plaintext_len; struct rte_cryptodev_info dev_info; struct rte_cryptodev_sym_capability_idx cap_idx; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA) && ((tdata->validAuthLenInBits.len % 8 != 0) || (tdata->validDataLenInBits.len % 8 != 0))) { printf("Device doesn't support NON-Byte Aligned Data.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Check if device supports ZUC EEA3 */ cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_ZUC_EEA3; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Check if device supports ZUC EIA3 */ cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_ZUC_EIA3; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create ZUC session */ retval = create_zuc_cipher_auth_encrypt_generate_session( ts_params->valid_devs[0], tdata); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create ZUC operation */ retval = create_zuc_cipher_hash_generate_operation(tdata); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_src; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLenInBits.len, "ZUC Ciphertext data not as expected"); ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, 4, "ZUC Generated auth tag not as expected"); return 0; } static int test_snow3g_cipher_auth(const struct snow3g_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned plaintext_pad_len; unsigned plaintext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SNOW3G_UIA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create SNOW 3G session */ retval = create_wireless_algo_cipher_auth_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, RTE_CRYPTO_AUTH_SNOW3G_UIA2, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create SNOW 3G operation */ retval = create_wireless_algo_cipher_hash_operation(tdata->digest.data, tdata->digest.len, tdata->auth_iv.data, tdata->auth_iv.len, plaintext_pad_len, RTE_CRYPTO_AUTH_OP_GENERATE, tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->validCipherLenInBits.len, 0, tdata->validAuthLenInBits.len, 0 ); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_src; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLenInBits.len, "SNOW 3G Ciphertext data not as expected"); ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, DIGEST_BYTE_LENGTH_SNOW3G_UIA2, "SNOW 3G Generated auth tag not as expected"); return 0; } static int test_snow3g_auth_cipher(const struct snow3g_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext = NULL, *ciphertext = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SNOW3G_UIA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (op_mode == OUT_OF_PLACE) { if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Create SNOW 3G session */ retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], (verify ? RTE_CRYPTO_CIPHER_OP_DECRYPT : RTE_CRYPTO_CIPHER_OP_ENCRYPT), (verify ? RTE_CRYPTO_AUTH_OP_VERIFY : RTE_CRYPTO_AUTH_OP_GENERATE), RTE_CRYPTO_AUTH_SNOW3G_UIA2, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); if (op_mode == OUT_OF_PLACE) ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); if (op_mode == OUT_OF_PLACE) memset(rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->obuf)); ciphertext_len = ceil_byte_length(tdata->ciphertext.len); plaintext_len = ceil_byte_length(tdata->plaintext.len); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); if (verify) { ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); if (op_mode == OUT_OF_PLACE) rte_pktmbuf_append(ut_params->obuf, ciphertext_pad_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); if (op_mode == OUT_OF_PLACE) rte_pktmbuf_append(ut_params->obuf, plaintext_pad_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } /* Create SNOW 3G operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest.data, tdata->digest.len, tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->auth_iv.data, tdata->auth_iv.len, (tdata->digest.offset_bytes == 0 ? (verify ? ciphertext_pad_len : plaintext_pad_len) : tdata->digest.offset_bytes), tdata->validCipherLenInBits.len, tdata->cipher.offset_bits, tdata->validAuthLenInBits.len, tdata->auth.offset_bits, op_mode, 0, verify); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext + (tdata->cipher.offset_bits >> 3); debug_hexdump(stdout, "plaintext:", plaintext, (tdata->plaintext.len >> 3) - tdata->digest.len); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, (tdata->plaintext.len >> 3) - tdata->digest.len); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len >> 3); ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes); debug_hexdump(stdout, "digest:", ut_params->digest, tdata->digest.len); debug_hexdump(stdout, "digest expected:", tdata->digest.data, tdata->digest.len); } /* Validate obuf */ if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT_OFFSET( plaintext, tdata->plaintext.data, (tdata->plaintext.len - tdata->cipher.offset_bits - (tdata->digest.len << 3)), tdata->cipher.offset_bits, "SNOW 3G Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT_OFFSET( ciphertext, tdata->ciphertext.data, (tdata->validDataLenInBits.len - tdata->cipher.offset_bits), tdata->cipher.offset_bits, "SNOW 3G Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, DIGEST_BYTE_LENGTH_SNOW3G_UIA2, "SNOW 3G Generated auth tag not as expected"); } return 0; } static int test_snow3g_auth_cipher_sgl(const struct snow3g_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; const uint8_t *plaintext = NULL; const uint8_t *ciphertext = NULL; const uint8_t *digest = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; uint8_t buffer[10000]; uint8_t digest_buffer[10000]; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SNOW3G_UIA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_SNOW3G_UEA2; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (op_mode == IN_PLACE) { if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) { printf("Device doesn't support in-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } } else { if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (!(feat_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) { printf("Device doesn't support out-of-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } } /* Create SNOW 3G session */ retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], (verify ? RTE_CRYPTO_CIPHER_OP_DECRYPT : RTE_CRYPTO_CIPHER_OP_ENCRYPT), (verify ? RTE_CRYPTO_AUTH_OP_VERIFY : RTE_CRYPTO_AUTH_OP_GENERATE), RTE_CRYPTO_AUTH_SNOW3G_UIA2, RTE_CRYPTO_CIPHER_SNOW3G_UEA2, tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ciphertext_len = ceil_byte_length(tdata->ciphertext.len); plaintext_len = ceil_byte_length(tdata->plaintext.len); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); if (op_mode == OUT_OF_PLACE) { ut_params->obuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer in mempool"); } if (verify) { pktmbuf_write(ut_params->ibuf, 0, ciphertext_len, tdata->ciphertext.data); ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } memset(buffer, 0, sizeof(buffer)); /* Create SNOW 3G operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest.data, tdata->digest.len, tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->auth_iv.data, tdata->auth_iv.len, (tdata->digest.offset_bytes == 0 ? (verify ? ciphertext_pad_len : plaintext_pad_len) : tdata->digest.offset_bytes), tdata->validCipherLenInBits.len, tdata->cipher.offset_bits, tdata->validAuthLenInBits.len, tdata->auth.offset_bits, op_mode, 1, verify); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_len, buffer); else plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, (tdata->plaintext.len >> 3) - tdata->digest.len); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, (tdata->plaintext.len >> 3) - tdata->digest.len); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, ciphertext_len, buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len >> 3); if (ut_params->obuf) digest = rte_pktmbuf_read(ut_params->obuf, (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes), tdata->digest.len, digest_buffer); else digest = rte_pktmbuf_read(ut_params->ibuf, (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes), tdata->digest.len, digest_buffer); debug_hexdump(stdout, "digest:", digest, tdata->digest.len); debug_hexdump(stdout, "digest expected:", tdata->digest.data, tdata->digest.len); } /* Validate obuf */ if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT_OFFSET( plaintext, tdata->plaintext.data, (tdata->plaintext.len - tdata->cipher.offset_bits - (tdata->digest.len << 3)), tdata->cipher.offset_bits, "SNOW 3G Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT_OFFSET( ciphertext, tdata->ciphertext.data, (tdata->validDataLenInBits.len - tdata->cipher.offset_bits), tdata->cipher.offset_bits, "SNOW 3G Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( digest, tdata->digest.data, DIGEST_BYTE_LENGTH_SNOW3G_UIA2, "SNOW 3G Generated auth tag not as expected"); } return 0; } static int test_kasumi_auth_cipher(const struct kasumi_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext = NULL, *ciphertext = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_KASUMI_F9; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; if (op_mode == OUT_OF_PLACE) { if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } } /* Create KASUMI session */ retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], (verify ? RTE_CRYPTO_CIPHER_OP_DECRYPT : RTE_CRYPTO_CIPHER_OP_ENCRYPT), (verify ? RTE_CRYPTO_AUTH_OP_VERIFY : RTE_CRYPTO_AUTH_OP_GENERATE), RTE_CRYPTO_AUTH_KASUMI_F9, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, 0, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); if (op_mode == OUT_OF_PLACE) ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); if (op_mode == OUT_OF_PLACE) memset(rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->obuf)); ciphertext_len = ceil_byte_length(tdata->ciphertext.len); plaintext_len = ceil_byte_length(tdata->plaintext.len); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); if (verify) { ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); if (op_mode == OUT_OF_PLACE) rte_pktmbuf_append(ut_params->obuf, ciphertext_pad_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); if (op_mode == OUT_OF_PLACE) rte_pktmbuf_append(ut_params->obuf, plaintext_pad_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } /* Create KASUMI operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest.data, tdata->digest.len, tdata->cipher_iv.data, tdata->cipher_iv.len, NULL, 0, (tdata->digest.offset_bytes == 0 ? (verify ? ciphertext_pad_len : plaintext_pad_len) : tdata->digest.offset_bytes), tdata->validCipherLenInBits.len, tdata->validCipherOffsetInBits.len, tdata->validAuthLenInBits.len, 0, op_mode, 0, verify); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext; debug_hexdump(stdout, "plaintext:", plaintext, (tdata->plaintext.len >> 3) - tdata->digest.len); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, (tdata->plaintext.len >> 3) - tdata->digest.len); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len >> 3); ut_params->digest = rte_pktmbuf_mtod( ut_params->obuf, uint8_t *) + (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes); debug_hexdump(stdout, "digest:", ut_params->digest, tdata->digest.len); debug_hexdump(stdout, "digest expected:", tdata->digest.data, tdata->digest.len); } /* Validate obuf */ if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, tdata->plaintext.data, tdata->plaintext.len >> 3, "KASUMI Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->ciphertext.len >> 3, "KASUMI Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, DIGEST_BYTE_LENGTH_KASUMI_F9, "KASUMI Generated auth tag not as expected"); } return 0; } static int test_kasumi_auth_cipher_sgl(const struct kasumi_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; const uint8_t *plaintext = NULL; const uint8_t *ciphertext = NULL; const uint8_t *digest = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; uint8_t buffer[10000]; uint8_t digest_buffer[10000]; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_KASUMI_F9; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (op_mode == IN_PLACE) { if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) { printf("Device doesn't support in-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } } else { if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (!(feat_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) { printf("Device doesn't support out-of-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } } /* Create KASUMI session */ retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], (verify ? RTE_CRYPTO_CIPHER_OP_DECRYPT : RTE_CRYPTO_CIPHER_OP_ENCRYPT), (verify ? RTE_CRYPTO_AUTH_OP_VERIFY : RTE_CRYPTO_AUTH_OP_GENERATE), RTE_CRYPTO_AUTH_KASUMI_F9, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, 0, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ciphertext_len = ceil_byte_length(tdata->ciphertext.len); plaintext_len = ceil_byte_length(tdata->plaintext.len); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); if (op_mode == OUT_OF_PLACE) { ut_params->obuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer in mempool"); } if (verify) { pktmbuf_write(ut_params->ibuf, 0, ciphertext_len, tdata->ciphertext.data); ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } memset(buffer, 0, sizeof(buffer)); /* Create KASUMI operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest.data, tdata->digest.len, tdata->cipher_iv.data, tdata->cipher_iv.len, NULL, 0, (tdata->digest.offset_bytes == 0 ? (verify ? ciphertext_pad_len : plaintext_pad_len) : tdata->digest.offset_bytes), tdata->validCipherLenInBits.len, tdata->validCipherOffsetInBits.len, tdata->validAuthLenInBits.len, 0, op_mode, 1, verify); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_len, buffer); else plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, (tdata->plaintext.len >> 3) - tdata->digest.len); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, (tdata->plaintext.len >> 3) - tdata->digest.len); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, ciphertext_len, buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len >> 3); if (ut_params->obuf) digest = rte_pktmbuf_read(ut_params->obuf, (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes), tdata->digest.len, digest_buffer); else digest = rte_pktmbuf_read(ut_params->ibuf, (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes), tdata->digest.len, digest_buffer); debug_hexdump(stdout, "digest:", digest, tdata->digest.len); debug_hexdump(stdout, "digest expected:", tdata->digest.data, tdata->digest.len); } /* Validate obuf */ if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, tdata->plaintext.data, tdata->plaintext.len >> 3, "KASUMI Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLenInBits.len, "KASUMI Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( digest, tdata->digest.data, DIGEST_BYTE_LENGTH_KASUMI_F9, "KASUMI Generated auth tag not as expected"); } return 0; } static int test_kasumi_cipher_auth(const struct kasumi_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned plaintext_pad_len; unsigned plaintext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_KASUMI_F9; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_KASUMI_F8; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create KASUMI session */ retval = create_wireless_algo_cipher_auth_session( ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, RTE_CRYPTO_AUTH_KASUMI_F9, RTE_CRYPTO_CIPHER_KASUMI_F8, tdata->key.data, tdata->key.len, 0, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create KASUMI operation */ retval = create_wireless_algo_cipher_hash_operation(tdata->digest.data, tdata->digest.len, NULL, 0, plaintext_pad_len, RTE_CRYPTO_AUTH_OP_GENERATE, tdata->cipher_iv.data, tdata->cipher_iv.len, RTE_ALIGN_CEIL(tdata->validCipherLenInBits.len, 8), tdata->validCipherOffsetInBits.len, tdata->validAuthLenInBits.len, 0 ); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); if (ut_params->op->sym->m_dst) ut_params->obuf = ut_params->op->sym->m_dst; else ut_params->obuf = ut_params->op->sym->m_src; ciphertext = rte_pktmbuf_mtod_offset(ut_params->obuf, uint8_t *, tdata->validCipherOffsetInBits.len >> 3); ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; const uint8_t *reference_ciphertext = tdata->ciphertext.data + (tdata->validCipherOffsetInBits.len >> 3); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, reference_ciphertext, tdata->validCipherLenInBits.len, "KASUMI Ciphertext data not as expected"); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, DIGEST_BYTE_LENGTH_SNOW3G_UIA2, "KASUMI Generated auth tag not as expected"); return 0; } static int check_cipher_capability(const struct crypto_testsuite_params *ts_params, const enum rte_crypto_cipher_algorithm cipher_algo, const uint16_t key_size, const uint16_t iv_size) { struct rte_cryptodev_sym_capability_idx cap_idx; const struct rte_cryptodev_symmetric_capability *cap; /* Check if device supports the algorithm */ cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = cipher_algo; cap = rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx); if (cap == NULL) return -1; /* Check if device supports key size and IV size */ if (rte_cryptodev_sym_capability_check_cipher(cap, key_size, iv_size) < 0) { return -1; } return 0; } static int check_auth_capability(const struct crypto_testsuite_params *ts_params, const enum rte_crypto_auth_algorithm auth_algo, const uint16_t key_size, const uint16_t iv_size, const uint16_t tag_size) { struct rte_cryptodev_sym_capability_idx cap_idx; const struct rte_cryptodev_symmetric_capability *cap; /* Check if device supports the algorithm */ cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = auth_algo; cap = rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx); if (cap == NULL) return -1; /* Check if device supports key size and IV size */ if (rte_cryptodev_sym_capability_check_auth(cap, key_size, tag_size, iv_size) < 0) { return -1; } return 0; } static int test_zuc_encryption(const struct wireless_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext, *ciphertext; unsigned plaintext_pad_len; unsigned plaintext_len; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Check if device supports ZUC EEA3 */ if (check_cipher_capability(ts_params, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.len, tdata->cipher_iv.len) < 0) return TEST_SKIPPED; /* Create ZUC session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* Clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); /* Create ZUC operation */ retval = create_wireless_algo_cipher_operation(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->plaintext.len, tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validCipherLenInBits.len, "ZUC Ciphertext data not as expected"); return 0; } static int test_zuc_encryption_sgl(const struct wireless_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned int plaintext_pad_len; unsigned int plaintext_len; const uint8_t *ciphertext; uint8_t ciphertext_buffer[2048]; struct rte_cryptodev_info dev_info; /* Check if device supports ZUC EEA3 */ if (check_cipher_capability(ts_params, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.len, tdata->cipher_iv.len) < 0) return TEST_SKIPPED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) { printf("Device doesn't support in-place scatter-gather. " "Test Skipped.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple */ /* of the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 10, 0); pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); /* Create ZUC session */ retval = create_wireless_algo_cipher_session(ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.data, tdata->key.len, tdata->cipher_iv.len); if (retval < 0) return retval; /* Clear mbuf payload */ pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); /* Create ZUC operation */ retval = create_wireless_algo_cipher_operation(tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->plaintext.len, tdata->validCipherOffsetInBits.len); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 0, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_dst; if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_len, ciphertext_buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, ciphertext_buffer); /* Validate obuf */ debug_hexdump(stdout, "ciphertext:", ciphertext, plaintext_len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validCipherLenInBits.len, "ZUC Ciphertext data not as expected"); return 0; } static int test_zuc_authentication(const struct wireless_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; unsigned plaintext_pad_len; unsigned plaintext_len; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA) && (tdata->validAuthLenInBits.len % 8 != 0)) { printf("Device doesn't support NON-Byte Aligned Data.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Check if device supports ZUC EIA3 */ if (check_auth_capability(ts_params, RTE_CRYPTO_AUTH_ZUC_EIA3, tdata->key.len, tdata->auth_iv.len, tdata->digest.len) < 0) return TEST_SKIPPED; /* Create ZUC session */ retval = create_wireless_algo_hash_session(ts_params->valid_devs[0], tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, RTE_CRYPTO_AUTH_OP_GENERATE, RTE_CRYPTO_AUTH_ZUC_EIA3); if (retval != 0) return retval; /* alloc mbuf and set payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_len = ceil_byte_length(tdata->plaintext.len); /* Append data which is padded to a multiple of */ /* the algorithms block size */ plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 8); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); /* Create ZUC operation */ retval = create_wireless_algo_hash_operation(NULL, tdata->digest.len, tdata->auth_iv.data, tdata->auth_iv.len, plaintext_pad_len, RTE_CRYPTO_AUTH_OP_GENERATE, tdata->validAuthLenInBits.len, 0); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 1, 0); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = ut_params->op->sym->m_src; ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + plaintext_pad_len; /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, tdata->digest.len, "ZUC Generated auth tag not as expected"); return 0; } static int test_zuc_auth_cipher(const struct wireless_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext = NULL, *ciphertext = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; struct rte_cryptodev_info dev_info; /* Check if device supports ZUC EEA3 */ if (check_cipher_capability(ts_params, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.len, tdata->cipher_iv.len) < 0) return TEST_SKIPPED; /* Check if device supports ZUC EIA3 */ if (check_auth_capability(ts_params, RTE_CRYPTO_AUTH_ZUC_EIA3, tdata->key.len, tdata->auth_iv.len, tdata->digest.len) < 0) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } if (op_mode == IN_PLACE) { if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) { printf("Device doesn't support in-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } } else { if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (!(feat_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) { printf("Device doesn't support out-of-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } } /* Create ZUC session */ retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], (verify ? RTE_CRYPTO_CIPHER_OP_DECRYPT : RTE_CRYPTO_CIPHER_OP_ENCRYPT), (verify ? RTE_CRYPTO_AUTH_OP_VERIFY : RTE_CRYPTO_AUTH_OP_GENERATE), RTE_CRYPTO_AUTH_ZUC_EIA3, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); if (op_mode == OUT_OF_PLACE) ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); if (op_mode == OUT_OF_PLACE) memset(rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->obuf)); ciphertext_len = ceil_byte_length(tdata->ciphertext.len); plaintext_len = ceil_byte_length(tdata->plaintext.len); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); if (verify) { ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { /* make sure enough space to cover partial digest verify case */ plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } if (op_mode == OUT_OF_PLACE) rte_pktmbuf_append(ut_params->obuf, ciphertext_pad_len); /* Create ZUC operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest.data, tdata->digest.len, tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->auth_iv.data, tdata->auth_iv.len, (tdata->digest.offset_bytes == 0 ? (verify ? ciphertext_pad_len : plaintext_pad_len) : tdata->digest.offset_bytes), tdata->validCipherLenInBits.len, tdata->validCipherOffsetInBits.len, tdata->validAuthLenInBits.len, 0, op_mode, 0, verify); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext; debug_hexdump(stdout, "plaintext:", plaintext, (tdata->plaintext.len >> 3) - tdata->digest.len); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, (tdata->plaintext.len >> 3) - tdata->digest.len); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len >> 3); ut_params->digest = rte_pktmbuf_mtod( ut_params->obuf, uint8_t *) + (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes); debug_hexdump(stdout, "digest:", ut_params->digest, tdata->digest.len); debug_hexdump(stdout, "digest expected:", tdata->digest.data, tdata->digest.len); } /* Validate obuf */ if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, tdata->plaintext.data, tdata->plaintext.len >> 3, "ZUC Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->ciphertext.len >> 3, "ZUC Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest.data, DIGEST_BYTE_LENGTH_KASUMI_F9, "ZUC Generated auth tag not as expected"); } return 0; } static int test_zuc_auth_cipher_sgl(const struct wireless_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; const uint8_t *plaintext = NULL; const uint8_t *ciphertext = NULL; const uint8_t *digest = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; uint8_t buffer[10000]; uint8_t digest_buffer[10000]; struct rte_cryptodev_info dev_info; /* Check if device supports ZUC EEA3 */ if (check_cipher_capability(ts_params, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.len, tdata->cipher_iv.len) < 0) return TEST_SKIPPED; /* Check if device supports ZUC EIA3 */ if (check_auth_capability(ts_params, RTE_CRYPTO_AUTH_ZUC_EIA3, tdata->key.len, tdata->auth_iv.len, tdata->digest.len) < 0) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (op_mode == IN_PLACE) { if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) { printf("Device doesn't support in-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } } else { if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (!(feat_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) { printf("Device doesn't support out-of-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } } /* Create ZUC session */ retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], (verify ? RTE_CRYPTO_CIPHER_OP_DECRYPT : RTE_CRYPTO_CIPHER_OP_ENCRYPT), (verify ? RTE_CRYPTO_AUTH_OP_VERIFY : RTE_CRYPTO_AUTH_OP_GENERATE), RTE_CRYPTO_AUTH_ZUC_EIA3, RTE_CRYPTO_CIPHER_ZUC_EEA3, tdata->key.data, tdata->key.len, tdata->auth_iv.len, tdata->digest.len, tdata->cipher_iv.len); if (retval != 0) return retval; ciphertext_len = ceil_byte_length(tdata->ciphertext.len); plaintext_len = ceil_byte_length(tdata->plaintext.len); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); if (op_mode == OUT_OF_PLACE) { ut_params->obuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer in mempool"); } if (verify) { pktmbuf_write(ut_params->ibuf, 0, ciphertext_len, tdata->ciphertext.data); ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } memset(buffer, 0, sizeof(buffer)); /* Create ZUC operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest.data, tdata->digest.len, tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->auth_iv.data, tdata->auth_iv.len, (tdata->digest.offset_bytes == 0 ? (verify ? ciphertext_pad_len : plaintext_pad_len) : tdata->digest.offset_bytes), tdata->validCipherLenInBits.len, tdata->validCipherOffsetInBits.len, tdata->validAuthLenInBits.len, 0, op_mode, 1, verify); if (retval < 0) return retval; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 1, tdata->cipher_iv.len); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_len, buffer); else plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, (tdata->plaintext.len >> 3) - tdata->digest.len); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, (tdata->plaintext.len >> 3) - tdata->digest.len); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, ciphertext_len, buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len >> 3); if (ut_params->obuf) digest = rte_pktmbuf_read(ut_params->obuf, (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes), tdata->digest.len, digest_buffer); else digest = rte_pktmbuf_read(ut_params->ibuf, (tdata->digest.offset_bytes == 0 ? plaintext_pad_len : tdata->digest.offset_bytes), tdata->digest.len, digest_buffer); debug_hexdump(stdout, "digest:", digest, tdata->digest.len); debug_hexdump(stdout, "digest expected:", tdata->digest.data, tdata->digest.len); } /* Validate obuf */ if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, tdata->plaintext.data, tdata->plaintext.len >> 3, "ZUC Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLenInBits.len, "ZUC Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( digest, tdata->digest.data, DIGEST_BYTE_LENGTH_KASUMI_F9, "ZUC Generated auth tag not as expected"); } return 0; } static int test_kasumi_encryption_test_case_1(void) { return test_kasumi_encryption(&kasumi_test_case_1); } static int test_kasumi_encryption_test_case_1_sgl(void) { return test_kasumi_encryption_sgl(&kasumi_test_case_1); } static int test_kasumi_encryption_test_case_1_oop(void) { return test_kasumi_encryption_oop(&kasumi_test_case_1); } static int test_kasumi_encryption_test_case_1_oop_sgl(void) { return test_kasumi_encryption_oop_sgl(&kasumi_test_case_1); } static int test_kasumi_encryption_test_case_2(void) { return test_kasumi_encryption(&kasumi_test_case_2); } static int test_kasumi_encryption_test_case_3(void) { return test_kasumi_encryption(&kasumi_test_case_3); } static int test_kasumi_encryption_test_case_4(void) { return test_kasumi_encryption(&kasumi_test_case_4); } static int test_kasumi_encryption_test_case_5(void) { return test_kasumi_encryption(&kasumi_test_case_5); } static int test_kasumi_decryption_test_case_1(void) { return test_kasumi_decryption(&kasumi_test_case_1); } static int test_kasumi_decryption_test_case_1_oop(void) { return test_kasumi_decryption_oop(&kasumi_test_case_1); } static int test_kasumi_decryption_test_case_2(void) { return test_kasumi_decryption(&kasumi_test_case_2); } static int test_kasumi_decryption_test_case_3(void) { /* rte_crypto_mbuf_to_vec does not support incomplete mbuf build */ if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; return test_kasumi_decryption(&kasumi_test_case_3); } static int test_kasumi_decryption_test_case_4(void) { return test_kasumi_decryption(&kasumi_test_case_4); } static int test_kasumi_decryption_test_case_5(void) { return test_kasumi_decryption(&kasumi_test_case_5); } static int test_snow3g_encryption_test_case_1(void) { return test_snow3g_encryption(&snow3g_test_case_1); } static int test_snow3g_encryption_test_case_1_oop(void) { return test_snow3g_encryption_oop(&snow3g_test_case_1); } static int test_snow3g_encryption_test_case_1_oop_sgl(void) { return test_snow3g_encryption_oop_sgl(&snow3g_test_case_1); } static int test_snow3g_encryption_test_case_1_offset_oop(void) { return test_snow3g_encryption_offset_oop(&snow3g_test_case_1); } static int test_snow3g_encryption_test_case_2(void) { return test_snow3g_encryption(&snow3g_test_case_2); } static int test_snow3g_encryption_test_case_3(void) { return test_snow3g_encryption(&snow3g_test_case_3); } static int test_snow3g_encryption_test_case_4(void) { return test_snow3g_encryption(&snow3g_test_case_4); } static int test_snow3g_encryption_test_case_5(void) { return test_snow3g_encryption(&snow3g_test_case_5); } static int test_snow3g_decryption_test_case_1(void) { return test_snow3g_decryption(&snow3g_test_case_1); } static int test_snow3g_decryption_test_case_1_oop(void) { return test_snow3g_decryption_oop(&snow3g_test_case_1); } static int test_snow3g_decryption_test_case_2(void) { return test_snow3g_decryption(&snow3g_test_case_2); } static int test_snow3g_decryption_test_case_3(void) { return test_snow3g_decryption(&snow3g_test_case_3); } static int test_snow3g_decryption_test_case_4(void) { return test_snow3g_decryption(&snow3g_test_case_4); } static int test_snow3g_decryption_test_case_5(void) { return test_snow3g_decryption(&snow3g_test_case_5); } /* * Function prepares snow3g_hash_test_data from snow3g_test_data. * Pattern digest from snow3g_test_data must be allocated as * 4 last bytes in plaintext. */ static void snow3g_hash_test_vector_setup(const struct snow3g_test_data *pattern, struct snow3g_hash_test_data *output) { if ((pattern != NULL) && (output != NULL)) { output->key.len = pattern->key.len; memcpy(output->key.data, pattern->key.data, pattern->key.len); output->auth_iv.len = pattern->auth_iv.len; memcpy(output->auth_iv.data, pattern->auth_iv.data, pattern->auth_iv.len); output->plaintext.len = pattern->plaintext.len; memcpy(output->plaintext.data, pattern->plaintext.data, pattern->plaintext.len >> 3); output->digest.len = pattern->digest.len; memcpy(output->digest.data, &pattern->plaintext.data[pattern->digest.offset_bytes], pattern->digest.len); output->validAuthLenInBits.len = pattern->validAuthLenInBits.len; } } /* * Test case verify computed cipher and digest from snow3g_test_case_7 data. */ static int test_snow3g_decryption_with_digest_test_case_1(void) { struct snow3g_hash_test_data snow3g_hash_data; struct rte_cryptodev_info dev_info; struct crypto_testsuite_params *ts_params = &testsuite_params; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support encrypted digest operations.\n"); return TEST_SKIPPED; } /* * Function prepare data for hash verification test case. * Digest is allocated in 4 last bytes in plaintext, pattern. */ snow3g_hash_test_vector_setup(&snow3g_test_case_7, &snow3g_hash_data); return test_snow3g_decryption(&snow3g_test_case_7) & test_snow3g_authentication_verify(&snow3g_hash_data); } static int test_snow3g_cipher_auth_test_case_1(void) { return test_snow3g_cipher_auth(&snow3g_test_case_3); } static int test_snow3g_auth_cipher_test_case_1(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_test_case_1, IN_PLACE, 0); } static int test_snow3g_auth_cipher_test_case_2(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_test_case_2, IN_PLACE, 0); } static int test_snow3g_auth_cipher_test_case_2_oop(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_test_case_2, OUT_OF_PLACE, 0); } static int test_snow3g_auth_cipher_part_digest_enc(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_partial_digest_encryption, IN_PLACE, 0); } static int test_snow3g_auth_cipher_part_digest_enc_oop(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_partial_digest_encryption, OUT_OF_PLACE, 0); } static int test_snow3g_auth_cipher_test_case_3_sgl(void) { /* rte_crypto_mbuf_to_vec does not support incomplete mbuf build */ if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_test_case_3, IN_PLACE, 0); } static int test_snow3g_auth_cipher_test_case_3_oop_sgl(void) { return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_test_case_3, OUT_OF_PLACE, 0); } static int test_snow3g_auth_cipher_part_digest_enc_sgl(void) { /* rte_crypto_mbuf_to_vec does not support incomplete mbuf build */ if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_partial_digest_encryption, IN_PLACE, 0); } static int test_snow3g_auth_cipher_part_digest_enc_oop_sgl(void) { return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_partial_digest_encryption, OUT_OF_PLACE, 0); } static int test_snow3g_auth_cipher_verify_test_case_1(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_test_case_1, IN_PLACE, 1); } static int test_snow3g_auth_cipher_verify_test_case_2(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_test_case_2, IN_PLACE, 1); } static int test_snow3g_auth_cipher_verify_test_case_2_oop(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_test_case_2, OUT_OF_PLACE, 1); } static int test_snow3g_auth_cipher_verify_part_digest_enc(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_partial_digest_encryption, IN_PLACE, 1); } static int test_snow3g_auth_cipher_verify_part_digest_enc_oop(void) { return test_snow3g_auth_cipher( &snow3g_auth_cipher_partial_digest_encryption, OUT_OF_PLACE, 1); } static int test_snow3g_auth_cipher_verify_test_case_3_sgl(void) { return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_test_case_3, IN_PLACE, 1); } static int test_snow3g_auth_cipher_verify_test_case_3_oop_sgl(void) { return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_test_case_3, OUT_OF_PLACE, 1); } static int test_snow3g_auth_cipher_verify_part_digest_enc_sgl(void) { return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_partial_digest_encryption, IN_PLACE, 1); } static int test_snow3g_auth_cipher_verify_part_digest_enc_oop_sgl(void) { return test_snow3g_auth_cipher_sgl( &snow3g_auth_cipher_partial_digest_encryption, OUT_OF_PLACE, 1); } static int test_snow3g_auth_cipher_with_digest_test_case_1(void) { return test_snow3g_auth_cipher( &snow3g_test_case_7, IN_PLACE, 0); } static int test_kasumi_auth_cipher_test_case_1(void) { return test_kasumi_auth_cipher( &kasumi_test_case_3, IN_PLACE, 0); } static int test_kasumi_auth_cipher_test_case_2(void) { return test_kasumi_auth_cipher( &kasumi_auth_cipher_test_case_2, IN_PLACE, 0); } static int test_kasumi_auth_cipher_test_case_2_oop(void) { return test_kasumi_auth_cipher( &kasumi_auth_cipher_test_case_2, OUT_OF_PLACE, 0); } static int test_kasumi_auth_cipher_test_case_2_sgl(void) { return test_kasumi_auth_cipher_sgl( &kasumi_auth_cipher_test_case_2, IN_PLACE, 0); } static int test_kasumi_auth_cipher_test_case_2_oop_sgl(void) { return test_kasumi_auth_cipher_sgl( &kasumi_auth_cipher_test_case_2, OUT_OF_PLACE, 0); } static int test_kasumi_auth_cipher_verify_test_case_1(void) { return test_kasumi_auth_cipher( &kasumi_test_case_3, IN_PLACE, 1); } static int test_kasumi_auth_cipher_verify_test_case_2(void) { return test_kasumi_auth_cipher( &kasumi_auth_cipher_test_case_2, IN_PLACE, 1); } static int test_kasumi_auth_cipher_verify_test_case_2_oop(void) { return test_kasumi_auth_cipher( &kasumi_auth_cipher_test_case_2, OUT_OF_PLACE, 1); } static int test_kasumi_auth_cipher_verify_test_case_2_sgl(void) { return test_kasumi_auth_cipher_sgl( &kasumi_auth_cipher_test_case_2, IN_PLACE, 1); } static int test_kasumi_auth_cipher_verify_test_case_2_oop_sgl(void) { return test_kasumi_auth_cipher_sgl( &kasumi_auth_cipher_test_case_2, OUT_OF_PLACE, 1); } static int test_kasumi_cipher_auth_test_case_1(void) { return test_kasumi_cipher_auth(&kasumi_test_case_6); } static int test_zuc_encryption_test_case_1(void) { return test_zuc_encryption(&zuc_test_case_cipher_193b); } static int test_zuc_encryption_test_case_2(void) { return test_zuc_encryption(&zuc_test_case_cipher_800b); } static int test_zuc_encryption_test_case_3(void) { return test_zuc_encryption(&zuc_test_case_cipher_1570b); } static int test_zuc_encryption_test_case_4(void) { return test_zuc_encryption(&zuc_test_case_cipher_2798b); } static int test_zuc_encryption_test_case_5(void) { return test_zuc_encryption(&zuc_test_case_cipher_4019b); } static int test_zuc_encryption_test_case_6_sgl(void) { return test_zuc_encryption_sgl(&zuc_test_case_cipher_193b); } static int test_zuc_hash_generate_test_case_1(void) { return test_zuc_authentication(&zuc_test_case_auth_1b); } static int test_zuc_hash_generate_test_case_2(void) { return test_zuc_authentication(&zuc_test_case_auth_90b); } static int test_zuc_hash_generate_test_case_3(void) { return test_zuc_authentication(&zuc_test_case_auth_577b); } static int test_zuc_hash_generate_test_case_4(void) { return test_zuc_authentication(&zuc_test_case_auth_2079b); } static int test_zuc_hash_generate_test_case_5(void) { return test_zuc_authentication(&zuc_test_auth_5670b); } static int test_zuc_hash_generate_test_case_6(void) { return test_zuc_authentication(&zuc_test_case_auth_128b); } static int test_zuc_hash_generate_test_case_7(void) { return test_zuc_authentication(&zuc_test_case_auth_2080b); } static int test_zuc_hash_generate_test_case_8(void) { return test_zuc_authentication(&zuc_test_case_auth_584b); } static int test_zuc_hash_generate_test_case_9(void) { return test_zuc_authentication(&zuc_test_case_auth_4000b_mac_32b); } static int test_zuc_hash_generate_test_case_10(void) { return test_zuc_authentication(&zuc_test_case_auth_4000b_mac_64b); } static int test_zuc_hash_generate_test_case_11(void) { return test_zuc_authentication(&zuc_test_case_auth_4000b_mac_128b); } static int test_zuc_cipher_auth_test_case_1(void) { return test_zuc_cipher_auth(&zuc_test_case_cipher_200b_auth_200b); } static int test_zuc_cipher_auth_test_case_2(void) { return test_zuc_cipher_auth(&zuc_test_case_cipher_800b_auth_120b); } static int test_zuc_auth_cipher_test_case_1(void) { return test_zuc_auth_cipher( &zuc_auth_cipher_test_case_1, IN_PLACE, 0); } static int test_zuc_auth_cipher_test_case_1_oop(void) { return test_zuc_auth_cipher( &zuc_auth_cipher_test_case_1, OUT_OF_PLACE, 0); } static int test_zuc_auth_cipher_test_case_1_sgl(void) { return test_zuc_auth_cipher_sgl( &zuc_auth_cipher_test_case_1, IN_PLACE, 0); } static int test_zuc_auth_cipher_test_case_1_oop_sgl(void) { return test_zuc_auth_cipher_sgl( &zuc_auth_cipher_test_case_1, OUT_OF_PLACE, 0); } static int test_zuc_auth_cipher_verify_test_case_1(void) { return test_zuc_auth_cipher( &zuc_auth_cipher_test_case_1, IN_PLACE, 1); } static int test_zuc_auth_cipher_verify_test_case_1_oop(void) { return test_zuc_auth_cipher( &zuc_auth_cipher_test_case_1, OUT_OF_PLACE, 1); } static int test_zuc_auth_cipher_verify_test_case_1_sgl(void) { return test_zuc_auth_cipher_sgl( &zuc_auth_cipher_test_case_1, IN_PLACE, 1); } static int test_zuc_auth_cipher_verify_test_case_1_oop_sgl(void) { return test_zuc_auth_cipher_sgl( &zuc_auth_cipher_test_case_1, OUT_OF_PLACE, 1); } static int test_zuc256_encryption_test_case_1(void) { return test_zuc_encryption(&zuc256_test_case_cipher_1); } static int test_zuc256_encryption_test_case_2(void) { return test_zuc_encryption(&zuc256_test_case_cipher_2); } static int test_zuc256_authentication_test_case_1(void) { return test_zuc_authentication(&zuc256_test_case_auth_1); } static int test_zuc256_authentication_test_case_2(void) { return test_zuc_authentication(&zuc256_test_case_auth_2); } static int test_mixed_check_if_unsupported(const struct mixed_cipher_auth_test_data *tdata) { uint8_t dev_id = testsuite_params.valid_devs[0]; struct rte_cryptodev_sym_capability_idx cap_idx; /* Check if device supports particular cipher algorithm */ cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = tdata->cipher_algo; if (rte_cryptodev_sym_capability_get(dev_id, &cap_idx) == NULL) return TEST_SKIPPED; /* Check if device supports particular hash algorithm */ cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = tdata->auth_algo; if (rte_cryptodev_sym_capability_get(dev_id, &cap_idx) == NULL) return TEST_SKIPPED; return 0; } static int test_mixed_auth_cipher(const struct mixed_cipher_auth_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext = NULL, *ciphertext = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; struct rte_cryptodev_info dev_info; struct rte_crypto_op *op; /* Check if device supports particular algorithms separately */ if (test_mixed_check_if_unsupported(tdata)) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } /* Create the session */ if (verify) retval = create_wireless_algo_cipher_auth_session( ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_AUTH_OP_VERIFY, tdata->auth_algo, tdata->cipher_algo, tdata->auth_key.data, tdata->auth_key.len, tdata->auth_iv.len, tdata->digest_enc.len, tdata->cipher_iv.len); else retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, tdata->auth_algo, tdata->cipher_algo, tdata->auth_key.data, tdata->auth_key.len, tdata->auth_iv.len, tdata->digest_enc.len, tdata->cipher_iv.len); if (retval != 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); if (op_mode == OUT_OF_PLACE) ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); if (op_mode == OUT_OF_PLACE) { memset(rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->obuf)); } ciphertext_len = ceil_byte_length(tdata->ciphertext.len_bits); plaintext_len = ceil_byte_length(tdata->plaintext.len_bits); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); if (verify) { ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(ciphertext, tdata->ciphertext.data, ciphertext_len); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { /* make sure enough space to cover partial digest verify case */ plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, ciphertext_pad_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } if (op_mode == OUT_OF_PLACE) rte_pktmbuf_append(ut_params->obuf, ciphertext_pad_len); /* Create the operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest_enc.data, tdata->digest_enc.len, tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->auth_iv.data, tdata->auth_iv.len, (tdata->digest_enc.offset == 0 ? plaintext_pad_len : tdata->digest_enc.offset), tdata->validCipherLen.len_bits, tdata->cipher.offset_bits, tdata->validAuthLen.len_bits, tdata->auth.offset_bits, op_mode, 0, verify); if (retval < 0) return retval; op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); /* Check if the op failed because the device doesn't */ /* support this particular combination of algorithms */ if (op == NULL && ut_params->op->status == RTE_CRYPTO_OP_STATUS_INVALID_SESSION) { printf("Device doesn't support this mixed combination. " "Test Skipped.\n"); return TEST_SKIPPED; } ut_params->op = op; TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else plaintext = ciphertext + (tdata->cipher.offset_bits >> 3); debug_hexdump(stdout, "plaintext:", plaintext, tdata->plaintext.len_bits >> 3); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, tdata->plaintext.len_bits >> 3); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *); else ciphertext = plaintext; debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len_bits >> 3); ut_params->digest = rte_pktmbuf_mtod(ut_params->obuf, uint8_t *) + (tdata->digest_enc.offset == 0 ? plaintext_pad_len : tdata->digest_enc.offset); debug_hexdump(stdout, "digest:", ut_params->digest, tdata->digest_enc.len); debug_hexdump(stdout, "digest expected:", tdata->digest_enc.data, tdata->digest_enc.len); } if (!verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL( ut_params->digest, tdata->digest_enc.data, tdata->digest_enc.len, "Generated auth tag not as expected"); } if (tdata->cipher_algo != RTE_CRYPTO_CIPHER_NULL) { if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, tdata->plaintext.data, tdata->plaintext.len_bits >> 3, "Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLen.len_bits, "Ciphertext data not as expected"); } } TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); return 0; } static int test_mixed_auth_cipher_sgl(const struct mixed_cipher_auth_test_data *tdata, uint8_t op_mode, uint8_t verify) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; const uint8_t *plaintext = NULL; const uint8_t *ciphertext = NULL; const uint8_t *digest = NULL; unsigned int plaintext_pad_len; unsigned int plaintext_len; unsigned int ciphertext_pad_len; unsigned int ciphertext_len; uint8_t buffer[10000]; uint8_t digest_buffer[10000]; struct rte_cryptodev_info dev_info; struct rte_crypto_op *op; /* Check if device supports particular algorithms */ if (test_mixed_check_if_unsupported(tdata)) return TEST_SKIPPED; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (op_mode == IN_PLACE) { if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) { printf("Device doesn't support in-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } } else { if (!(feat_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) { printf("Device doesn't support out-of-place scatter-gather " "in both input and output mbufs.\n"); return TEST_SKIPPED; } if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) { printf("Device doesn't support digest encrypted.\n"); return TEST_SKIPPED; } } /* Create the session */ if (verify) retval = create_wireless_algo_cipher_auth_session( ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_AUTH_OP_VERIFY, tdata->auth_algo, tdata->cipher_algo, tdata->auth_key.data, tdata->auth_key.len, tdata->auth_iv.len, tdata->digest_enc.len, tdata->cipher_iv.len); else retval = create_wireless_algo_auth_cipher_session( ts_params->valid_devs[0], RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, tdata->auth_algo, tdata->cipher_algo, tdata->auth_key.data, tdata->auth_key.len, tdata->auth_iv.len, tdata->digest_enc.len, tdata->cipher_iv.len); if (retval != 0) return retval; ciphertext_len = ceil_byte_length(tdata->ciphertext.len_bits); plaintext_len = ceil_byte_length(tdata->plaintext.len_bits); ciphertext_pad_len = RTE_ALIGN_CEIL(ciphertext_len, 16); plaintext_pad_len = RTE_ALIGN_CEIL(plaintext_len, 16); ut_params->ibuf = create_segmented_mbuf(ts_params->mbuf_pool, ciphertext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); if (op_mode == OUT_OF_PLACE) { ut_params->obuf = create_segmented_mbuf(ts_params->mbuf_pool, plaintext_pad_len, 15, 0); TEST_ASSERT_NOT_NULL(ut_params->obuf, "Failed to allocate output buffer in mempool"); } if (verify) { pktmbuf_write(ut_params->ibuf, 0, ciphertext_len, tdata->ciphertext.data); ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); } else { pktmbuf_write(ut_params->ibuf, 0, plaintext_len, tdata->plaintext.data); plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, plaintext_len); } memset(buffer, 0, sizeof(buffer)); /* Create the operation */ retval = create_wireless_algo_auth_cipher_operation( tdata->digest_enc.data, tdata->digest_enc.len, tdata->cipher_iv.data, tdata->cipher_iv.len, tdata->auth_iv.data, tdata->auth_iv.len, (tdata->digest_enc.offset == 0 ? plaintext_pad_len : tdata->digest_enc.offset), tdata->validCipherLen.len_bits, tdata->cipher.offset_bits, tdata->validAuthLen.len_bits, tdata->auth.offset_bits, op_mode, 1, verify); if (retval < 0) return retval; op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); /* Check if the op failed because the device doesn't */ /* support this particular combination of algorithms */ if (op == NULL && ut_params->op->status == RTE_CRYPTO_OP_STATUS_INVALID_SESSION) { printf("Device doesn't support this mixed combination. " "Test Skipped.\n"); return TEST_SKIPPED; } ut_params->op = op; TEST_ASSERT_NOT_NULL(ut_params->op, "failed to retrieve obuf"); ut_params->obuf = (op_mode == IN_PLACE ? ut_params->op->sym->m_src : ut_params->op->sym->m_dst); if (verify) { if (ut_params->obuf) plaintext = rte_pktmbuf_read(ut_params->obuf, 0, plaintext_len, buffer); else plaintext = rte_pktmbuf_read(ut_params->ibuf, 0, plaintext_len, buffer); debug_hexdump(stdout, "plaintext:", plaintext, (tdata->plaintext.len_bits >> 3) - tdata->digest_enc.len); debug_hexdump(stdout, "plaintext expected:", tdata->plaintext.data, (tdata->plaintext.len_bits >> 3) - tdata->digest_enc.len); } else { if (ut_params->obuf) ciphertext = rte_pktmbuf_read(ut_params->obuf, 0, ciphertext_len, buffer); else ciphertext = rte_pktmbuf_read(ut_params->ibuf, 0, ciphertext_len, buffer); debug_hexdump(stdout, "ciphertext:", ciphertext, ciphertext_len); debug_hexdump(stdout, "ciphertext expected:", tdata->ciphertext.data, tdata->ciphertext.len_bits >> 3); if (ut_params->obuf) digest = rte_pktmbuf_read(ut_params->obuf, (tdata->digest_enc.offset == 0 ? plaintext_pad_len : tdata->digest_enc.offset), tdata->digest_enc.len, digest_buffer); else digest = rte_pktmbuf_read(ut_params->ibuf, (tdata->digest_enc.offset == 0 ? plaintext_pad_len : tdata->digest_enc.offset), tdata->digest_enc.len, digest_buffer); debug_hexdump(stdout, "digest:", digest, tdata->digest_enc.len); debug_hexdump(stdout, "digest expected:", tdata->digest_enc.data, tdata->digest_enc.len); } if (!verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL( digest, tdata->digest_enc.data, tdata->digest_enc.len, "Generated auth tag not as expected"); } if (tdata->cipher_algo != RTE_CRYPTO_CIPHER_NULL) { if (verify) { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( plaintext, tdata->plaintext.data, tdata->plaintext.len_bits >> 3, "Plaintext data not as expected"); } else { TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT( ciphertext, tdata->ciphertext.data, tdata->validDataLen.len_bits, "Ciphertext data not as expected"); } } TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); return 0; } /** AUTH AES CMAC + CIPHER AES CTR */ static int test_aes_cmac_aes_ctr_digest_enc_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_aes_ctr_test_case_1, IN_PLACE, 0); } static int test_aes_cmac_aes_ctr_digest_enc_test_case_1_oop(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 0); } static int test_aes_cmac_aes_ctr_digest_enc_test_case_1_sgl(void) { return test_mixed_auth_cipher_sgl( &auth_aes_cmac_cipher_aes_ctr_test_case_1, IN_PLACE, 0); } static int test_aes_cmac_aes_ctr_digest_enc_test_case_1_oop_sgl(void) { return test_mixed_auth_cipher_sgl( &auth_aes_cmac_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_aes_ctr_test_case_1, IN_PLACE, 1); } static int test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1_oop(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 1); } static int test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1_sgl(void) { return test_mixed_auth_cipher_sgl( &auth_aes_cmac_cipher_aes_ctr_test_case_1, IN_PLACE, 1); } static int test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1_oop_sgl(void) { return test_mixed_auth_cipher_sgl( &auth_aes_cmac_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 1); } /** MIXED AUTH + CIPHER */ static int test_auth_zuc_cipher_snow_test_case_1(void) { return test_mixed_auth_cipher( &auth_zuc_cipher_snow_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_zuc_cipher_snow_test_case_1(void) { return test_mixed_auth_cipher( &auth_zuc_cipher_snow_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_aes_cmac_cipher_snow_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_snow_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_aes_cmac_cipher_snow_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_snow_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_zuc_cipher_aes_ctr_test_case_1(void) { return test_mixed_auth_cipher( &auth_zuc_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_zuc_cipher_aes_ctr_test_case_1(void) { return test_mixed_auth_cipher( &auth_zuc_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_snow_cipher_aes_ctr_test_case_1(void) { return test_mixed_auth_cipher( &auth_snow_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_snow_cipher_aes_ctr_test_case_1(void) { return test_mixed_auth_cipher( &auth_snow_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_snow_cipher_zuc_test_case_1(void) { return test_mixed_auth_cipher( &auth_snow_cipher_zuc_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_snow_cipher_zuc_test_case_1(void) { return test_mixed_auth_cipher( &auth_snow_cipher_zuc_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_aes_cmac_cipher_zuc_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_zuc_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_aes_cmac_cipher_zuc_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_zuc_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_null_cipher_snow_test_case_1(void) { return test_mixed_auth_cipher( &auth_null_cipher_snow_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_null_cipher_snow_test_case_1(void) { return test_mixed_auth_cipher( &auth_null_cipher_snow_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_null_cipher_zuc_test_case_1(void) { return test_mixed_auth_cipher( &auth_null_cipher_zuc_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_null_cipher_zuc_test_case_1(void) { return test_mixed_auth_cipher( &auth_null_cipher_zuc_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_snow_cipher_null_test_case_1(void) { return test_mixed_auth_cipher( &auth_snow_cipher_null_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_snow_cipher_null_test_case_1(void) { return test_mixed_auth_cipher( &auth_snow_cipher_null_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_zuc_cipher_null_test_case_1(void) { return test_mixed_auth_cipher( &auth_zuc_cipher_null_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_zuc_cipher_null_test_case_1(void) { return test_mixed_auth_cipher( &auth_zuc_cipher_null_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_null_cipher_aes_ctr_test_case_1(void) { return test_mixed_auth_cipher( &auth_null_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_null_cipher_aes_ctr_test_case_1(void) { return test_mixed_auth_cipher( &auth_null_cipher_aes_ctr_test_case_1, OUT_OF_PLACE, 1); } static int test_auth_aes_cmac_cipher_null_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_null_test_case_1, OUT_OF_PLACE, 0); } static int test_verify_auth_aes_cmac_cipher_null_test_case_1(void) { return test_mixed_auth_cipher( &auth_aes_cmac_cipher_null_test_case_1, OUT_OF_PLACE, 1); } /* ***** AEAD algorithm Tests ***** */ static int create_aead_session(uint8_t dev_id, enum rte_crypto_aead_algorithm algo, enum rte_crypto_aead_operation op, const uint8_t *key, const uint8_t key_len, const uint16_t aad_len, const uint8_t auth_len, uint8_t iv_len) { uint8_t aead_key[key_len]; int status; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; memcpy(aead_key, key, key_len); /* Setup AEAD Parameters */ ut_params->aead_xform.type = RTE_CRYPTO_SYM_XFORM_AEAD; ut_params->aead_xform.next = NULL; ut_params->aead_xform.aead.algo = algo; ut_params->aead_xform.aead.op = op; ut_params->aead_xform.aead.key.data = aead_key; ut_params->aead_xform.aead.key.length = key_len; ut_params->aead_xform.aead.iv.offset = IV_OFFSET; ut_params->aead_xform.aead.iv.length = iv_len; ut_params->aead_xform.aead.digest_length = auth_len; ut_params->aead_xform.aead.aad_length = aad_len; debug_hexdump(stdout, "key:", key, key_len); /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->aead_xform, ts_params->session_priv_mpool); return status; } static int create_aead_xform(struct rte_crypto_op *op, enum rte_crypto_aead_algorithm algo, enum rte_crypto_aead_operation aead_op, uint8_t *key, const uint8_t key_len, const uint8_t aad_len, const uint8_t auth_len, uint8_t iv_len) { TEST_ASSERT_NOT_NULL(rte_crypto_op_sym_xforms_alloc(op, 1), "failed to allocate space for crypto transform"); struct rte_crypto_sym_op *sym_op = op->sym; /* Setup AEAD Parameters */ sym_op->xform->type = RTE_CRYPTO_SYM_XFORM_AEAD; sym_op->xform->next = NULL; sym_op->xform->aead.algo = algo; sym_op->xform->aead.op = aead_op; sym_op->xform->aead.key.data = key; sym_op->xform->aead.key.length = key_len; sym_op->xform->aead.iv.offset = IV_OFFSET; sym_op->xform->aead.iv.length = iv_len; sym_op->xform->aead.digest_length = auth_len; sym_op->xform->aead.aad_length = aad_len; debug_hexdump(stdout, "key:", key, key_len); return 0; } static int create_aead_operation(enum rte_crypto_aead_operation op, const struct aead_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint8_t *plaintext, *ciphertext; unsigned int aad_pad_len, plaintext_pad_len; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* Append aad data */ if (tdata->algo == RTE_CRYPTO_AEAD_AES_CCM) { aad_pad_len = RTE_ALIGN_CEIL(tdata->aad.len + 18, 16); sym_op->aead.aad.data = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, aad_pad_len); TEST_ASSERT_NOT_NULL(sym_op->aead.aad.data, "no room to append aad"); sym_op->aead.aad.phys_addr = rte_pktmbuf_iova(ut_params->ibuf); /* Copy AAD 18 bytes after the AAD pointer, according to the API */ memcpy(sym_op->aead.aad.data + 18, tdata->aad.data, tdata->aad.len); debug_hexdump(stdout, "aad:", sym_op->aead.aad.data, tdata->aad.len); /* Append IV at the end of the crypto operation*/ uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); /* Copy IV 1 byte after the IV pointer, according to the API */ rte_memcpy(iv_ptr + 1, tdata->iv.data, tdata->iv.len); debug_hexdump(stdout, "iv:", iv_ptr, tdata->iv.len); } else { aad_pad_len = RTE_ALIGN_CEIL(tdata->aad.len, 16); sym_op->aead.aad.data = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, aad_pad_len); TEST_ASSERT_NOT_NULL(sym_op->aead.aad.data, "no room to append aad"); sym_op->aead.aad.phys_addr = rte_pktmbuf_iova(ut_params->ibuf); memcpy(sym_op->aead.aad.data, tdata->aad.data, tdata->aad.len); debug_hexdump(stdout, "aad:", sym_op->aead.aad.data, tdata->aad.len); /* Append IV at the end of the crypto operation*/ uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); if (tdata->iv.len == 0) { rte_memcpy(iv_ptr, tdata->iv.data, AES_GCM_J0_LENGTH); debug_hexdump(stdout, "iv:", iv_ptr, AES_GCM_J0_LENGTH); } else { rte_memcpy(iv_ptr, tdata->iv.data, tdata->iv.len); debug_hexdump(stdout, "iv:", iv_ptr, tdata->iv.len); } } /* Append plaintext/ciphertext */ if (op == RTE_CRYPTO_AEAD_OP_ENCRYPT) { plaintext_pad_len = RTE_ALIGN_CEIL(tdata->plaintext.len, 16); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memcpy(plaintext, tdata->plaintext.data, tdata->plaintext.len); debug_hexdump(stdout, "plaintext:", plaintext, tdata->plaintext.len); if (ut_params->obuf) { ciphertext = (uint8_t *)rte_pktmbuf_append( ut_params->obuf, plaintext_pad_len + aad_pad_len); TEST_ASSERT_NOT_NULL(ciphertext, "no room to append ciphertext"); memset(ciphertext + aad_pad_len, 0, tdata->ciphertext.len); } } else { plaintext_pad_len = RTE_ALIGN_CEIL(tdata->ciphertext.len, 16); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); TEST_ASSERT_NOT_NULL(ciphertext, "no room to append ciphertext"); memcpy(ciphertext, tdata->ciphertext.data, tdata->ciphertext.len); debug_hexdump(stdout, "ciphertext:", ciphertext, tdata->ciphertext.len); if (ut_params->obuf) { plaintext = (uint8_t *)rte_pktmbuf_append( ut_params->obuf, plaintext_pad_len + aad_pad_len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memset(plaintext + aad_pad_len, 0, tdata->plaintext.len); } } /* Append digest data */ if (op == RTE_CRYPTO_AEAD_OP_ENCRYPT) { sym_op->aead.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->obuf ? ut_params->obuf : ut_params->ibuf, tdata->auth_tag.len); TEST_ASSERT_NOT_NULL(sym_op->aead.digest.data, "no room to append digest"); memset(sym_op->aead.digest.data, 0, tdata->auth_tag.len); sym_op->aead.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->obuf ? ut_params->obuf : ut_params->ibuf, plaintext_pad_len + aad_pad_len); } else { sym_op->aead.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, tdata->auth_tag.len); TEST_ASSERT_NOT_NULL(sym_op->aead.digest.data, "no room to append digest"); sym_op->aead.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, plaintext_pad_len + aad_pad_len); rte_memcpy(sym_op->aead.digest.data, tdata->auth_tag.data, tdata->auth_tag.len); debug_hexdump(stdout, "digest:", sym_op->aead.digest.data, tdata->auth_tag.len); } sym_op->aead.data.length = tdata->plaintext.len; sym_op->aead.data.offset = aad_pad_len; return 0; } static int test_authenticated_encryption(const struct aead_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *ciphertext, *auth_tag; uint16_t plaintext_pad_len; uint32_t i; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; const struct rte_cryptodev_symmetric_capability *capability; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = tdata->algo; capability = rte_cryptodev_sym_capability_get( ts_params->valid_devs[0], &cap_idx); if (capability == NULL) return TEST_SKIPPED; if (rte_cryptodev_sym_capability_check_aead( capability, tdata->key.len, tdata->auth_tag.len, tdata->aad.len, tdata->iv.len)) return TEST_SKIPPED; /* Create AEAD session */ retval = create_aead_session(ts_params->valid_devs[0], tdata->algo, RTE_CRYPTO_AEAD_OP_ENCRYPT, tdata->key.data, tdata->key.len, tdata->aad.len, tdata->auth_tag.len, tdata->iv.len); if (retval < 0) return retval; if (tdata->aad.len > MBUF_SIZE) { ut_params->ibuf = rte_pktmbuf_alloc(ts_params->large_mbuf_pool); /* Populate full size of add data */ for (i = 32; i < MAX_AAD_LENGTH; i += 32) memcpy(&tdata->aad.data[i], &tdata->aad.data[0], 32); } else ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); /* Create AEAD operation */ retval = create_aead_operation(RTE_CRYPTO_AEAD_OP_ENCRYPT, tdata); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; /* Process crypto operation */ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_aead_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 0, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); plaintext_pad_len = RTE_ALIGN_CEIL(tdata->plaintext.len, 16); if (ut_params->op->sym->m_dst) { ciphertext = rte_pktmbuf_mtod(ut_params->op->sym->m_dst, uint8_t *); auth_tag = rte_pktmbuf_mtod_offset(ut_params->op->sym->m_dst, uint8_t *, plaintext_pad_len); } else { ciphertext = rte_pktmbuf_mtod_offset(ut_params->op->sym->m_src, uint8_t *, ut_params->op->sym->cipher.data.offset); auth_tag = ciphertext + plaintext_pad_len; } debug_hexdump(stdout, "ciphertext:", ciphertext, tdata->ciphertext.len); debug_hexdump(stdout, "auth tag:", auth_tag, tdata->auth_tag.len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ciphertext, tdata->ciphertext.data, tdata->ciphertext.len, "Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, tdata->auth_tag.data, tdata->auth_tag.len, "Generated auth tag not as expected"); return 0; } #ifdef RTE_LIB_SECURITY static int security_proto_supported(enum rte_security_session_action_type action, enum rte_security_session_protocol proto) { struct crypto_testsuite_params *ts_params = &testsuite_params; const struct rte_security_capability *capabilities; const struct rte_security_capability *capability; uint16_t i = 0; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_cryptodev_get_sec_ctx( ts_params->valid_devs[0]); capabilities = rte_security_capabilities_get(ctx); if (capabilities == NULL) return -ENOTSUP; while ((capability = &capabilities[i++])->action != RTE_SECURITY_ACTION_TYPE_NONE) { if (capability->action == action && capability->protocol == proto) return 0; } return -ENOTSUP; } /* Basic algorithm run function for async inplace mode. * Creates a session from input parameters and runs one operation * on input_vec. Checks the output of the crypto operation against * output_vec. */ static int test_pdcp_proto(int i, int oop, enum rte_crypto_cipher_operation opc, enum rte_crypto_auth_operation opa, const uint8_t *input_vec, unsigned int input_vec_len, const uint8_t *output_vec, unsigned int output_vec_len, enum rte_crypto_cipher_algorithm cipher_alg, const uint8_t *cipher_key, uint32_t cipher_key_len, enum rte_crypto_auth_algorithm auth_alg, const uint8_t *auth_key, uint32_t auth_key_len, uint8_t bearer, enum rte_security_pdcp_domain domain, uint8_t packet_direction, uint8_t sn_size, uint32_t hfn, uint32_t hfn_threshold, uint8_t sdap) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint8_t *plaintext; int ret = TEST_SUCCESS; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_cryptodev_get_sec_ctx( ts_params->valid_devs[0]); /* Verify the capabilities */ struct rte_security_capability_idx sec_cap_idx; sec_cap_idx.action = ut_params->type; sec_cap_idx.protocol = RTE_SECURITY_PROTOCOL_PDCP; sec_cap_idx.pdcp.domain = domain; if (rte_security_capability_get(ctx, &sec_cap_idx) == NULL) return TEST_SKIPPED; /* Generate test mbuf data */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, input_vec_len); memcpy(plaintext, input_vec, input_vec_len); /* Out of place support */ if (oop) { /* * For out-op-place we need to alloc another mbuf */ ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); rte_pktmbuf_append(ut_params->obuf, output_vec_len); } /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.cipher.algo = cipher_alg; ut_params->cipher_xform.cipher.op = opc; ut_params->cipher_xform.cipher.key.data = cipher_key; ut_params->cipher_xform.cipher.key.length = cipher_key_len; ut_params->cipher_xform.cipher.iv.length = packet_direction ? 4 : 0; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; /* Setup HMAC Parameters if ICV header is required */ if (auth_alg != 0) { ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.algo = auth_alg; ut_params->auth_xform.auth.op = opa; ut_params->auth_xform.auth.key.data = auth_key; ut_params->auth_xform.auth.key.length = auth_key_len; ut_params->cipher_xform.next = &ut_params->auth_xform; } else { ut_params->cipher_xform.next = NULL; } struct rte_security_session_conf sess_conf = { .action_type = ut_params->type, .protocol = RTE_SECURITY_PROTOCOL_PDCP, {.pdcp = { .bearer = bearer, .domain = domain, .pkt_dir = packet_direction, .sn_size = sn_size, .hfn = packet_direction ? 0 : hfn, /** * hfn can be set as pdcp_test_hfn[i] * if hfn_ovrd is not set. Here, PDCP * packet direction is just used to * run half of the cases with session * HFN and other half with per packet * HFN. */ .hfn_threshold = hfn_threshold, .hfn_ovrd = packet_direction ? 1 : 0, .sdap_enabled = sdap, } }, .crypto_xform = &ut_params->cipher_xform }; /* Create security session */ ut_params->sec_session = rte_security_session_create(ctx, &sess_conf, ts_params->session_mpool, ts_params->session_priv_mpool); if (!ut_params->sec_session) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "Failed to allocate session"); ret = TEST_FAILED; goto on_err; } /* Generate crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (!ut_params->op) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "Failed to allocate symmetric crypto operation struct"); ret = TEST_FAILED; goto on_err; } uint32_t *per_pkt_hfn = rte_crypto_op_ctod_offset(ut_params->op, uint32_t *, IV_OFFSET); *per_pkt_hfn = packet_direction ? hfn : 0; rte_security_attach_session(ut_params->op, ut_params->sec_session); /* set crypto operation source mbuf */ ut_params->op->sym->m_src = ut_params->ibuf; if (oop) ut_params->op->sym->m_dst = ut_params->obuf; /* Process crypto operation */ if (process_crypto_request(ts_params->valid_devs[0], ut_params->op) == NULL) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "failed to process sym crypto op"); ret = TEST_FAILED; goto on_err; } if (ut_params->op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "crypto op processing failed"); ret = TEST_FAILED; goto on_err; } /* Validate obuf */ uint8_t *ciphertext = rte_pktmbuf_mtod(ut_params->op->sym->m_src, uint8_t *); if (oop) { ciphertext = rte_pktmbuf_mtod(ut_params->op->sym->m_dst, uint8_t *); } if (memcmp(ciphertext, output_vec, output_vec_len)) { printf("\n=======PDCP TestCase #%d failed: Data Mismatch ", i); rte_hexdump(stdout, "encrypted", ciphertext, output_vec_len); rte_hexdump(stdout, "reference", output_vec, output_vec_len); ret = TEST_FAILED; goto on_err; } on_err: rte_crypto_op_free(ut_params->op); ut_params->op = NULL; if (ut_params->sec_session) rte_security_session_destroy(ctx, ut_params->sec_session); ut_params->sec_session = NULL; rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = NULL; if (oop) { rte_pktmbuf_free(ut_params->obuf); ut_params->obuf = NULL; } return ret; } static int test_pdcp_proto_SGL(int i, int oop, enum rte_crypto_cipher_operation opc, enum rte_crypto_auth_operation opa, uint8_t *input_vec, unsigned int input_vec_len, uint8_t *output_vec, unsigned int output_vec_len, uint32_t fragsz, uint32_t fragsz_oop) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint8_t *plaintext; struct rte_mbuf *buf, *buf_oop = NULL; int ret = TEST_SUCCESS; int to_trn = 0; int to_trn_tbl[16]; int segs = 1; unsigned int trn_data = 0; struct rte_cryptodev_info dev_info; uint64_t feat_flags; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_cryptodev_get_sec_ctx( ts_params->valid_devs[0]); struct rte_mbuf *temp_mbuf; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device does not support RAW data-path APIs.\n"); return -ENOTSUP; } /* Verify the capabilities */ struct rte_security_capability_idx sec_cap_idx; sec_cap_idx.action = ut_params->type; sec_cap_idx.protocol = RTE_SECURITY_PROTOCOL_PDCP; sec_cap_idx.pdcp.domain = pdcp_test_params[i].domain; if (rte_security_capability_get(ctx, &sec_cap_idx) == NULL) return TEST_SKIPPED; if (fragsz > input_vec_len) fragsz = input_vec_len; uint16_t plaintext_len = fragsz; uint16_t frag_size_oop = fragsz_oop ? fragsz_oop : fragsz; if (fragsz_oop > output_vec_len) frag_size_oop = output_vec_len; int ecx = 0; if (input_vec_len % fragsz != 0) { if (input_vec_len / fragsz + 1 > 16) return 1; } else if (input_vec_len / fragsz > 16) return 1; /* Out of place support */ if (oop) { /* * For out-op-place we need to alloc another mbuf */ ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); rte_pktmbuf_append(ut_params->obuf, frag_size_oop); buf_oop = ut_params->obuf; } /* Generate test mbuf data */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_len); memcpy(plaintext, input_vec, plaintext_len); trn_data += plaintext_len; buf = ut_params->ibuf; /* * Loop until no more fragments */ while (trn_data < input_vec_len) { ++segs; to_trn = (input_vec_len - trn_data < fragsz) ? (input_vec_len - trn_data) : fragsz; to_trn_tbl[ecx++] = to_trn; buf->next = rte_pktmbuf_alloc(ts_params->mbuf_pool); buf = buf->next; memset(rte_pktmbuf_mtod(buf, uint8_t *), 0, rte_pktmbuf_tailroom(buf)); /* OOP */ if (oop && !fragsz_oop) { buf_oop->next = rte_pktmbuf_alloc(ts_params->mbuf_pool); buf_oop = buf_oop->next; memset(rte_pktmbuf_mtod(buf_oop, uint8_t *), 0, rte_pktmbuf_tailroom(buf_oop)); rte_pktmbuf_append(buf_oop, to_trn); } plaintext = (uint8_t *)rte_pktmbuf_append(buf, to_trn); memcpy(plaintext, input_vec + trn_data, to_trn); trn_data += to_trn; } ut_params->ibuf->nb_segs = segs; segs = 1; if (fragsz_oop && oop) { to_trn = 0; ecx = 0; trn_data = frag_size_oop; while (trn_data < output_vec_len) { ++segs; to_trn = (output_vec_len - trn_data < frag_size_oop) ? (output_vec_len - trn_data) : frag_size_oop; to_trn_tbl[ecx++] = to_trn; buf_oop->next = rte_pktmbuf_alloc(ts_params->mbuf_pool); buf_oop = buf_oop->next; memset(rte_pktmbuf_mtod(buf_oop, uint8_t *), 0, rte_pktmbuf_tailroom(buf_oop)); rte_pktmbuf_append(buf_oop, to_trn); trn_data += to_trn; } ut_params->obuf->nb_segs = segs; } /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.cipher.algo = pdcp_test_params[i].cipher_alg; ut_params->cipher_xform.cipher.op = opc; ut_params->cipher_xform.cipher.key.data = pdcp_test_crypto_key[i]; ut_params->cipher_xform.cipher.key.length = pdcp_test_params[i].cipher_key_len; ut_params->cipher_xform.cipher.iv.length = 0; /* Setup HMAC Parameters if ICV header is required */ if (pdcp_test_params[i].auth_alg != 0) { ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.algo = pdcp_test_params[i].auth_alg; ut_params->auth_xform.auth.op = opa; ut_params->auth_xform.auth.key.data = pdcp_test_auth_key[i]; ut_params->auth_xform.auth.key.length = pdcp_test_params[i].auth_key_len; ut_params->cipher_xform.next = &ut_params->auth_xform; } else { ut_params->cipher_xform.next = NULL; } struct rte_security_session_conf sess_conf = { .action_type = ut_params->type, .protocol = RTE_SECURITY_PROTOCOL_PDCP, {.pdcp = { .bearer = pdcp_test_bearer[i], .domain = pdcp_test_params[i].domain, .pkt_dir = pdcp_test_packet_direction[i], .sn_size = pdcp_test_data_sn_size[i], .hfn = pdcp_test_hfn[i], .hfn_threshold = pdcp_test_hfn_threshold[i], .hfn_ovrd = 0, } }, .crypto_xform = &ut_params->cipher_xform }; /* Create security session */ ut_params->sec_session = rte_security_session_create(ctx, &sess_conf, ts_params->session_mpool, ts_params->session_priv_mpool); if (!ut_params->sec_session) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "Failed to allocate session"); ret = TEST_FAILED; goto on_err; } /* Generate crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (!ut_params->op) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "Failed to allocate symmetric crypto operation struct"); ret = TEST_FAILED; goto on_err; } rte_security_attach_session(ut_params->op, ut_params->sec_session); /* set crypto operation source mbuf */ ut_params->op->sym->m_src = ut_params->ibuf; if (oop) ut_params->op->sym->m_dst = ut_params->obuf; /* Process crypto operation */ temp_mbuf = ut_params->op->sym->m_src; if (global_api_test_type == CRYPTODEV_RAW_API_TEST) { /* filling lengths */ while (temp_mbuf) { ut_params->op->sym->cipher.data.length += temp_mbuf->pkt_len; ut_params->op->sym->auth.data.length += temp_mbuf->pkt_len; temp_mbuf = temp_mbuf->next; } process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 0, 0); } else { ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); } if (ut_params->op == NULL) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "failed to process sym crypto op"); ret = TEST_FAILED; goto on_err; } if (ut_params->op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { printf("TestCase %s()-%d line %d failed %s: ", __func__, i, __LINE__, "crypto op processing failed"); ret = TEST_FAILED; goto on_err; } /* Validate obuf */ uint8_t *ciphertext = rte_pktmbuf_mtod(ut_params->op->sym->m_src, uint8_t *); if (oop) { ciphertext = rte_pktmbuf_mtod(ut_params->op->sym->m_dst, uint8_t *); } if (fragsz_oop) fragsz = frag_size_oop; if (memcmp(ciphertext, output_vec, fragsz)) { printf("\n=======PDCP TestCase #%d failed: Data Mismatch ", i); rte_hexdump(stdout, "encrypted", ciphertext, fragsz); rte_hexdump(stdout, "reference", output_vec, fragsz); ret = TEST_FAILED; goto on_err; } buf = ut_params->op->sym->m_src->next; if (oop) buf = ut_params->op->sym->m_dst->next; unsigned int off = fragsz; ecx = 0; while (buf) { ciphertext = rte_pktmbuf_mtod(buf, uint8_t *); if (memcmp(ciphertext, output_vec + off, to_trn_tbl[ecx])) { printf("\n=======PDCP TestCase #%d failed: Data Mismatch ", i); rte_hexdump(stdout, "encrypted", ciphertext, to_trn_tbl[ecx]); rte_hexdump(stdout, "reference", output_vec + off, to_trn_tbl[ecx]); ret = TEST_FAILED; goto on_err; } off += to_trn_tbl[ecx++]; buf = buf->next; } on_err: rte_crypto_op_free(ut_params->op); ut_params->op = NULL; if (ut_params->sec_session) rte_security_session_destroy(ctx, ut_params->sec_session); ut_params->sec_session = NULL; rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = NULL; if (oop) { rte_pktmbuf_free(ut_params->obuf); ut_params->obuf = NULL; } return ret; } int test_pdcp_proto_cplane_encap(int i) { return test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_data_out[i], pdcp_test_data_in_len[i] + 4, pdcp_test_params[i].cipher_alg, pdcp_test_crypto_key[i], pdcp_test_params[i].cipher_key_len, pdcp_test_params[i].auth_alg, pdcp_test_auth_key[i], pdcp_test_params[i].auth_key_len, pdcp_test_bearer[i], pdcp_test_params[i].domain, pdcp_test_packet_direction[i], pdcp_test_data_sn_size[i], pdcp_test_hfn[i], pdcp_test_hfn_threshold[i], SDAP_DISABLED); } int test_pdcp_proto_uplane_encap(int i) { return test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_data_out[i], pdcp_test_data_in_len[i], pdcp_test_params[i].cipher_alg, pdcp_test_crypto_key[i], pdcp_test_params[i].cipher_key_len, pdcp_test_params[i].auth_alg, pdcp_test_auth_key[i], pdcp_test_params[i].auth_key_len, pdcp_test_bearer[i], pdcp_test_params[i].domain, pdcp_test_packet_direction[i], pdcp_test_data_sn_size[i], pdcp_test_hfn[i], pdcp_test_hfn_threshold[i], SDAP_DISABLED); } int test_pdcp_proto_uplane_encap_with_int(int i) { return test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_data_out[i], pdcp_test_data_in_len[i] + 4, pdcp_test_params[i].cipher_alg, pdcp_test_crypto_key[i], pdcp_test_params[i].cipher_key_len, pdcp_test_params[i].auth_alg, pdcp_test_auth_key[i], pdcp_test_params[i].auth_key_len, pdcp_test_bearer[i], pdcp_test_params[i].domain, pdcp_test_packet_direction[i], pdcp_test_data_sn_size[i], pdcp_test_hfn[i], pdcp_test_hfn_threshold[i], SDAP_DISABLED); } int test_pdcp_proto_cplane_decap(int i) { return test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_AUTH_OP_VERIFY, pdcp_test_data_out[i], pdcp_test_data_in_len[i] + 4, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_params[i].cipher_alg, pdcp_test_crypto_key[i], pdcp_test_params[i].cipher_key_len, pdcp_test_params[i].auth_alg, pdcp_test_auth_key[i], pdcp_test_params[i].auth_key_len, pdcp_test_bearer[i], pdcp_test_params[i].domain, pdcp_test_packet_direction[i], pdcp_test_data_sn_size[i], pdcp_test_hfn[i], pdcp_test_hfn_threshold[i], SDAP_DISABLED); } int test_pdcp_proto_uplane_decap(int i) { return test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_AUTH_OP_VERIFY, pdcp_test_data_out[i], pdcp_test_data_in_len[i], pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_params[i].cipher_alg, pdcp_test_crypto_key[i], pdcp_test_params[i].cipher_key_len, pdcp_test_params[i].auth_alg, pdcp_test_auth_key[i], pdcp_test_params[i].auth_key_len, pdcp_test_bearer[i], pdcp_test_params[i].domain, pdcp_test_packet_direction[i], pdcp_test_data_sn_size[i], pdcp_test_hfn[i], pdcp_test_hfn_threshold[i], SDAP_DISABLED); } int test_pdcp_proto_uplane_decap_with_int(int i) { return test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_AUTH_OP_VERIFY, pdcp_test_data_out[i], pdcp_test_data_in_len[i] + 4, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_params[i].cipher_alg, pdcp_test_crypto_key[i], pdcp_test_params[i].cipher_key_len, pdcp_test_params[i].auth_alg, pdcp_test_auth_key[i], pdcp_test_params[i].auth_key_len, pdcp_test_bearer[i], pdcp_test_params[i].domain, pdcp_test_packet_direction[i], pdcp_test_data_sn_size[i], pdcp_test_hfn[i], pdcp_test_hfn_threshold[i], SDAP_DISABLED); } static int test_PDCP_PROTO_SGL_in_place_32B(void) { /* i can be used for running any PDCP case * In this case it is uplane 12-bit AES-SNOW DL encap */ int i = PDCP_UPLANE_12BIT_OFFSET + AES_ENC + SNOW_AUTH + DOWNLINK; return test_pdcp_proto_SGL(i, IN_PLACE, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_data_out[i], pdcp_test_data_in_len[i]+4, 32, 0); } static int test_PDCP_PROTO_SGL_oop_32B_128B(void) { /* i can be used for running any PDCP case * In this case it is uplane 18-bit NULL-NULL DL encap */ int i = PDCP_UPLANE_18BIT_OFFSET + NULL_ENC + NULL_AUTH + DOWNLINK; return test_pdcp_proto_SGL(i, OUT_OF_PLACE, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_data_out[i], pdcp_test_data_in_len[i]+4, 32, 128); } static int test_PDCP_PROTO_SGL_oop_32B_40B(void) { /* i can be used for running any PDCP case * In this case it is uplane 18-bit AES DL encap */ int i = PDCP_UPLANE_OFFSET + AES_ENC + EIGHTEEN_BIT_SEQ_NUM_OFFSET + DOWNLINK; return test_pdcp_proto_SGL(i, OUT_OF_PLACE, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_data_out[i], pdcp_test_data_in_len[i], 32, 40); } static int test_PDCP_PROTO_SGL_oop_128B_32B(void) { /* i can be used for running any PDCP case * In this case it is cplane 12-bit AES-ZUC DL encap */ int i = PDCP_CPLANE_LONG_SN_OFFSET + AES_ENC + ZUC_AUTH + DOWNLINK; return test_pdcp_proto_SGL(i, OUT_OF_PLACE, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, pdcp_test_data_in[i], pdcp_test_data_in_len[i], pdcp_test_data_out[i], pdcp_test_data_in_len[i]+4, 128, 32); } static int test_PDCP_SDAP_PROTO_encap_all(void) { int i = 0, size = 0; int err, all_err = TEST_SUCCESS; const struct pdcp_sdap_test *cur_test; size = RTE_DIM(list_pdcp_sdap_tests); for (i = 0; i < size; i++) { cur_test = &list_pdcp_sdap_tests[i]; err = test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, cur_test->data_in, cur_test->in_len, cur_test->data_out, cur_test->in_len + ((cur_test->auth_key) ? 4 : 0), cur_test->param.cipher_alg, cur_test->cipher_key, cur_test->param.cipher_key_len, cur_test->param.auth_alg, cur_test->auth_key, cur_test->param.auth_key_len, cur_test->bearer, cur_test->param.domain, cur_test->packet_direction, cur_test->sn_size, cur_test->hfn, cur_test->hfn_threshold, SDAP_ENABLED); if (err) { printf("\t%d) %s: Encapsulation failed\n", cur_test->test_idx, cur_test->param.name); err = TEST_FAILED; } else { printf("\t%d) %s: Encap PASS\n", cur_test->test_idx, cur_test->param.name); err = TEST_SUCCESS; } all_err += err; } printf("Success: %d, Failure: %d\n", size + all_err, -all_err); return (all_err == TEST_SUCCESS) ? TEST_SUCCESS : TEST_FAILED; } static int test_PDCP_PROTO_short_mac(void) { int i = 0, size = 0; int err, all_err = TEST_SUCCESS; const struct pdcp_short_mac_test *cur_test; size = RTE_DIM(list_pdcp_smac_tests); for (i = 0; i < size; i++) { cur_test = &list_pdcp_smac_tests[i]; err = test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_ENCRYPT, RTE_CRYPTO_AUTH_OP_GENERATE, cur_test->data_in, cur_test->in_len, cur_test->data_out, cur_test->in_len + ((cur_test->auth_key) ? 4 : 0), RTE_CRYPTO_CIPHER_NULL, NULL, 0, cur_test->param.auth_alg, cur_test->auth_key, cur_test->param.auth_key_len, 0, cur_test->param.domain, 0, 0, 0, 0, 0); if (err) { printf("\t%d) %s: Short MAC test failed\n", cur_test->test_idx, cur_test->param.name); err = TEST_FAILED; } else { printf("\t%d) %s: Short MAC test PASS\n", cur_test->test_idx, cur_test->param.name); rte_hexdump(stdout, "MAC I", cur_test->data_out + cur_test->in_len + 2, 2); err = TEST_SUCCESS; } all_err += err; } printf("Success: %d, Failure: %d\n", size + all_err, -all_err); return (all_err == TEST_SUCCESS) ? TEST_SUCCESS : TEST_FAILED; } static int test_PDCP_SDAP_PROTO_decap_all(void) { int i = 0, size = 0; int err, all_err = TEST_SUCCESS; const struct pdcp_sdap_test *cur_test; size = RTE_DIM(list_pdcp_sdap_tests); for (i = 0; i < size; i++) { cur_test = &list_pdcp_sdap_tests[i]; err = test_pdcp_proto( i, 0, RTE_CRYPTO_CIPHER_OP_DECRYPT, RTE_CRYPTO_AUTH_OP_VERIFY, cur_test->data_out, cur_test->in_len + ((cur_test->auth_key) ? 4 : 0), cur_test->data_in, cur_test->in_len, cur_test->param.cipher_alg, cur_test->cipher_key, cur_test->param.cipher_key_len, cur_test->param.auth_alg, cur_test->auth_key, cur_test->param.auth_key_len, cur_test->bearer, cur_test->param.domain, cur_test->packet_direction, cur_test->sn_size, cur_test->hfn, cur_test->hfn_threshold, SDAP_ENABLED); if (err) { printf("\t%d) %s: Decapsulation failed\n", cur_test->test_idx, cur_test->param.name); err = TEST_FAILED; } else { printf("\t%d) %s: Decap PASS\n", cur_test->test_idx, cur_test->param.name); err = TEST_SUCCESS; } all_err += err; } printf("Success: %d, Failure: %d\n", size + all_err, -all_err); return (all_err == TEST_SUCCESS) ? TEST_SUCCESS : TEST_FAILED; } static int test_ipsec_proto_process(const struct ipsec_test_data td[], struct ipsec_test_data res_d[], int nb_td, bool silent, const struct ipsec_test_flags *flags) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_security_capability_idx sec_cap_idx; const struct rte_security_capability *sec_cap; struct rte_security_ipsec_xform ipsec_xform; uint8_t dev_id = ts_params->valid_devs[0]; enum rte_security_ipsec_sa_direction dir; struct ipsec_test_data *res_d_tmp = NULL; uint32_t src = RTE_IPV4(192, 168, 1, 0); uint32_t dst = RTE_IPV4(192, 168, 1, 1); int salt_len, i, ret = TEST_SUCCESS; struct rte_security_ctx *ctx; uint8_t *input_text; uint32_t verify; ut_params->type = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL; gbl_action_type = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL; /* Use first test data to create session */ /* Copy IPsec xform */ memcpy(&ipsec_xform, &td[0].ipsec_xform, sizeof(ipsec_xform)); dir = ipsec_xform.direction; verify = flags->tunnel_hdr_verify; if ((dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) && verify) { if (verify == RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR) src += 1; else if (verify == RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR) dst += 1; } memcpy(&ipsec_xform.tunnel.ipv4.src_ip, &src, sizeof(src)); memcpy(&ipsec_xform.tunnel.ipv4.dst_ip, &dst, sizeof(dst)); ctx = rte_cryptodev_get_sec_ctx(dev_id); sec_cap_idx.action = ut_params->type; sec_cap_idx.protocol = RTE_SECURITY_PROTOCOL_IPSEC; sec_cap_idx.ipsec.proto = ipsec_xform.proto; sec_cap_idx.ipsec.mode = ipsec_xform.mode; sec_cap_idx.ipsec.direction = ipsec_xform.direction; if (flags->udp_encap) ipsec_xform.options.udp_encap = 1; sec_cap = rte_security_capability_get(ctx, &sec_cap_idx); if (sec_cap == NULL) return TEST_SKIPPED; /* Copy cipher session parameters */ if (td[0].aead) { memcpy(&ut_params->aead_xform, &td[0].xform.aead, sizeof(ut_params->aead_xform)); ut_params->aead_xform.aead.key.data = td[0].key.data; ut_params->aead_xform.aead.iv.offset = IV_OFFSET; /* Verify crypto capabilities */ if (test_ipsec_crypto_caps_aead_verify( sec_cap, &ut_params->aead_xform) != 0) { if (!silent) RTE_LOG(INFO, USER1, "Crypto capabilities not supported\n"); return TEST_SKIPPED; } } else { /* Only AEAD supported now */ return TEST_SKIPPED; } if (test_ipsec_sec_caps_verify(&ipsec_xform, sec_cap, silent) != 0) return TEST_SKIPPED; salt_len = RTE_MIN(sizeof(ipsec_xform.salt), td[0].salt.len); memcpy(&ipsec_xform.salt, td[0].salt.data, salt_len); struct rte_security_session_conf sess_conf = { .action_type = ut_params->type, .protocol = RTE_SECURITY_PROTOCOL_IPSEC, .ipsec = ipsec_xform, .crypto_xform = &ut_params->aead_xform, }; /* Create security session */ ut_params->sec_session = rte_security_session_create(ctx, &sess_conf, ts_params->session_mpool, ts_params->session_priv_mpool); if (ut_params->sec_session == NULL) return TEST_SKIPPED; for (i = 0; i < nb_td; i++) { /* Setup source mbuf payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); input_text = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, td[i].input_text.len); memcpy(input_text, td[i].input_text.data, td[i].input_text.len); /* Generate crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (!ut_params->op) { printf("TestCase %s line %d: %s\n", __func__, __LINE__, "failed to allocate crypto op"); ret = TEST_FAILED; goto crypto_op_free; } /* Attach session to operation */ rte_security_attach_session(ut_params->op, ut_params->sec_session); /* Set crypto operation mbufs */ ut_params->op->sym->m_src = ut_params->ibuf; ut_params->op->sym->m_dst = NULL; /* Copy IV in crypto operation when IV generation is disabled */ if (dir == RTE_SECURITY_IPSEC_SA_DIR_EGRESS && ipsec_xform.options.iv_gen_disable == 1) { uint8_t *iv = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); int len; if (td[i].aead) len = td[i].xform.aead.aead.iv.length; else len = td[i].xform.chain.cipher.cipher.iv.length; memcpy(iv, td[i].iv.data, len); } /* Process crypto operation */ process_crypto_request(dev_id, ut_params->op); ret = test_ipsec_status_check(ut_params->op, flags, dir, i + 1); if (ret != TEST_SUCCESS) goto crypto_op_free; if (res_d != NULL) res_d_tmp = &res_d[i]; ret = test_ipsec_post_process(ut_params->ibuf, &td[i], res_d_tmp, silent, flags); if (ret != TEST_SUCCESS) goto crypto_op_free; rte_crypto_op_free(ut_params->op); ut_params->op = NULL; rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = NULL; } crypto_op_free: rte_crypto_op_free(ut_params->op); ut_params->op = NULL; rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = NULL; if (ut_params->sec_session) rte_security_session_destroy(ctx, ut_params->sec_session); ut_params->sec_session = NULL; return ret; } static int test_ipsec_proto_known_vec(const void *test_data) { struct ipsec_test_data td_outb; struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); memcpy(&td_outb, test_data, sizeof(td_outb)); /* Disable IV gen to be able to test with known vectors */ td_outb.ipsec_xform.options.iv_gen_disable = 1; return test_ipsec_proto_process(&td_outb, NULL, 1, false, &flags); } static int test_ipsec_proto_known_vec_inb(const void *td_outb) { struct ipsec_test_flags flags; struct ipsec_test_data td_inb; memset(&flags, 0, sizeof(flags)); test_ipsec_td_in_from_out(td_outb, &td_inb); return test_ipsec_proto_process(&td_inb, NULL, 1, false, &flags); } static int test_ipsec_proto_all(const struct ipsec_test_flags *flags) { struct ipsec_test_data td_outb[IPSEC_TEST_PACKETS_MAX]; struct ipsec_test_data td_inb[IPSEC_TEST_PACKETS_MAX]; unsigned int i, nb_pkts = 1, pass_cnt = 0; int ret; if (flags->iv_gen || flags->sa_expiry_pkts_soft || flags->sa_expiry_pkts_hard) nb_pkts = IPSEC_TEST_PACKETS_MAX; for (i = 0; i < RTE_DIM(aead_list); i++) { test_ipsec_td_prepare(&aead_list[i], NULL, flags, td_outb, nb_pkts); ret = test_ipsec_proto_process(td_outb, td_inb, nb_pkts, true, flags); if (ret == TEST_SKIPPED) continue; if (ret == TEST_FAILED) return TEST_FAILED; test_ipsec_td_update(td_inb, td_outb, nb_pkts, flags); ret = test_ipsec_proto_process(td_inb, NULL, nb_pkts, true, flags); if (ret == TEST_SKIPPED) continue; if (ret == TEST_FAILED) return TEST_FAILED; if (flags->display_alg) test_ipsec_display_alg(&aead_list[i], NULL); pass_cnt++; } if (pass_cnt > 0) return TEST_SUCCESS; else return TEST_SKIPPED; } static int test_ipsec_proto_display_list(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.display_alg = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_iv_gen(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.iv_gen = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_sa_exp_pkts_soft(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.sa_expiry_pkts_soft = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_sa_exp_pkts_hard(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.sa_expiry_pkts_hard = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_err_icv_corrupt(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.icv_corrupt = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_udp_encap(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.udp_encap = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_tunnel_src_dst_addr_verify(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.tunnel_hdr_verify = RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_tunnel_dst_addr_verify(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.tunnel_hdr_verify = RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_udp_ports_verify(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.udp_encap = true; flags.udp_ports_verify = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_inner_ip_csum(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.ip_csum = true; return test_ipsec_proto_all(&flags); } static int test_ipsec_proto_inner_l4_csum(const void *data __rte_unused) { struct ipsec_test_flags flags; memset(&flags, 0, sizeof(flags)); flags.l4_csum = true; return test_ipsec_proto_all(&flags); } static int test_PDCP_PROTO_all(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_cryptodev_info dev_info; int status; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_SECURITY)) return TEST_SKIPPED; /* Set action type */ ut_params->type = gbl_action_type == RTE_SECURITY_ACTION_TYPE_NONE ? RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL : gbl_action_type; if (security_proto_supported(ut_params->type, RTE_SECURITY_PROTOCOL_PDCP) < 0) return TEST_SKIPPED; status = test_PDCP_PROTO_cplane_encap_all(); status += test_PDCP_PROTO_cplane_decap_all(); status += test_PDCP_PROTO_uplane_encap_all(); status += test_PDCP_PROTO_uplane_decap_all(); status += test_PDCP_PROTO_SGL_in_place_32B(); status += test_PDCP_PROTO_SGL_oop_32B_128B(); status += test_PDCP_PROTO_SGL_oop_32B_40B(); status += test_PDCP_PROTO_SGL_oop_128B_32B(); status += test_PDCP_SDAP_PROTO_encap_all(); status += test_PDCP_SDAP_PROTO_decap_all(); status += test_PDCP_PROTO_short_mac(); if (status) return TEST_FAILED; else return TEST_SUCCESS; } static int test_docsis_proto_uplink(const void *data) { const struct docsis_test_data *d_td = data; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint8_t *plaintext = NULL; uint8_t *ciphertext = NULL; uint8_t *iv_ptr; int32_t cipher_len, crc_len; uint32_t crc_data_len; int ret = TEST_SUCCESS; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_cryptodev_get_sec_ctx( ts_params->valid_devs[0]); /* Verify the capabilities */ struct rte_security_capability_idx sec_cap_idx; const struct rte_security_capability *sec_cap; const struct rte_cryptodev_capabilities *crypto_cap; const struct rte_cryptodev_symmetric_capability *sym_cap; int j = 0; /* Set action type */ ut_params->type = gbl_action_type == RTE_SECURITY_ACTION_TYPE_NONE ? RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL : gbl_action_type; if (security_proto_supported(ut_params->type, RTE_SECURITY_PROTOCOL_DOCSIS) < 0) return TEST_SKIPPED; sec_cap_idx.action = ut_params->type; sec_cap_idx.protocol = RTE_SECURITY_PROTOCOL_DOCSIS; sec_cap_idx.docsis.direction = RTE_SECURITY_DOCSIS_UPLINK; sec_cap = rte_security_capability_get(ctx, &sec_cap_idx); if (sec_cap == NULL) return TEST_SKIPPED; while ((crypto_cap = &sec_cap->crypto_capabilities[j++])->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { if (crypto_cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC && crypto_cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER && crypto_cap->sym.cipher.algo == RTE_CRYPTO_CIPHER_AES_DOCSISBPI) { sym_cap = &crypto_cap->sym; if (rte_cryptodev_sym_capability_check_cipher(sym_cap, d_td->key.len, d_td->iv.len) == 0) break; } } if (crypto_cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) return TEST_SKIPPED; /* Setup source mbuf payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, d_td->ciphertext.len); memcpy(ciphertext, d_td->ciphertext.data, d_td->ciphertext.len); /* Setup cipher session parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_DOCSISBPI; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; ut_params->cipher_xform.cipher.key.data = d_td->key.data; ut_params->cipher_xform.cipher.key.length = d_td->key.len; ut_params->cipher_xform.cipher.iv.length = d_td->iv.len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.next = NULL; /* Setup DOCSIS session parameters */ ut_params->docsis_xform.direction = RTE_SECURITY_DOCSIS_UPLINK; struct rte_security_session_conf sess_conf = { .action_type = ut_params->type, .protocol = RTE_SECURITY_PROTOCOL_DOCSIS, .docsis = ut_params->docsis_xform, .crypto_xform = &ut_params->cipher_xform, }; /* Create security session */ ut_params->sec_session = rte_security_session_create(ctx, &sess_conf, ts_params->session_mpool, ts_params->session_priv_mpool); if (!ut_params->sec_session) { printf("Test function %s line %u: failed to allocate session\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } /* Generate crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (!ut_params->op) { printf("Test function %s line %u: failed to allocate symmetric " "crypto operation\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } /* Setup CRC operation parameters */ crc_len = d_td->ciphertext.no_crc == false ? (d_td->ciphertext.len - d_td->ciphertext.crc_offset - RTE_ETHER_CRC_LEN) : 0; crc_len = crc_len > 0 ? crc_len : 0; crc_data_len = crc_len == 0 ? 0 : RTE_ETHER_CRC_LEN; ut_params->op->sym->auth.data.length = crc_len; ut_params->op->sym->auth.data.offset = d_td->ciphertext.crc_offset; /* Setup cipher operation parameters */ cipher_len = d_td->ciphertext.no_cipher == false ? (d_td->ciphertext.len - d_td->ciphertext.cipher_offset) : 0; cipher_len = cipher_len > 0 ? cipher_len : 0; ut_params->op->sym->cipher.data.length = cipher_len; ut_params->op->sym->cipher.data.offset = d_td->ciphertext.cipher_offset; /* Setup cipher IV */ iv_ptr = (uint8_t *)ut_params->op + IV_OFFSET; rte_memcpy(iv_ptr, d_td->iv.data, d_td->iv.len); /* Attach session to operation */ rte_security_attach_session(ut_params->op, ut_params->sec_session); /* Set crypto operation mbufs */ ut_params->op->sym->m_src = ut_params->ibuf; ut_params->op->sym->m_dst = NULL; /* Process crypto operation */ if (process_crypto_request(ts_params->valid_devs[0], ut_params->op) == NULL) { printf("Test function %s line %u: failed to process security " "crypto op\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } if (ut_params->op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { printf("Test function %s line %u: failed to process crypto op\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } /* Validate plaintext */ plaintext = ciphertext; if (memcmp(plaintext, d_td->plaintext.data, d_td->plaintext.len - crc_data_len)) { printf("Test function %s line %u: plaintext not as expected\n", __func__, __LINE__); rte_hexdump(stdout, "expected", d_td->plaintext.data, d_td->plaintext.len); rte_hexdump(stdout, "actual", plaintext, d_td->plaintext.len); ret = TEST_FAILED; goto on_err; } on_err: rte_crypto_op_free(ut_params->op); ut_params->op = NULL; if (ut_params->sec_session) rte_security_session_destroy(ctx, ut_params->sec_session); ut_params->sec_session = NULL; rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = NULL; return ret; } static int test_docsis_proto_downlink(const void *data) { const struct docsis_test_data *d_td = data; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; uint8_t *plaintext = NULL; uint8_t *ciphertext = NULL; uint8_t *iv_ptr; int32_t cipher_len, crc_len; int ret = TEST_SUCCESS; struct rte_security_ctx *ctx = (struct rte_security_ctx *) rte_cryptodev_get_sec_ctx( ts_params->valid_devs[0]); /* Verify the capabilities */ struct rte_security_capability_idx sec_cap_idx; const struct rte_security_capability *sec_cap; const struct rte_cryptodev_capabilities *crypto_cap; const struct rte_cryptodev_symmetric_capability *sym_cap; int j = 0; /* Set action type */ ut_params->type = gbl_action_type == RTE_SECURITY_ACTION_TYPE_NONE ? RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL : gbl_action_type; if (security_proto_supported(ut_params->type, RTE_SECURITY_PROTOCOL_DOCSIS) < 0) return TEST_SKIPPED; sec_cap_idx.action = ut_params->type; sec_cap_idx.protocol = RTE_SECURITY_PROTOCOL_DOCSIS; sec_cap_idx.docsis.direction = RTE_SECURITY_DOCSIS_DOWNLINK; sec_cap = rte_security_capability_get(ctx, &sec_cap_idx); if (sec_cap == NULL) return TEST_SKIPPED; while ((crypto_cap = &sec_cap->crypto_capabilities[j++])->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) { if (crypto_cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC && crypto_cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER && crypto_cap->sym.cipher.algo == RTE_CRYPTO_CIPHER_AES_DOCSISBPI) { sym_cap = &crypto_cap->sym; if (rte_cryptodev_sym_capability_check_cipher(sym_cap, d_td->key.len, d_td->iv.len) == 0) break; } } if (crypto_cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) return TEST_SKIPPED; /* Setup source mbuf payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, d_td->plaintext.len); memcpy(plaintext, d_td->plaintext.data, d_td->plaintext.len); /* Setup cipher session parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_DOCSISBPI; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; ut_params->cipher_xform.cipher.key.data = d_td->key.data; ut_params->cipher_xform.cipher.key.length = d_td->key.len; ut_params->cipher_xform.cipher.iv.length = d_td->iv.len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.next = NULL; /* Setup DOCSIS session parameters */ ut_params->docsis_xform.direction = RTE_SECURITY_DOCSIS_DOWNLINK; struct rte_security_session_conf sess_conf = { .action_type = ut_params->type, .protocol = RTE_SECURITY_PROTOCOL_DOCSIS, .docsis = ut_params->docsis_xform, .crypto_xform = &ut_params->cipher_xform, }; /* Create security session */ ut_params->sec_session = rte_security_session_create(ctx, &sess_conf, ts_params->session_mpool, ts_params->session_priv_mpool); if (!ut_params->sec_session) { printf("Test function %s line %u: failed to allocate session\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } /* Generate crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); if (!ut_params->op) { printf("Test function %s line %u: failed to allocate symmetric " "crypto operation\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } /* Setup CRC operation parameters */ crc_len = d_td->plaintext.no_crc == false ? (d_td->plaintext.len - d_td->plaintext.crc_offset - RTE_ETHER_CRC_LEN) : 0; crc_len = crc_len > 0 ? crc_len : 0; ut_params->op->sym->auth.data.length = crc_len; ut_params->op->sym->auth.data.offset = d_td->plaintext.crc_offset; /* Setup cipher operation parameters */ cipher_len = d_td->plaintext.no_cipher == false ? (d_td->plaintext.len - d_td->plaintext.cipher_offset) : 0; cipher_len = cipher_len > 0 ? cipher_len : 0; ut_params->op->sym->cipher.data.length = cipher_len; ut_params->op->sym->cipher.data.offset = d_td->plaintext.cipher_offset; /* Setup cipher IV */ iv_ptr = (uint8_t *)ut_params->op + IV_OFFSET; rte_memcpy(iv_ptr, d_td->iv.data, d_td->iv.len); /* Attach session to operation */ rte_security_attach_session(ut_params->op, ut_params->sec_session); /* Set crypto operation mbufs */ ut_params->op->sym->m_src = ut_params->ibuf; ut_params->op->sym->m_dst = NULL; /* Process crypto operation */ if (process_crypto_request(ts_params->valid_devs[0], ut_params->op) == NULL) { printf("Test function %s line %u: failed to process crypto op\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } if (ut_params->op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { printf("Test function %s line %u: crypto op processing failed\n", __func__, __LINE__); ret = TEST_FAILED; goto on_err; } /* Validate ciphertext */ ciphertext = plaintext; if (memcmp(ciphertext, d_td->ciphertext.data, d_td->ciphertext.len)) { printf("Test function %s line %u: plaintext not as expected\n", __func__, __LINE__); rte_hexdump(stdout, "expected", d_td->ciphertext.data, d_td->ciphertext.len); rte_hexdump(stdout, "actual", ciphertext, d_td->ciphertext.len); ret = TEST_FAILED; goto on_err; } on_err: rte_crypto_op_free(ut_params->op); ut_params->op = NULL; if (ut_params->sec_session) rte_security_session_destroy(ctx, ut_params->sec_session); ut_params->sec_session = NULL; rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = NULL; return ret; } #endif static int test_AES_GCM_authenticated_encryption_test_case_1(void) { return test_authenticated_encryption(&gcm_test_case_1); } static int test_AES_GCM_authenticated_encryption_test_case_2(void) { return test_authenticated_encryption(&gcm_test_case_2); } static int test_AES_GCM_authenticated_encryption_test_case_3(void) { return test_authenticated_encryption(&gcm_test_case_3); } static int test_AES_GCM_authenticated_encryption_test_case_4(void) { return test_authenticated_encryption(&gcm_test_case_4); } static int test_AES_GCM_authenticated_encryption_test_case_5(void) { return test_authenticated_encryption(&gcm_test_case_5); } static int test_AES_GCM_authenticated_encryption_test_case_6(void) { return test_authenticated_encryption(&gcm_test_case_6); } static int test_AES_GCM_authenticated_encryption_test_case_7(void) { return test_authenticated_encryption(&gcm_test_case_7); } static int test_AES_GCM_authenticated_encryption_test_case_8(void) { return test_authenticated_encryption(&gcm_test_case_8); } static int test_AES_GCM_J0_authenticated_encryption_test_case_1(void) { return test_authenticated_encryption(&gcm_J0_test_case_1); } static int test_AES_GCM_auth_encryption_test_case_192_1(void) { return test_authenticated_encryption(&gcm_test_case_192_1); } static int test_AES_GCM_auth_encryption_test_case_192_2(void) { return test_authenticated_encryption(&gcm_test_case_192_2); } static int test_AES_GCM_auth_encryption_test_case_192_3(void) { return test_authenticated_encryption(&gcm_test_case_192_3); } static int test_AES_GCM_auth_encryption_test_case_192_4(void) { return test_authenticated_encryption(&gcm_test_case_192_4); } static int test_AES_GCM_auth_encryption_test_case_192_5(void) { return test_authenticated_encryption(&gcm_test_case_192_5); } static int test_AES_GCM_auth_encryption_test_case_192_6(void) { return test_authenticated_encryption(&gcm_test_case_192_6); } static int test_AES_GCM_auth_encryption_test_case_192_7(void) { return test_authenticated_encryption(&gcm_test_case_192_7); } static int test_AES_GCM_auth_encryption_test_case_256_1(void) { return test_authenticated_encryption(&gcm_test_case_256_1); } static int test_AES_GCM_auth_encryption_test_case_256_2(void) { return test_authenticated_encryption(&gcm_test_case_256_2); } static int test_AES_GCM_auth_encryption_test_case_256_3(void) { return test_authenticated_encryption(&gcm_test_case_256_3); } static int test_AES_GCM_auth_encryption_test_case_256_4(void) { return test_authenticated_encryption(&gcm_test_case_256_4); } static int test_AES_GCM_auth_encryption_test_case_256_5(void) { return test_authenticated_encryption(&gcm_test_case_256_5); } static int test_AES_GCM_auth_encryption_test_case_256_6(void) { return test_authenticated_encryption(&gcm_test_case_256_6); } static int test_AES_GCM_auth_encryption_test_case_256_7(void) { return test_authenticated_encryption(&gcm_test_case_256_7); } static int test_AES_GCM_auth_encryption_test_case_aad_1(void) { return test_authenticated_encryption(&gcm_test_case_aad_1); } static int test_AES_GCM_auth_encryption_test_case_aad_2(void) { return test_authenticated_encryption(&gcm_test_case_aad_2); } static int test_AES_GCM_auth_encryption_fail_iv_corrupt(void) { struct aead_test_data tdata; int res; RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n"); memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.iv.data[0] += 1; res = test_authenticated_encryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "encryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_encryption_fail_in_data_corrupt(void) { struct aead_test_data tdata; int res; RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n"); memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.plaintext.data[0] += 1; res = test_authenticated_encryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "encryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_encryption_fail_out_data_corrupt(void) { struct aead_test_data tdata; int res; RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n"); memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.ciphertext.data[0] += 1; res = test_authenticated_encryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "encryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_encryption_fail_aad_len_corrupt(void) { struct aead_test_data tdata; int res; RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n"); memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.aad.len += 1; res = test_authenticated_encryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "encryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_encryption_fail_aad_corrupt(void) { struct aead_test_data tdata; uint8_t aad[gcm_test_case_7.aad.len]; int res; RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n"); memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); memcpy(aad, gcm_test_case_7.aad.data, gcm_test_case_7.aad.len); aad[0] += 1; tdata.aad.data = aad; res = test_authenticated_encryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "encryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_encryption_fail_tag_corrupt(void) { struct aead_test_data tdata; int res; RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n"); memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.auth_tag.data[0] += 1; res = test_authenticated_encryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "encryption not failed"); return TEST_SUCCESS; } static int test_authenticated_decryption(const struct aead_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext; uint32_t i; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; const struct rte_cryptodev_symmetric_capability *capability; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = tdata->algo; capability = rte_cryptodev_sym_capability_get( ts_params->valid_devs[0], &cap_idx); if (capability == NULL) return TEST_SKIPPED; if (rte_cryptodev_sym_capability_check_aead( capability, tdata->key.len, tdata->auth_tag.len, tdata->aad.len, tdata->iv.len)) return TEST_SKIPPED; /* Create AEAD session */ retval = create_aead_session(ts_params->valid_devs[0], tdata->algo, RTE_CRYPTO_AEAD_OP_DECRYPT, tdata->key.data, tdata->key.len, tdata->aad.len, tdata->auth_tag.len, tdata->iv.len); if (retval < 0) return retval; /* alloc mbuf and set payload */ if (tdata->aad.len > MBUF_SIZE) { ut_params->ibuf = rte_pktmbuf_alloc(ts_params->large_mbuf_pool); /* Populate full size of add data */ for (i = 32; i < MAX_AAD_LENGTH; i += 32) memcpy(&tdata->aad.data[i], &tdata->aad.data[0], 32); } else ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); /* Create AEAD operation */ retval = create_aead_operation(RTE_CRYPTO_AEAD_OP_DECRYPT, tdata); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; /* Process crypto operation */ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_aead_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 0, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); if (ut_params->op->sym->m_dst) plaintext = rte_pktmbuf_mtod(ut_params->op->sym->m_dst, uint8_t *); else plaintext = rte_pktmbuf_mtod_offset(ut_params->op->sym->m_src, uint8_t *, ut_params->op->sym->cipher.data.offset); debug_hexdump(stdout, "plaintext:", plaintext, tdata->ciphertext.len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( plaintext, tdata->plaintext.data, tdata->plaintext.len, "Plaintext data not as expected"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "Authentication failed"); return 0; } static int test_AES_GCM_authenticated_decryption_test_case_1(void) { return test_authenticated_decryption(&gcm_test_case_1); } static int test_AES_GCM_authenticated_decryption_test_case_2(void) { return test_authenticated_decryption(&gcm_test_case_2); } static int test_AES_GCM_authenticated_decryption_test_case_3(void) { return test_authenticated_decryption(&gcm_test_case_3); } static int test_AES_GCM_authenticated_decryption_test_case_4(void) { return test_authenticated_decryption(&gcm_test_case_4); } static int test_AES_GCM_authenticated_decryption_test_case_5(void) { return test_authenticated_decryption(&gcm_test_case_5); } static int test_AES_GCM_authenticated_decryption_test_case_6(void) { return test_authenticated_decryption(&gcm_test_case_6); } static int test_AES_GCM_authenticated_decryption_test_case_7(void) { return test_authenticated_decryption(&gcm_test_case_7); } static int test_AES_GCM_authenticated_decryption_test_case_8(void) { return test_authenticated_decryption(&gcm_test_case_8); } static int test_AES_GCM_J0_authenticated_decryption_test_case_1(void) { return test_authenticated_decryption(&gcm_J0_test_case_1); } static int test_AES_GCM_auth_decryption_test_case_192_1(void) { return test_authenticated_decryption(&gcm_test_case_192_1); } static int test_AES_GCM_auth_decryption_test_case_192_2(void) { return test_authenticated_decryption(&gcm_test_case_192_2); } static int test_AES_GCM_auth_decryption_test_case_192_3(void) { return test_authenticated_decryption(&gcm_test_case_192_3); } static int test_AES_GCM_auth_decryption_test_case_192_4(void) { return test_authenticated_decryption(&gcm_test_case_192_4); } static int test_AES_GCM_auth_decryption_test_case_192_5(void) { return test_authenticated_decryption(&gcm_test_case_192_5); } static int test_AES_GCM_auth_decryption_test_case_192_6(void) { return test_authenticated_decryption(&gcm_test_case_192_6); } static int test_AES_GCM_auth_decryption_test_case_192_7(void) { return test_authenticated_decryption(&gcm_test_case_192_7); } static int test_AES_GCM_auth_decryption_test_case_256_1(void) { return test_authenticated_decryption(&gcm_test_case_256_1); } static int test_AES_GCM_auth_decryption_test_case_256_2(void) { return test_authenticated_decryption(&gcm_test_case_256_2); } static int test_AES_GCM_auth_decryption_test_case_256_3(void) { return test_authenticated_decryption(&gcm_test_case_256_3); } static int test_AES_GCM_auth_decryption_test_case_256_4(void) { return test_authenticated_decryption(&gcm_test_case_256_4); } static int test_AES_GCM_auth_decryption_test_case_256_5(void) { return test_authenticated_decryption(&gcm_test_case_256_5); } static int test_AES_GCM_auth_decryption_test_case_256_6(void) { return test_authenticated_decryption(&gcm_test_case_256_6); } static int test_AES_GCM_auth_decryption_test_case_256_7(void) { return test_authenticated_decryption(&gcm_test_case_256_7); } static int test_AES_GCM_auth_decryption_test_case_aad_1(void) { return test_authenticated_decryption(&gcm_test_case_aad_1); } static int test_AES_GCM_auth_decryption_test_case_aad_2(void) { return test_authenticated_decryption(&gcm_test_case_aad_2); } static int test_AES_GCM_auth_decryption_fail_iv_corrupt(void) { struct aead_test_data tdata; int res; memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.iv.data[0] += 1; res = test_authenticated_decryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "decryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_decryption_fail_in_data_corrupt(void) { struct aead_test_data tdata; int res; RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n"); memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.plaintext.data[0] += 1; res = test_authenticated_decryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "decryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_decryption_fail_out_data_corrupt(void) { struct aead_test_data tdata; int res; memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.ciphertext.data[0] += 1; res = test_authenticated_decryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "decryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_decryption_fail_aad_len_corrupt(void) { struct aead_test_data tdata; int res; memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.aad.len += 1; res = test_authenticated_decryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "decryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_decryption_fail_aad_corrupt(void) { struct aead_test_data tdata; uint8_t aad[gcm_test_case_7.aad.len]; int res; memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); memcpy(aad, gcm_test_case_7.aad.data, gcm_test_case_7.aad.len); aad[0] += 1; tdata.aad.data = aad; res = test_authenticated_decryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "decryption not failed"); return TEST_SUCCESS; } static int test_AES_GCM_auth_decryption_fail_tag_corrupt(void) { struct aead_test_data tdata; int res; memcpy(&tdata, &gcm_test_case_7, sizeof(struct aead_test_data)); tdata.auth_tag.data[0] += 1; res = test_authenticated_decryption(&tdata); if (res == TEST_SKIPPED) return res; TEST_ASSERT_EQUAL(res, TEST_FAILED, "authentication not failed"); return TEST_SUCCESS; } static int test_authenticated_encryption_oop(const struct aead_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *ciphertext, *auth_tag; uint16_t plaintext_pad_len; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = tdata->algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) || (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device does not support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* not supported with CPU crypto */ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Create AEAD session */ retval = create_aead_session(ts_params->valid_devs[0], tdata->algo, RTE_CRYPTO_AEAD_OP_ENCRYPT, tdata->key.data, tdata->key.len, tdata->aad.len, tdata->auth_tag.len, tdata->iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); memset(rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->obuf)); /* Create AEAD operation */ retval = create_aead_operation(RTE_CRYPTO_AEAD_OP_ENCRYPT, tdata); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; ut_params->op->sym->m_dst = ut_params->obuf; /* Process crypto operation */ if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 0, 0, 0); else TEST_ASSERT_NOT_NULL(process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); plaintext_pad_len = RTE_ALIGN_CEIL(tdata->plaintext.len, 16); ciphertext = rte_pktmbuf_mtod_offset(ut_params->obuf, uint8_t *, ut_params->op->sym->cipher.data.offset); auth_tag = ciphertext + plaintext_pad_len; debug_hexdump(stdout, "ciphertext:", ciphertext, tdata->ciphertext.len); debug_hexdump(stdout, "auth tag:", auth_tag, tdata->auth_tag.len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ciphertext, tdata->ciphertext.data, tdata->ciphertext.len, "Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, tdata->auth_tag.data, tdata->auth_tag.len, "Generated auth tag not as expected"); return 0; } static int test_AES_GCM_authenticated_encryption_oop_test_case_1(void) { return test_authenticated_encryption_oop(&gcm_test_case_5); } static int test_authenticated_decryption_oop(const struct aead_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = tdata->algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* not supported with CPU crypto and raw data-path APIs*/ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO || global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device does not support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Create AEAD session */ retval = create_aead_session(ts_params->valid_devs[0], tdata->algo, RTE_CRYPTO_AEAD_OP_DECRYPT, tdata->key.data, tdata->key.len, tdata->aad.len, tdata->auth_tag.len, tdata->iv.len); if (retval < 0) return retval; /* alloc mbuf and set payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); memset(rte_pktmbuf_mtod(ut_params->obuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->obuf)); /* Create AEAD operation */ retval = create_aead_operation(RTE_CRYPTO_AEAD_OP_DECRYPT, tdata); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; ut_params->op->sym->m_dst = ut_params->obuf; /* Process crypto operation */ if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 0, 0, 0); else TEST_ASSERT_NOT_NULL(process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); plaintext = rte_pktmbuf_mtod_offset(ut_params->obuf, uint8_t *, ut_params->op->sym->cipher.data.offset); debug_hexdump(stdout, "plaintext:", plaintext, tdata->ciphertext.len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( plaintext, tdata->plaintext.data, tdata->plaintext.len, "Plaintext data not as expected"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "Authentication failed"); return 0; } static int test_AES_GCM_authenticated_decryption_oop_test_case_1(void) { return test_authenticated_decryption_oop(&gcm_test_case_5); } static int test_authenticated_encryption_sessionless( const struct aead_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *ciphertext, *auth_tag; uint16_t plaintext_pad_len; uint8_t key[tdata->key.len + 1]; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_SYM_SESSIONLESS)) { printf("Device doesn't support Sessionless ops.\n"); return TEST_SKIPPED; } /* not supported with CPU crypto */ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = tdata->algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); /* Create AEAD operation */ retval = create_aead_operation(RTE_CRYPTO_AEAD_OP_ENCRYPT, tdata); if (retval < 0) return retval; /* Create GCM xform */ memcpy(key, tdata->key.data, tdata->key.len); retval = create_aead_xform(ut_params->op, tdata->algo, RTE_CRYPTO_AEAD_OP_ENCRYPT, key, tdata->key.len, tdata->aad.len, tdata->auth_tag.len, tdata->iv.len); if (retval < 0) return retval; ut_params->op->sym->m_src = ut_params->ibuf; TEST_ASSERT_EQUAL(ut_params->op->sess_type, RTE_CRYPTO_OP_SESSIONLESS, "crypto op session type not sessionless"); /* Process crypto operation */ TEST_ASSERT_NOT_NULL(process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_NOT_NULL(ut_params->op, "failed crypto process"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op status not success"); plaintext_pad_len = RTE_ALIGN_CEIL(tdata->plaintext.len, 16); ciphertext = rte_pktmbuf_mtod_offset(ut_params->ibuf, uint8_t *, ut_params->op->sym->cipher.data.offset); auth_tag = ciphertext + plaintext_pad_len; debug_hexdump(stdout, "ciphertext:", ciphertext, tdata->ciphertext.len); debug_hexdump(stdout, "auth tag:", auth_tag, tdata->auth_tag.len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( ciphertext, tdata->ciphertext.data, tdata->ciphertext.len, "Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, tdata->auth_tag.data, tdata->auth_tag.len, "Generated auth tag not as expected"); return 0; } static int test_AES_GCM_authenticated_encryption_sessionless_test_case_1(void) { return test_authenticated_encryption_sessionless( &gcm_test_case_5); } static int test_authenticated_decryption_sessionless( const struct aead_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint8_t *plaintext; uint8_t key[tdata->key.len + 1]; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if (!(feat_flags & RTE_CRYPTODEV_FF_SYM_SESSIONLESS)) { printf("Device doesn't support Sessionless ops.\n"); return TEST_SKIPPED; } if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* not supported with CPU crypto */ if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = tdata->algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* alloc mbuf and set payload */ ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); /* Create AEAD operation */ retval = create_aead_operation(RTE_CRYPTO_AEAD_OP_DECRYPT, tdata); if (retval < 0) return retval; /* Create AEAD xform */ memcpy(key, tdata->key.data, tdata->key.len); retval = create_aead_xform(ut_params->op, tdata->algo, RTE_CRYPTO_AEAD_OP_DECRYPT, key, tdata->key.len, tdata->aad.len, tdata->auth_tag.len, tdata->iv.len); if (retval < 0) return retval; ut_params->op->sym->m_src = ut_params->ibuf; TEST_ASSERT_EQUAL(ut_params->op->sess_type, RTE_CRYPTO_OP_SESSIONLESS, "crypto op session type not sessionless"); /* Process crypto operation */ if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 0, 0, 0); else TEST_ASSERT_NOT_NULL(process_crypto_request( ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_NOT_NULL(ut_params->op, "failed crypto process"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op status not success"); plaintext = rte_pktmbuf_mtod_offset(ut_params->ibuf, uint8_t *, ut_params->op->sym->cipher.data.offset); debug_hexdump(stdout, "plaintext:", plaintext, tdata->ciphertext.len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( plaintext, tdata->plaintext.data, tdata->plaintext.len, "Plaintext data not as expected"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "Authentication failed"); return 0; } static int test_AES_GCM_authenticated_decryption_sessionless_test_case_1(void) { return test_authenticated_decryption_sessionless( &gcm_test_case_5); } static int test_AES_CCM_authenticated_encryption_test_case_128_1(void) { return test_authenticated_encryption(&ccm_test_case_128_1); } static int test_AES_CCM_authenticated_encryption_test_case_128_2(void) { return test_authenticated_encryption(&ccm_test_case_128_2); } static int test_AES_CCM_authenticated_encryption_test_case_128_3(void) { return test_authenticated_encryption(&ccm_test_case_128_3); } static int test_AES_CCM_authenticated_decryption_test_case_128_1(void) { return test_authenticated_decryption(&ccm_test_case_128_1); } static int test_AES_CCM_authenticated_decryption_test_case_128_2(void) { return test_authenticated_decryption(&ccm_test_case_128_2); } static int test_AES_CCM_authenticated_decryption_test_case_128_3(void) { return test_authenticated_decryption(&ccm_test_case_128_3); } static int test_AES_CCM_authenticated_encryption_test_case_192_1(void) { return test_authenticated_encryption(&ccm_test_case_192_1); } static int test_AES_CCM_authenticated_encryption_test_case_192_2(void) { return test_authenticated_encryption(&ccm_test_case_192_2); } static int test_AES_CCM_authenticated_encryption_test_case_192_3(void) { return test_authenticated_encryption(&ccm_test_case_192_3); } static int test_AES_CCM_authenticated_decryption_test_case_192_1(void) { return test_authenticated_decryption(&ccm_test_case_192_1); } static int test_AES_CCM_authenticated_decryption_test_case_192_2(void) { return test_authenticated_decryption(&ccm_test_case_192_2); } static int test_AES_CCM_authenticated_decryption_test_case_192_3(void) { return test_authenticated_decryption(&ccm_test_case_192_3); } static int test_AES_CCM_authenticated_encryption_test_case_256_1(void) { return test_authenticated_encryption(&ccm_test_case_256_1); } static int test_AES_CCM_authenticated_encryption_test_case_256_2(void) { return test_authenticated_encryption(&ccm_test_case_256_2); } static int test_AES_CCM_authenticated_encryption_test_case_256_3(void) { return test_authenticated_encryption(&ccm_test_case_256_3); } static int test_AES_CCM_authenticated_decryption_test_case_256_1(void) { return test_authenticated_decryption(&ccm_test_case_256_1); } static int test_AES_CCM_authenticated_decryption_test_case_256_2(void) { return test_authenticated_decryption(&ccm_test_case_256_2); } static int test_AES_CCM_authenticated_decryption_test_case_256_3(void) { return test_authenticated_decryption(&ccm_test_case_256_3); } static int test_stats(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct rte_cryptodev_stats stats; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SHA1_HMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_AES_CBC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (rte_cryptodev_stats_get(ts_params->valid_devs[0], &stats) == -ENOTSUP) return TEST_SKIPPED; rte_cryptodev_stats_reset(ts_params->valid_devs[0]); TEST_ASSERT((rte_cryptodev_stats_get(ts_params->valid_devs[0] + 600, &stats) == -ENODEV), "rte_cryptodev_stats_get invalid dev failed"); TEST_ASSERT((rte_cryptodev_stats_get(ts_params->valid_devs[0], 0) != 0), "rte_cryptodev_stats_get invalid Param failed"); /* Test expected values */ test_AES_CBC_HMAC_SHA1_encrypt_digest(); TEST_ASSERT_SUCCESS(rte_cryptodev_stats_get(ts_params->valid_devs[0], &stats), "rte_cryptodev_stats_get failed"); TEST_ASSERT((stats.enqueued_count == 1), "rte_cryptodev_stats_get returned unexpected enqueued stat"); TEST_ASSERT((stats.dequeued_count == 1), "rte_cryptodev_stats_get returned unexpected enqueued stat"); TEST_ASSERT((stats.enqueue_err_count == 0), "rte_cryptodev_stats_get returned unexpected enqueued stat"); TEST_ASSERT((stats.dequeue_err_count == 0), "rte_cryptodev_stats_get returned unexpected enqueued stat"); /* invalid device but should ignore and not reset device stats*/ rte_cryptodev_stats_reset(ts_params->valid_devs[0] + 300); TEST_ASSERT_SUCCESS(rte_cryptodev_stats_get(ts_params->valid_devs[0], &stats), "rte_cryptodev_stats_get failed"); TEST_ASSERT((stats.enqueued_count == 1), "rte_cryptodev_stats_get returned unexpected enqueued stat"); /* check that a valid reset clears stats */ rte_cryptodev_stats_reset(ts_params->valid_devs[0]); TEST_ASSERT_SUCCESS(rte_cryptodev_stats_get(ts_params->valid_devs[0], &stats), "rte_cryptodev_stats_get failed"); TEST_ASSERT((stats.enqueued_count == 0), "rte_cryptodev_stats_get returned unexpected enqueued stat"); TEST_ASSERT((stats.dequeued_count == 0), "rte_cryptodev_stats_get returned unexpected enqueued stat"); return TEST_SUCCESS; } static int MD5_HMAC_create_session(struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, enum rte_crypto_auth_operation op, const struct HMAC_MD5_vector *test_case) { uint8_t key[64]; int status; memcpy(key, test_case->key.data, test_case->key.len); ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.op = op; ut_params->auth_xform.auth.algo = RTE_CRYPTO_AUTH_MD5_HMAC; ut_params->auth_xform.auth.digest_length = MD5_DIGEST_LEN; ut_params->auth_xform.auth.key.length = test_case->key.len; ut_params->auth_xform.auth.key.data = key; ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); if (ut_params->sess == NULL) return TEST_FAILED; status = rte_cryptodev_sym_session_init(ts_params->valid_devs[0], ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); return 0; } static int MD5_HMAC_create_op(struct crypto_unittest_params *ut_params, const struct HMAC_MD5_vector *test_case, uint8_t **plaintext) { uint16_t plaintext_pad_len; struct rte_crypto_sym_op *sym_op = ut_params->op->sym; plaintext_pad_len = RTE_ALIGN_CEIL(test_case->plaintext.len, 16); *plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); memcpy(*plaintext, test_case->plaintext.data, test_case->plaintext.len); sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, MD5_DIGEST_LEN); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append digest"); sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, plaintext_pad_len); if (ut_params->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY) { rte_memcpy(sym_op->auth.digest.data, test_case->auth_tag.data, test_case->auth_tag.len); } sym_op->auth.data.offset = 0; sym_op->auth.data.length = test_case->plaintext.len; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; return 0; } static int test_MD5_HMAC_generate(const struct HMAC_MD5_vector *test_case) { uint16_t plaintext_pad_len; uint8_t *plaintext, *auth_tag; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_MD5_HMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (MD5_HMAC_create_session(ts_params, ut_params, RTE_CRYPTO_AUTH_OP_GENERATE, test_case)) return TEST_FAILED; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); plaintext_pad_len = RTE_ALIGN_CEIL(test_case->plaintext.len, 16); if (MD5_HMAC_create_op(ut_params, test_case, &plaintext)) return TEST_FAILED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); if (ut_params->op->sym->m_dst) { auth_tag = rte_pktmbuf_mtod_offset(ut_params->op->sym->m_dst, uint8_t *, plaintext_pad_len); } else { auth_tag = plaintext + plaintext_pad_len; } TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, test_case->auth_tag.data, test_case->auth_tag.len, "HMAC_MD5 generated tag not as expected"); return TEST_SUCCESS; } static int test_MD5_HMAC_verify(const struct HMAC_MD5_vector *test_case) { uint8_t *plaintext; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_MD5_HMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; if (MD5_HMAC_create_session(ts_params, ut_params, RTE_CRYPTO_AUTH_OP_VERIFY, test_case)) { return TEST_FAILED; } /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); if (MD5_HMAC_create_op(ut_params, test_case, &plaintext)) return TEST_FAILED; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "HMAC_MD5 crypto op processing failed"); return TEST_SUCCESS; } static int test_MD5_HMAC_generate_case_1(void) { return test_MD5_HMAC_generate(&HMAC_MD5_test_case_1); } static int test_MD5_HMAC_verify_case_1(void) { return test_MD5_HMAC_verify(&HMAC_MD5_test_case_1); } static int test_MD5_HMAC_generate_case_2(void) { return test_MD5_HMAC_generate(&HMAC_MD5_test_case_2); } static int test_MD5_HMAC_verify_case_2(void) { return test_MD5_HMAC_verify(&HMAC_MD5_test_case_2); } static int test_multi_session(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_cryptodev_info dev_info; struct rte_cryptodev_sym_session **sessions; uint16_t i; int status; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SHA512_HMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_AES_CBC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; test_AES_CBC_HMAC_SHA512_decrypt_create_session_params(ut_params, aes_cbc_key, hmac_sha512_key); rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); sessions = rte_malloc(NULL, sizeof(struct rte_cryptodev_sym_session *) * (MAX_NB_SESSIONS + 1), 0); /* Create multiple crypto sessions*/ for (i = 0; i < MAX_NB_SESSIONS; i++) { sessions[i] = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(sessions[i], "Session creation failed at session number %u", i); status = rte_cryptodev_sym_session_init( ts_params->valid_devs[0], sessions[i], &ut_params->auth_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; /* Attempt to send a request on each session */ TEST_ASSERT_SUCCESS( test_AES_CBC_HMAC_SHA512_decrypt_perform( sessions[i], ut_params, ts_params, catch_22_quote_2_512_bytes_AES_CBC_ciphertext, catch_22_quote_2_512_bytes_AES_CBC_HMAC_SHA512_digest, aes_cbc_iv), "Failed to perform decrypt on request number %u.", i); /* free crypto operation structure */ if (ut_params->op) rte_crypto_op_free(ut_params->op); /* * free mbuf - both obuf and ibuf are usually the same, * so check if they point at the same address is necessary, * to avoid freeing the mbuf twice. */ if (ut_params->obuf) { rte_pktmbuf_free(ut_params->obuf); if (ut_params->ibuf == ut_params->obuf) ut_params->ibuf = 0; ut_params->obuf = 0; } if (ut_params->ibuf) { rte_pktmbuf_free(ut_params->ibuf); ut_params->ibuf = 0; } } sessions[i] = NULL; /* Next session create should fail */ rte_cryptodev_sym_session_init(ts_params->valid_devs[0], sessions[i], &ut_params->auth_xform, ts_params->session_priv_mpool); TEST_ASSERT_NULL(sessions[i], "Session creation succeeded unexpectedly!"); for (i = 0; i < MAX_NB_SESSIONS; i++) { rte_cryptodev_sym_session_clear(ts_params->valid_devs[0], sessions[i]); rte_cryptodev_sym_session_free(sessions[i]); } rte_free(sessions); return TEST_SUCCESS; } struct multi_session_params { struct crypto_unittest_params ut_params; uint8_t *cipher_key; uint8_t *hmac_key; const uint8_t *cipher; const uint8_t *digest; uint8_t *iv; }; #define MB_SESSION_NUMBER 3 static int test_multi_session_random_usage(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct rte_cryptodev_info dev_info; struct rte_cryptodev_sym_session **sessions; uint32_t i, j; struct multi_session_params ut_paramz[] = { { .cipher_key = ms_aes_cbc_key0, .hmac_key = ms_hmac_key0, .cipher = ms_aes_cbc_cipher0, .digest = ms_hmac_digest0, .iv = ms_aes_cbc_iv0 }, { .cipher_key = ms_aes_cbc_key1, .hmac_key = ms_hmac_key1, .cipher = ms_aes_cbc_cipher1, .digest = ms_hmac_digest1, .iv = ms_aes_cbc_iv1 }, { .cipher_key = ms_aes_cbc_key2, .hmac_key = ms_hmac_key2, .cipher = ms_aes_cbc_cipher2, .digest = ms_hmac_digest2, .iv = ms_aes_cbc_iv2 }, }; int status; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_SHA512_HMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_AES_CBC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); sessions = rte_malloc(NULL, (sizeof(struct rte_cryptodev_sym_session *) * MAX_NB_SESSIONS) + 1, 0); for (i = 0; i < MB_SESSION_NUMBER; i++) { sessions[i] = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(sessions[i], "Session creation failed at session number %u", i); rte_memcpy(&ut_paramz[i].ut_params, &unittest_params, sizeof(struct crypto_unittest_params)); test_AES_CBC_HMAC_SHA512_decrypt_create_session_params( &ut_paramz[i].ut_params, ut_paramz[i].cipher_key, ut_paramz[i].hmac_key); /* Create multiple crypto sessions*/ status = rte_cryptodev_sym_session_init( ts_params->valid_devs[0], sessions[i], &ut_paramz[i].ut_params.auth_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "Session init failed"); } srand(time(NULL)); for (i = 0; i < 40000; i++) { j = rand() % MB_SESSION_NUMBER; TEST_ASSERT_SUCCESS( test_AES_CBC_HMAC_SHA512_decrypt_perform( sessions[j], &ut_paramz[j].ut_params, ts_params, ut_paramz[j].cipher, ut_paramz[j].digest, ut_paramz[j].iv), "Failed to perform decrypt on request number %u.", i); if (ut_paramz[j].ut_params.op) rte_crypto_op_free(ut_paramz[j].ut_params.op); /* * free mbuf - both obuf and ibuf are usually the same, * so check if they point at the same address is necessary, * to avoid freeing the mbuf twice. */ if (ut_paramz[j].ut_params.obuf) { rte_pktmbuf_free(ut_paramz[j].ut_params.obuf); if (ut_paramz[j].ut_params.ibuf == ut_paramz[j].ut_params.obuf) ut_paramz[j].ut_params.ibuf = 0; ut_paramz[j].ut_params.obuf = 0; } if (ut_paramz[j].ut_params.ibuf) { rte_pktmbuf_free(ut_paramz[j].ut_params.ibuf); ut_paramz[j].ut_params.ibuf = 0; } } for (i = 0; i < MB_SESSION_NUMBER; i++) { rte_cryptodev_sym_session_clear(ts_params->valid_devs[0], sessions[i]); rte_cryptodev_sym_session_free(sessions[i]); } rte_free(sessions); return TEST_SUCCESS; } uint8_t orig_data[] = {0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab, 0xab}; static int test_null_invalid_operation(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int ret; /* This test is for NULL PMD only */ if (gbl_driver_id != rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_NULL_PMD))) return TEST_SKIPPED; /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = NULL; ut_params->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); /* Create Crypto session*/ ret = rte_cryptodev_sym_session_init(ts_params->valid_devs[0], ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); TEST_ASSERT(ret < 0, "Session creation succeeded unexpectedly"); /* Setup HMAC Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC; ut_params->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); /* Create Crypto session*/ ret = rte_cryptodev_sym_session_init(ts_params->valid_devs[0], ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); TEST_ASSERT(ret < 0, "Session creation succeeded unexpectedly"); return TEST_SUCCESS; } #define NULL_BURST_LENGTH (32) static int test_null_burst_operation(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int status; unsigned i, burst_len = NULL_BURST_LENGTH; struct rte_crypto_op *burst[NULL_BURST_LENGTH] = { NULL }; struct rte_crypto_op *burst_dequeued[NULL_BURST_LENGTH] = { NULL }; /* This test is for NULL PMD only */ if (gbl_driver_id != rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_NULL_PMD))) return TEST_SKIPPED; /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = &ut_params->auth_xform; ut_params->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_NULL; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; /* Setup HMAC Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.algo = RTE_CRYPTO_AUTH_NULL; ut_params->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); /* Create Crypto session*/ status = rte_cryptodev_sym_session_init(ts_params->valid_devs[0], ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "Session init failed"); TEST_ASSERT_EQUAL(rte_crypto_op_bulk_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC, burst, burst_len), burst_len, "failed to generate burst of crypto ops"); /* Generate an operation for each mbuf in burst */ for (i = 0; i < burst_len; i++) { struct rte_mbuf *m = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(m, "Failed to allocate mbuf"); unsigned *data = (unsigned *)rte_pktmbuf_append(m, sizeof(unsigned)); *data = i; rte_crypto_op_attach_sym_session(burst[i], ut_params->sess); burst[i]->sym->m_src = m; } /* Process crypto operation */ TEST_ASSERT_EQUAL(rte_cryptodev_enqueue_burst(ts_params->valid_devs[0], 0, burst, burst_len), burst_len, "Error enqueuing burst"); TEST_ASSERT_EQUAL(rte_cryptodev_dequeue_burst(ts_params->valid_devs[0], 0, burst_dequeued, burst_len), burst_len, "Error dequeuing burst"); for (i = 0; i < burst_len; i++) { TEST_ASSERT_EQUAL( *rte_pktmbuf_mtod(burst[i]->sym->m_src, uint32_t *), *rte_pktmbuf_mtod(burst_dequeued[i]->sym->m_src, uint32_t *), "data not as expected"); rte_pktmbuf_free(burst[i]->sym->m_src); rte_crypto_op_free(burst[i]); } return TEST_SUCCESS; } static uint16_t test_enq_callback(uint16_t dev_id, uint16_t qp_id, struct rte_crypto_op **ops, uint16_t nb_ops, void *user_param) { RTE_SET_USED(dev_id); RTE_SET_USED(qp_id); RTE_SET_USED(ops); RTE_SET_USED(user_param); printf("crypto enqueue callback called\n"); return nb_ops; } static uint16_t test_deq_callback(uint16_t dev_id, uint16_t qp_id, struct rte_crypto_op **ops, uint16_t nb_ops, void *user_param) { RTE_SET_USED(dev_id); RTE_SET_USED(qp_id); RTE_SET_USED(ops); RTE_SET_USED(user_param); printf("crypto dequeue callback called\n"); return nb_ops; } /* * Thread using enqueue/dequeue callback with RCU. */ static int test_enqdeq_callback_thread(void *arg) { RTE_SET_USED(arg); /* DP thread calls rte_cryptodev_enqueue_burst()/ * rte_cryptodev_dequeue_burst() and invokes callback. */ test_null_burst_operation(); return 0; } static int test_enq_callback_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct rte_cryptodev_info dev_info; struct rte_cryptodev_qp_conf qp_conf = { .nb_descriptors = MAX_NUM_OPS_INFLIGHT }; struct rte_cryptodev_cb *cb; uint16_t qp_id = 0; /* Stop the device in case it's started so it can be configured */ rte_cryptodev_stop(ts_params->valid_devs[0]); rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); TEST_ASSERT_SUCCESS(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed to configure cryptodev %u", ts_params->valid_devs[0]); qp_conf.nb_descriptors = MAX_NUM_OPS_INFLIGHT; qp_conf.mp_session = ts_params->session_mpool; qp_conf.mp_session_private = ts_params->session_priv_mpool; TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id(ts_params->valid_devs[0])), "Failed test for " "rte_cryptodev_queue_pair_setup: num_inflights " "%u on qp %u on cryptodev %u", qp_conf.nb_descriptors, qp_id, ts_params->valid_devs[0]); /* Test with invalid crypto device */ cb = rte_cryptodev_add_enq_callback(RTE_CRYPTO_MAX_DEVS, qp_id, test_enq_callback, NULL); TEST_ASSERT_NULL(cb, "Add callback on qp %u on " "cryptodev %u did not fail", qp_id, RTE_CRYPTO_MAX_DEVS); /* Test with invalid queue pair */ cb = rte_cryptodev_add_enq_callback(ts_params->valid_devs[0], dev_info.max_nb_queue_pairs + 1, test_enq_callback, NULL); TEST_ASSERT_NULL(cb, "Add callback on qp %u on " "cryptodev %u did not fail", dev_info.max_nb_queue_pairs + 1, ts_params->valid_devs[0]); /* Test with NULL callback */ cb = rte_cryptodev_add_enq_callback(ts_params->valid_devs[0], qp_id, NULL, NULL); TEST_ASSERT_NULL(cb, "Add callback on qp %u on " "cryptodev %u did not fail", qp_id, ts_params->valid_devs[0]); /* Test with valid configuration */ cb = rte_cryptodev_add_enq_callback(ts_params->valid_devs[0], qp_id, test_enq_callback, NULL); TEST_ASSERT_NOT_NULL(cb, "Failed test to add callback on " "qp %u on cryptodev %u", qp_id, ts_params->valid_devs[0]); rte_cryptodev_start(ts_params->valid_devs[0]); /* Launch a thread */ rte_eal_remote_launch(test_enqdeq_callback_thread, NULL, rte_get_next_lcore(-1, 1, 0)); /* Wait until reader exited. */ rte_eal_mp_wait_lcore(); /* Test with invalid crypto device */ TEST_ASSERT_FAIL(rte_cryptodev_remove_enq_callback( RTE_CRYPTO_MAX_DEVS, qp_id, cb), "Expected call to fail as crypto device is invalid"); /* Test with invalid queue pair */ TEST_ASSERT_FAIL(rte_cryptodev_remove_enq_callback( ts_params->valid_devs[0], dev_info.max_nb_queue_pairs + 1, cb), "Expected call to fail as queue pair is invalid"); /* Test with NULL callback */ TEST_ASSERT_FAIL(rte_cryptodev_remove_enq_callback( ts_params->valid_devs[0], qp_id, NULL), "Expected call to fail as callback is NULL"); /* Test with valid configuration */ TEST_ASSERT_SUCCESS(rte_cryptodev_remove_enq_callback( ts_params->valid_devs[0], qp_id, cb), "Failed test to remove callback on " "qp %u on cryptodev %u", qp_id, ts_params->valid_devs[0]); return TEST_SUCCESS; } static int test_deq_callback_setup(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct rte_cryptodev_info dev_info; struct rte_cryptodev_qp_conf qp_conf = { .nb_descriptors = MAX_NUM_OPS_INFLIGHT }; struct rte_cryptodev_cb *cb; uint16_t qp_id = 0; /* Stop the device in case it's started so it can be configured */ rte_cryptodev_stop(ts_params->valid_devs[0]); rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); TEST_ASSERT_SUCCESS(rte_cryptodev_configure(ts_params->valid_devs[0], &ts_params->conf), "Failed to configure cryptodev %u", ts_params->valid_devs[0]); qp_conf.nb_descriptors = MAX_NUM_OPS_INFLIGHT; qp_conf.mp_session = ts_params->session_mpool; qp_conf.mp_session_private = ts_params->session_priv_mpool; TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup( ts_params->valid_devs[0], qp_id, &qp_conf, rte_cryptodev_socket_id(ts_params->valid_devs[0])), "Failed test for " "rte_cryptodev_queue_pair_setup: num_inflights " "%u on qp %u on cryptodev %u", qp_conf.nb_descriptors, qp_id, ts_params->valid_devs[0]); /* Test with invalid crypto device */ cb = rte_cryptodev_add_deq_callback(RTE_CRYPTO_MAX_DEVS, qp_id, test_deq_callback, NULL); TEST_ASSERT_NULL(cb, "Add callback on qp %u on " "cryptodev %u did not fail", qp_id, RTE_CRYPTO_MAX_DEVS); /* Test with invalid queue pair */ cb = rte_cryptodev_add_deq_callback(ts_params->valid_devs[0], dev_info.max_nb_queue_pairs + 1, test_deq_callback, NULL); TEST_ASSERT_NULL(cb, "Add callback on qp %u on " "cryptodev %u did not fail", dev_info.max_nb_queue_pairs + 1, ts_params->valid_devs[0]); /* Test with NULL callback */ cb = rte_cryptodev_add_deq_callback(ts_params->valid_devs[0], qp_id, NULL, NULL); TEST_ASSERT_NULL(cb, "Add callback on qp %u on " "cryptodev %u did not fail", qp_id, ts_params->valid_devs[0]); /* Test with valid configuration */ cb = rte_cryptodev_add_deq_callback(ts_params->valid_devs[0], qp_id, test_deq_callback, NULL); TEST_ASSERT_NOT_NULL(cb, "Failed test to add callback on " "qp %u on cryptodev %u", qp_id, ts_params->valid_devs[0]); rte_cryptodev_start(ts_params->valid_devs[0]); /* Launch a thread */ rte_eal_remote_launch(test_enqdeq_callback_thread, NULL, rte_get_next_lcore(-1, 1, 0)); /* Wait until reader exited. */ rte_eal_mp_wait_lcore(); /* Test with invalid crypto device */ TEST_ASSERT_FAIL(rte_cryptodev_remove_deq_callback( RTE_CRYPTO_MAX_DEVS, qp_id, cb), "Expected call to fail as crypto device is invalid"); /* Test with invalid queue pair */ TEST_ASSERT_FAIL(rte_cryptodev_remove_deq_callback( ts_params->valid_devs[0], dev_info.max_nb_queue_pairs + 1, cb), "Expected call to fail as queue pair is invalid"); /* Test with NULL callback */ TEST_ASSERT_FAIL(rte_cryptodev_remove_deq_callback( ts_params->valid_devs[0], qp_id, NULL), "Expected call to fail as callback is NULL"); /* Test with valid configuration */ TEST_ASSERT_SUCCESS(rte_cryptodev_remove_deq_callback( ts_params->valid_devs[0], qp_id, cb), "Failed test to remove callback on " "qp %u on cryptodev %u", qp_id, ts_params->valid_devs[0]); return TEST_SUCCESS; } static void generate_gmac_large_plaintext(uint8_t *data) { uint16_t i; for (i = 32; i < GMAC_LARGE_PLAINTEXT_LENGTH; i += 32) memcpy(&data[i], &data[0], 32); } static int create_gmac_operation(enum rte_crypto_auth_operation op, const struct gmac_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_crypto_sym_op *sym_op; uint32_t plaintext_pad_len = RTE_ALIGN_CEIL(tdata->plaintext.len, 16); /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); sym_op = ut_params->op->sym; sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, tdata->gmac_tag.len); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append digest"); sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, plaintext_pad_len); if (op == RTE_CRYPTO_AUTH_OP_VERIFY) { rte_memcpy(sym_op->auth.digest.data, tdata->gmac_tag.data, tdata->gmac_tag.len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, tdata->gmac_tag.len); } uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); rte_memcpy(iv_ptr, tdata->iv.data, tdata->iv.len); debug_hexdump(stdout, "iv:", iv_ptr, tdata->iv.len); sym_op->cipher.data.length = 0; sym_op->cipher.data.offset = 0; sym_op->auth.data.offset = 0; sym_op->auth.data.length = tdata->plaintext.len; return 0; } static int create_gmac_operation_sgl(enum rte_crypto_auth_operation op, const struct gmac_test_data *tdata, void *digest_mem, uint64_t digest_phys) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_crypto_sym_op *sym_op; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); sym_op = ut_params->op->sym; sym_op->auth.digest.data = digest_mem; TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append digest"); sym_op->auth.digest.phys_addr = digest_phys; if (op == RTE_CRYPTO_AUTH_OP_VERIFY) { rte_memcpy(sym_op->auth.digest.data, tdata->gmac_tag.data, tdata->gmac_tag.len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, tdata->gmac_tag.len); } uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); rte_memcpy(iv_ptr, tdata->iv.data, tdata->iv.len); debug_hexdump(stdout, "iv:", iv_ptr, tdata->iv.len); sym_op->cipher.data.length = 0; sym_op->cipher.data.offset = 0; sym_op->auth.data.offset = 0; sym_op->auth.data.length = tdata->plaintext.len; return 0; } static int create_gmac_session(uint8_t dev_id, const struct gmac_test_data *tdata, enum rte_crypto_auth_operation auth_op) { uint8_t auth_key[tdata->key.len]; int status; struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; memcpy(auth_key, tdata->key.data, tdata->key.len); ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.algo = RTE_CRYPTO_AUTH_AES_GMAC; ut_params->auth_xform.auth.op = auth_op; ut_params->auth_xform.auth.digest_length = tdata->gmac_tag.len; ut_params->auth_xform.auth.key.length = tdata->key.len; ut_params->auth_xform.auth.key.data = auth_key; ut_params->auth_xform.auth.iv.offset = IV_OFFSET; ut_params->auth_xform.auth.iv.length = tdata->iv.len; ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); return status; } static int test_AES_GMAC_authentication(const struct gmac_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } int retval; uint8_t *auth_tag, *plaintext; uint16_t plaintext_pad_len; TEST_ASSERT_NOT_EQUAL(tdata->gmac_tag.len, 0, "No GMAC length in the source data"); /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_AES_GMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; retval = create_gmac_session(ts_params->valid_devs[0], tdata, RTE_CRYPTO_AUTH_OP_GENERATE); if (retval == -ENOTSUP) return TEST_SKIPPED; if (retval < 0) return retval; if (tdata->plaintext.len > MBUF_SIZE) ut_params->ibuf = rte_pktmbuf_alloc(ts_params->large_mbuf_pool); else ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_pad_len = RTE_ALIGN_CEIL(tdata->plaintext.len, 16); /* * Runtime generate the large plain text instead of use hard code * plain text vector. It is done to avoid create huge source file * with the test vector. */ if (tdata->plaintext.len == GMAC_LARGE_PLAINTEXT_LENGTH) generate_gmac_large_plaintext(tdata->plaintext.data); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memcpy(plaintext, tdata->plaintext.data, tdata->plaintext.len); debug_hexdump(stdout, "plaintext:", plaintext, tdata->plaintext.len); retval = create_gmac_operation(RTE_CRYPTO_AUTH_OP_GENERATE, tdata); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); if (ut_params->op->sym->m_dst) { auth_tag = rte_pktmbuf_mtod_offset(ut_params->op->sym->m_dst, uint8_t *, plaintext_pad_len); } else { auth_tag = plaintext + plaintext_pad_len; } debug_hexdump(stdout, "auth tag:", auth_tag, tdata->gmac_tag.len); TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, tdata->gmac_tag.data, tdata->gmac_tag.len, "GMAC Generated auth tag not as expected"); return 0; } static int test_AES_GMAC_authentication_test_case_1(void) { return test_AES_GMAC_authentication(&gmac_test_case_1); } static int test_AES_GMAC_authentication_test_case_2(void) { return test_AES_GMAC_authentication(&gmac_test_case_2); } static int test_AES_GMAC_authentication_test_case_3(void) { return test_AES_GMAC_authentication(&gmac_test_case_3); } static int test_AES_GMAC_authentication_test_case_4(void) { return test_AES_GMAC_authentication(&gmac_test_case_4); } static int test_AES_GMAC_authentication_verify(const struct gmac_test_data *tdata) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; int retval; uint32_t plaintext_pad_len; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } TEST_ASSERT_NOT_EQUAL(tdata->gmac_tag.len, 0, "No GMAC length in the source data"); /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_AES_GMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; retval = create_gmac_session(ts_params->valid_devs[0], tdata, RTE_CRYPTO_AUTH_OP_VERIFY); if (retval == -ENOTSUP) return TEST_SKIPPED; if (retval < 0) return retval; if (tdata->plaintext.len > MBUF_SIZE) ut_params->ibuf = rte_pktmbuf_alloc(ts_params->large_mbuf_pool); else ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext_pad_len = RTE_ALIGN_CEIL(tdata->plaintext.len, 16); /* * Runtime generate the large plain text instead of use hard code * plain text vector. It is done to avoid create huge source file * with the test vector. */ if (tdata->plaintext.len == GMAC_LARGE_PLAINTEXT_LENGTH) generate_gmac_large_plaintext(tdata->plaintext.data); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_pad_len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memcpy(plaintext, tdata->plaintext.data, tdata->plaintext.len); debug_hexdump(stdout, "plaintext:", plaintext, tdata->plaintext.len); retval = create_gmac_operation(RTE_CRYPTO_AUTH_OP_VERIFY, tdata); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); return 0; } static int test_AES_GMAC_authentication_verify_test_case_1(void) { return test_AES_GMAC_authentication_verify(&gmac_test_case_1); } static int test_AES_GMAC_authentication_verify_test_case_2(void) { return test_AES_GMAC_authentication_verify(&gmac_test_case_2); } static int test_AES_GMAC_authentication_verify_test_case_3(void) { return test_AES_GMAC_authentication_verify(&gmac_test_case_3); } static int test_AES_GMAC_authentication_verify_test_case_4(void) { return test_AES_GMAC_authentication_verify(&gmac_test_case_4); } static int test_AES_GMAC_authentication_SGL(const struct gmac_test_data *tdata, uint32_t fragsz) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_cryptodev_info dev_info; uint64_t feature_flags; unsigned int trn_data = 0; void *digest_mem = NULL; uint32_t segs = 1; unsigned int to_trn = 0; struct rte_mbuf *buf = NULL; uint8_t *auth_tag, *plaintext; int retval; TEST_ASSERT_NOT_EQUAL(tdata->gmac_tag.len, 0, "No GMAC length in the source data"); /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = RTE_CRYPTO_AUTH_AES_GMAC; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Check for any input SGL support */ rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); feature_flags = dev_info.feature_flags; if ((!(feature_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) || (!(feature_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT)) || (!(feature_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT))) return TEST_SKIPPED; if (fragsz > tdata->plaintext.len) fragsz = tdata->plaintext.len; uint16_t plaintext_len = fragsz; retval = create_gmac_session(ts_params->valid_devs[0], tdata, RTE_CRYPTO_AUTH_OP_GENERATE); if (retval == -ENOTSUP) return TEST_SKIPPED; if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memcpy(plaintext, tdata->plaintext.data, plaintext_len); trn_data += plaintext_len; buf = ut_params->ibuf; /* * Loop until no more fragments */ while (trn_data < tdata->plaintext.len) { ++segs; to_trn = (tdata->plaintext.len - trn_data < fragsz) ? (tdata->plaintext.len - trn_data) : fragsz; buf->next = rte_pktmbuf_alloc(ts_params->mbuf_pool); buf = buf->next; memset(rte_pktmbuf_mtod(buf, uint8_t *), 0, rte_pktmbuf_tailroom(buf)); plaintext = (uint8_t *)rte_pktmbuf_append(buf, to_trn); memcpy(plaintext, tdata->plaintext.data + trn_data, to_trn); trn_data += to_trn; if (trn_data == tdata->plaintext.len) digest_mem = (uint8_t *)rte_pktmbuf_append(buf, tdata->gmac_tag.len); } ut_params->ibuf->nb_segs = segs; /* * Place digest at the end of the last buffer */ uint64_t digest_phys = rte_pktmbuf_iova(buf) + to_trn; if (!digest_mem) { digest_mem = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, + tdata->gmac_tag.len); digest_phys = rte_pktmbuf_iova_offset(ut_params->ibuf, tdata->plaintext.len); } retval = create_gmac_operation_sgl(RTE_CRYPTO_AUTH_OP_GENERATE, tdata, digest_mem, digest_phys); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); auth_tag = digest_mem; debug_hexdump(stdout, "auth tag:", auth_tag, tdata->gmac_tag.len); TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, tdata->gmac_tag.data, tdata->gmac_tag.len, "GMAC Generated auth tag not as expected"); return 0; } /* Segment size not multiple of block size (16B) */ static int test_AES_GMAC_authentication_SGL_40B(void) { return test_AES_GMAC_authentication_SGL(&gmac_test_case_1, 40); } static int test_AES_GMAC_authentication_SGL_80B(void) { return test_AES_GMAC_authentication_SGL(&gmac_test_case_1, 80); } static int test_AES_GMAC_authentication_SGL_2048B(void) { return test_AES_GMAC_authentication_SGL(&gmac_test_case_5, 2048); } /* Segment size not multiple of block size (16B) */ static int test_AES_GMAC_authentication_SGL_2047B(void) { return test_AES_GMAC_authentication_SGL(&gmac_test_case_5, 2047); } struct test_crypto_vector { enum rte_crypto_cipher_algorithm crypto_algo; unsigned int cipher_offset; unsigned int cipher_len; struct { uint8_t data[64]; unsigned int len; } cipher_key; struct { uint8_t data[64]; unsigned int len; } iv; struct { const uint8_t *data; unsigned int len; } plaintext; struct { const uint8_t *data; unsigned int len; } ciphertext; enum rte_crypto_auth_algorithm auth_algo; unsigned int auth_offset; struct { uint8_t data[128]; unsigned int len; } auth_key; struct { const uint8_t *data; unsigned int len; } aad; struct { uint8_t data[128]; unsigned int len; } digest; }; static const struct test_crypto_vector hmac_sha1_test_crypto_vector = { .auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC, .plaintext = { .data = plaintext_hash, .len = 512 }, .auth_key = { .data = { 0xF8, 0x2A, 0xC7, 0x54, 0xDB, 0x96, 0x18, 0xAA, 0xC3, 0xA1, 0x53, 0xF6, 0x1F, 0x17, 0x60, 0xBD, 0xDE, 0xF4, 0xDE, 0xAD }, .len = 20 }, .digest = { .data = { 0xC4, 0xB7, 0x0E, 0x6B, 0xDE, 0xD1, 0xE7, 0x77, 0x7E, 0x2E, 0x8F, 0xFC, 0x48, 0x39, 0x46, 0x17, 0x3F, 0x91, 0x64, 0x59 }, .len = 20 } }; static const struct test_crypto_vector aes128_gmac_test_vector = { .auth_algo = RTE_CRYPTO_AUTH_AES_GMAC, .plaintext = { .data = plaintext_hash, .len = 512 }, .iv = { .data = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B }, .len = 12 }, .auth_key = { .data = { 0x42, 0x1A, 0x7D, 0x3D, 0xF5, 0x82, 0x80, 0xF1, 0xF1, 0x35, 0x5C, 0x3B, 0xDD, 0x9A, 0x65, 0xBA }, .len = 16 }, .digest = { .data = { 0xCA, 0x00, 0x99, 0x8B, 0x30, 0x7E, 0x74, 0x56, 0x32, 0xA7, 0x87, 0xB5, 0xE9, 0xB2, 0x34, 0x5A }, .len = 16 } }; static const struct test_crypto_vector aes128cbc_hmac_sha1_test_vector = { .crypto_algo = RTE_CRYPTO_CIPHER_AES_CBC, .cipher_offset = 0, .cipher_len = 512, .cipher_key = { .data = { 0xE4, 0x23, 0x33, 0x8A, 0x35, 0x64, 0x61, 0xE2, 0x49, 0x03, 0xDD, 0xC6, 0xB8, 0xCA, 0x55, 0x7A }, .len = 16 }, .iv = { .data = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }, .len = 16 }, .plaintext = { .data = plaintext_hash, .len = 512 }, .ciphertext = { .data = ciphertext512_aes128cbc, .len = 512 }, .auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC, .auth_offset = 0, .auth_key = { .data = { 0xF8, 0x2A, 0xC7, 0x54, 0xDB, 0x96, 0x18, 0xAA, 0xC3, 0xA1, 0x53, 0xF6, 0x1F, 0x17, 0x60, 0xBD, 0xDE, 0xF4, 0xDE, 0xAD }, .len = 20 }, .digest = { .data = { 0x9A, 0x4F, 0x88, 0x1B, 0xB6, 0x8F, 0xD8, 0x60, 0x42, 0x1A, 0x7D, 0x3D, 0xF5, 0x82, 0x80, 0xF1, 0x18, 0x8C, 0x1D, 0x32 }, .len = 20 } }; static const struct test_crypto_vector aes128cbc_hmac_sha1_aad_test_vector = { .crypto_algo = RTE_CRYPTO_CIPHER_AES_CBC, .cipher_offset = 8, .cipher_len = 496, .cipher_key = { .data = { 0xE4, 0x23, 0x33, 0x8A, 0x35, 0x64, 0x61, 0xE2, 0x49, 0x03, 0xDD, 0xC6, 0xB8, 0xCA, 0x55, 0x7A }, .len = 16 }, .iv = { .data = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }, .len = 16 }, .plaintext = { .data = plaintext_hash, .len = 512 }, .ciphertext = { .data = ciphertext512_aes128cbc_aad, .len = 512 }, .auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC, .auth_offset = 0, .auth_key = { .data = { 0xF8, 0x2A, 0xC7, 0x54, 0xDB, 0x96, 0x18, 0xAA, 0xC3, 0xA1, 0x53, 0xF6, 0x1F, 0x17, 0x60, 0xBD, 0xDE, 0xF4, 0xDE, 0xAD }, .len = 20 }, .digest = { .data = { 0x6D, 0xF3, 0x50, 0x79, 0x7A, 0x2A, 0xAC, 0x7F, 0xA6, 0xF0, 0xC6, 0x38, 0x1F, 0xA4, 0xDD, 0x9B, 0x62, 0x0F, 0xFB, 0x10 }, .len = 20 } }; static void data_corruption(uint8_t *data) { data[0] += 1; } static void tag_corruption(uint8_t *data, unsigned int tag_offset) { data[tag_offset] += 1; } static int create_auth_session(struct crypto_unittest_params *ut_params, uint8_t dev_id, const struct test_crypto_vector *reference, enum rte_crypto_auth_operation auth_op) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t auth_key[reference->auth_key.len + 1]; int status; memcpy(auth_key, reference->auth_key.data, reference->auth_key.len); /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.auth.op = auth_op; ut_params->auth_xform.next = NULL; ut_params->auth_xform.auth.algo = reference->auth_algo; ut_params->auth_xform.auth.key.length = reference->auth_key.len; ut_params->auth_xform.auth.key.data = auth_key; ut_params->auth_xform.auth.digest_length = reference->digest.len; /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); return status; } static int create_auth_cipher_session(struct crypto_unittest_params *ut_params, uint8_t dev_id, const struct test_crypto_vector *reference, enum rte_crypto_auth_operation auth_op, enum rte_crypto_cipher_operation cipher_op) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t cipher_key[reference->cipher_key.len + 1]; uint8_t auth_key[reference->auth_key.len + 1]; int status; memcpy(cipher_key, reference->cipher_key.data, reference->cipher_key.len); memcpy(auth_key, reference->auth_key.data, reference->auth_key.len); /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.auth.op = auth_op; ut_params->auth_xform.auth.algo = reference->auth_algo; ut_params->auth_xform.auth.key.length = reference->auth_key.len; ut_params->auth_xform.auth.key.data = auth_key; ut_params->auth_xform.auth.digest_length = reference->digest.len; if (reference->auth_algo == RTE_CRYPTO_AUTH_AES_GMAC) { ut_params->auth_xform.auth.iv.offset = IV_OFFSET; ut_params->auth_xform.auth.iv.length = reference->iv.len; } else { ut_params->auth_xform.next = &ut_params->cipher_xform; /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = NULL; ut_params->cipher_xform.cipher.algo = reference->crypto_algo; ut_params->cipher_xform.cipher.op = cipher_op; ut_params->cipher_xform.cipher.key.data = cipher_key; ut_params->cipher_xform.cipher.key.length = reference->cipher_key.len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = reference->iv.len; } /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); status = rte_cryptodev_sym_session_init(dev_id, ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); return status; } static int create_auth_operation(struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference, unsigned int auth_generate) { /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* digest */ sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, reference->digest.len); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append auth tag"); sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, reference->plaintext.len); if (auth_generate) memset(sym_op->auth.digest.data, 0, reference->digest.len); else memcpy(sym_op->auth.digest.data, reference->digest.data, reference->digest.len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, reference->digest.len); sym_op->auth.data.length = reference->plaintext.len; sym_op->auth.data.offset = 0; return 0; } static int create_auth_GMAC_operation(struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference, unsigned int auth_generate) { /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* digest */ sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, reference->digest.len); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append auth tag"); sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, reference->ciphertext.len); if (auth_generate) memset(sym_op->auth.digest.data, 0, reference->digest.len); else memcpy(sym_op->auth.digest.data, reference->digest.data, reference->digest.len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, reference->digest.len); rte_memcpy(rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET), reference->iv.data, reference->iv.len); sym_op->cipher.data.length = 0; sym_op->cipher.data.offset = 0; sym_op->auth.data.length = reference->plaintext.len; sym_op->auth.data.offset = 0; return 0; } static int create_cipher_auth_operation(struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference, unsigned int auth_generate) { /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate pktmbuf offload"); /* Set crypto operation data parameters */ rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; /* set crypto operation source mbuf */ sym_op->m_src = ut_params->ibuf; /* digest */ sym_op->auth.digest.data = (uint8_t *)rte_pktmbuf_append( ut_params->ibuf, reference->digest.len); TEST_ASSERT_NOT_NULL(sym_op->auth.digest.data, "no room to append auth tag"); sym_op->auth.digest.phys_addr = rte_pktmbuf_iova_offset( ut_params->ibuf, reference->ciphertext.len); if (auth_generate) memset(sym_op->auth.digest.data, 0, reference->digest.len); else memcpy(sym_op->auth.digest.data, reference->digest.data, reference->digest.len); debug_hexdump(stdout, "digest:", sym_op->auth.digest.data, reference->digest.len); rte_memcpy(rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET), reference->iv.data, reference->iv.len); sym_op->cipher.data.length = reference->cipher_len; sym_op->cipher.data.offset = reference->cipher_offset; sym_op->auth.data.length = reference->plaintext.len; sym_op->auth.data.offset = reference->auth_offset; return 0; } static int create_auth_verify_operation(struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return create_auth_operation(ts_params, ut_params, reference, 0); } static int create_auth_verify_GMAC_operation( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return create_auth_GMAC_operation(ts_params, ut_params, reference, 0); } static int create_cipher_auth_verify_operation(struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return create_cipher_auth_operation(ts_params, ut_params, reference, 0); } static int test_authentication_verify_fail_when_data_corruption( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference, unsigned int data_corrupted) { int retval; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = reference->auth_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create session */ retval = create_auth_session(ut_params, ts_params->valid_devs[0], reference, RTE_CRYPTO_AUTH_OP_VERIFY); if (retval == -ENOTSUP) return TEST_SKIPPED; if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, reference->plaintext.len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memcpy(plaintext, reference->plaintext.data, reference->plaintext.len); debug_hexdump(stdout, "plaintext:", plaintext, reference->plaintext.len); /* Create operation */ retval = create_auth_verify_operation(ts_params, ut_params, reference); if (retval < 0) return retval; if (data_corrupted) data_corruption(plaintext); else tag_corruption(plaintext, reference->plaintext.len); if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) { process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "authentication not failed"); } else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 0, 0); else { ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); } if (ut_params->op == NULL) return 0; else if (ut_params->op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) return 0; return -1; } static int test_authentication_verify_GMAC_fail_when_corruption( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference, unsigned int data_corrupted) { int retval; uint8_t *plaintext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = reference->auth_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create session */ retval = create_auth_cipher_session(ut_params, ts_params->valid_devs[0], reference, RTE_CRYPTO_AUTH_OP_VERIFY, RTE_CRYPTO_CIPHER_OP_DECRYPT); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, reference->plaintext.len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memcpy(plaintext, reference->plaintext.data, reference->plaintext.len); debug_hexdump(stdout, "plaintext:", plaintext, reference->plaintext.len); /* Create operation */ retval = create_auth_verify_GMAC_operation(ts_params, ut_params, reference); if (retval < 0) return retval; if (data_corrupted) data_corruption(plaintext); else tag_corruption(plaintext, reference->aad.len); if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) { process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "authentication not failed"); } else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 1, 0, 0); else { ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NULL(ut_params->op, "authentication not failed"); } return 0; } static int test_authenticated_decryption_fail_when_corruption( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference, unsigned int data_corrupted) { int retval; uint8_t *ciphertext; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = reference->auth_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = reference->crypto_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create session */ retval = create_auth_cipher_session(ut_params, ts_params->valid_devs[0], reference, RTE_CRYPTO_AUTH_OP_VERIFY, RTE_CRYPTO_CIPHER_OP_DECRYPT); if (retval == -ENOTSUP) return TEST_SKIPPED; if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, reference->ciphertext.len); TEST_ASSERT_NOT_NULL(ciphertext, "no room to append ciphertext"); memcpy(ciphertext, reference->ciphertext.data, reference->ciphertext.len); /* Create operation */ retval = create_cipher_auth_verify_operation(ts_params, ut_params, reference); if (retval < 0) return retval; if (data_corrupted) data_corruption(ciphertext); else tag_corruption(ciphertext, reference->ciphertext.len); if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) { process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "authentication not failed"); } else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 0, 0); else { ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NULL(ut_params->op, "authentication not failed"); } return 0; } static int test_authenticated_encrypt_with_esn( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { int retval; uint8_t *authciphertext, *plaintext, *auth_tag; uint16_t plaintext_pad_len; uint8_t cipher_key[reference->cipher_key.len + 1]; uint8_t auth_key[reference->auth_key.len + 1]; struct rte_cryptodev_info dev_info; int status; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = reference->auth_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = reference->crypto_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create session */ memcpy(cipher_key, reference->cipher_key.data, reference->cipher_key.len); memcpy(auth_key, reference->auth_key.data, reference->auth_key.len); /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.cipher.algo = reference->crypto_algo; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; ut_params->cipher_xform.cipher.key.data = cipher_key; ut_params->cipher_xform.cipher.key.length = reference->cipher_key.len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = reference->iv.len; ut_params->cipher_xform.next = &ut_params->auth_xform; /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; ut_params->auth_xform.auth.algo = reference->auth_algo; ut_params->auth_xform.auth.key.length = reference->auth_key.len; ut_params->auth_xform.auth.key.data = auth_key; ut_params->auth_xform.auth.digest_length = reference->digest.len; ut_params->auth_xform.next = NULL; /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); status = rte_cryptodev_sym_session_init(ts_params->valid_devs[0], ut_params->sess, &ut_params->cipher_xform, ts_params->session_priv_mpool); if (status == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(status, 0, "Session init failed"); ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, reference->plaintext.len); TEST_ASSERT_NOT_NULL(plaintext, "no room to append plaintext"); memcpy(plaintext, reference->plaintext.data, reference->plaintext.len); /* Create operation */ retval = create_cipher_auth_operation(ts_params, ut_params, reference, 0); if (retval < 0) return retval; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 0, 0); else ut_params->op = process_crypto_request( ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "no crypto operation returned"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); plaintext_pad_len = RTE_ALIGN_CEIL(reference->plaintext.len, 16); authciphertext = rte_pktmbuf_mtod_offset(ut_params->ibuf, uint8_t *, ut_params->op->sym->auth.data.offset); auth_tag = authciphertext + plaintext_pad_len; debug_hexdump(stdout, "ciphertext:", authciphertext, reference->ciphertext.len); debug_hexdump(stdout, "auth tag:", auth_tag, reference->digest.len); /* Validate obuf */ TEST_ASSERT_BUFFERS_ARE_EQUAL( authciphertext, reference->ciphertext.data, reference->ciphertext.len, "Ciphertext data not as expected"); TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, reference->digest.data, reference->digest.len, "Generated digest not as expected"); return TEST_SUCCESS; } static int test_authenticated_decrypt_with_esn( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { int retval; uint8_t *ciphertext; uint8_t cipher_key[reference->cipher_key.len + 1]; uint8_t auth_key[reference->auth_key.len + 1]; struct rte_cryptodev_info dev_info; rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; cap_idx.algo.auth = reference->auth_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; cap_idx.algo.cipher = reference->crypto_algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* Create session */ memcpy(cipher_key, reference->cipher_key.data, reference->cipher_key.len); memcpy(auth_key, reference->auth_key.data, reference->auth_key.len); /* Setup Authentication Parameters */ ut_params->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH; ut_params->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY; ut_params->auth_xform.auth.algo = reference->auth_algo; ut_params->auth_xform.auth.key.length = reference->auth_key.len; ut_params->auth_xform.auth.key.data = auth_key; ut_params->auth_xform.auth.digest_length = reference->digest.len; ut_params->auth_xform.next = &ut_params->cipher_xform; /* Setup Cipher Parameters */ ut_params->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; ut_params->cipher_xform.next = NULL; ut_params->cipher_xform.cipher.algo = reference->crypto_algo; ut_params->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; ut_params->cipher_xform.cipher.key.data = cipher_key; ut_params->cipher_xform.cipher.key.length = reference->cipher_key.len; ut_params->cipher_xform.cipher.iv.offset = IV_OFFSET; ut_params->cipher_xform.cipher.iv.length = reference->iv.len; /* Create Crypto session*/ ut_params->sess = rte_cryptodev_sym_session_create( ts_params->session_mpool); TEST_ASSERT_NOT_NULL(ut_params->sess, "Session creation failed"); retval = rte_cryptodev_sym_session_init(ts_params->valid_devs[0], ut_params->sess, &ut_params->auth_xform, ts_params->session_priv_mpool); if (retval == -ENOTSUP) return TEST_SKIPPED; TEST_ASSERT_EQUAL(retval, 0, "Session init failed"); ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); TEST_ASSERT_NOT_NULL(ut_params->ibuf, "Failed to allocate input buffer in mempool"); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); ciphertext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, reference->ciphertext.len); TEST_ASSERT_NOT_NULL(ciphertext, "no room to append ciphertext"); memcpy(ciphertext, reference->ciphertext.data, reference->ciphertext.len); /* Create operation */ retval = create_cipher_auth_verify_operation(ts_params, ut_params, reference); if (retval < 0) return retval; if (gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_crypt_auth_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 1, 1, 0, 0); else ut_params->op = process_crypto_request(ts_params->valid_devs[0], ut_params->op); TEST_ASSERT_NOT_NULL(ut_params->op, "failed crypto process"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing passed"); ut_params->obuf = ut_params->op->sym->m_src; TEST_ASSERT_NOT_NULL(ut_params->obuf, "failed to retrieve obuf"); return 0; } static int create_aead_operation_SGL(enum rte_crypto_aead_operation op, const struct aead_test_data *tdata, void *digest_mem, uint64_t digest_phys) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; const unsigned int auth_tag_len = tdata->auth_tag.len; const unsigned int iv_len = tdata->iv.len; unsigned int aad_len = tdata->aad.len; unsigned int aad_len_pad = 0; /* Generate Crypto op data structure */ ut_params->op = rte_crypto_op_alloc(ts_params->op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC); TEST_ASSERT_NOT_NULL(ut_params->op, "Failed to allocate symmetric crypto operation struct"); struct rte_crypto_sym_op *sym_op = ut_params->op->sym; sym_op->aead.digest.data = digest_mem; TEST_ASSERT_NOT_NULL(sym_op->aead.digest.data, "no room to append digest"); sym_op->aead.digest.phys_addr = digest_phys; if (op == RTE_CRYPTO_AEAD_OP_DECRYPT) { rte_memcpy(sym_op->aead.digest.data, tdata->auth_tag.data, auth_tag_len); debug_hexdump(stdout, "digest:", sym_op->aead.digest.data, auth_tag_len); } /* Append aad data */ if (tdata->algo == RTE_CRYPTO_AEAD_AES_CCM) { uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); /* Copy IV 1 byte after the IV pointer, according to the API */ rte_memcpy(iv_ptr + 1, tdata->iv.data, iv_len); aad_len = RTE_ALIGN_CEIL(aad_len + 18, 16); sym_op->aead.aad.data = (uint8_t *)rte_pktmbuf_prepend( ut_params->ibuf, aad_len); TEST_ASSERT_NOT_NULL(sym_op->aead.aad.data, "no room to prepend aad"); sym_op->aead.aad.phys_addr = rte_pktmbuf_iova( ut_params->ibuf); memset(sym_op->aead.aad.data, 0, aad_len); /* Copy AAD 18 bytes after the AAD pointer, according to the API */ rte_memcpy(sym_op->aead.aad.data, tdata->aad.data, aad_len); debug_hexdump(stdout, "iv:", iv_ptr, iv_len); debug_hexdump(stdout, "aad:", sym_op->aead.aad.data, aad_len); } else { uint8_t *iv_ptr = rte_crypto_op_ctod_offset(ut_params->op, uint8_t *, IV_OFFSET); rte_memcpy(iv_ptr, tdata->iv.data, iv_len); aad_len_pad = RTE_ALIGN_CEIL(aad_len, 16); sym_op->aead.aad.data = (uint8_t *)rte_pktmbuf_prepend( ut_params->ibuf, aad_len_pad); TEST_ASSERT_NOT_NULL(sym_op->aead.aad.data, "no room to prepend aad"); sym_op->aead.aad.phys_addr = rte_pktmbuf_iova( ut_params->ibuf); memset(sym_op->aead.aad.data, 0, aad_len); rte_memcpy(sym_op->aead.aad.data, tdata->aad.data, aad_len); debug_hexdump(stdout, "iv:", iv_ptr, iv_len); debug_hexdump(stdout, "aad:", sym_op->aead.aad.data, aad_len); } sym_op->aead.data.length = tdata->plaintext.len; sym_op->aead.data.offset = aad_len_pad; return 0; } #define SGL_MAX_NO 16 static int test_authenticated_encryption_SGL(const struct aead_test_data *tdata, const int oop, uint32_t fragsz, uint32_t fragsz_oop) { struct crypto_testsuite_params *ts_params = &testsuite_params; struct crypto_unittest_params *ut_params = &unittest_params; struct rte_mbuf *buf, *buf_oop = NULL, *buf_last_oop = NULL; int retval; int to_trn = 0; int to_trn_tbl[SGL_MAX_NO]; int segs = 1; unsigned int trn_data = 0; uint8_t *plaintext, *ciphertext, *auth_tag; struct rte_cryptodev_info dev_info; /* Verify the capabilities */ struct rte_cryptodev_sym_capability_idx cap_idx; cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD; cap_idx.algo.aead = tdata->algo; if (rte_cryptodev_sym_capability_get(ts_params->valid_devs[0], &cap_idx) == NULL) return TEST_SKIPPED; /* OOP not supported with CPU crypto */ if (oop && gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) return TEST_SKIPPED; /* Detailed check for the particular SGL support flag */ rte_cryptodev_info_get(ts_params->valid_devs[0], &dev_info); if (!oop) { unsigned int sgl_in = fragsz < tdata->plaintext.len; if (sgl_in && (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL))) return TEST_SKIPPED; uint64_t feat_flags = dev_info.feature_flags; if ((global_api_test_type == CRYPTODEV_RAW_API_TEST) && (!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) { printf("Device doesn't support RAW data-path APIs.\n"); return TEST_SKIPPED; } } else { unsigned int sgl_in = fragsz < tdata->plaintext.len; unsigned int sgl_out = (fragsz_oop ? fragsz_oop : fragsz) < tdata->plaintext.len; /* Raw data path API does not support OOP */ if (global_api_test_type == CRYPTODEV_RAW_API_TEST) return TEST_SKIPPED; if (sgl_in && !sgl_out) { if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT)) return TEST_SKIPPED; } else if (!sgl_in && sgl_out) { if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT)) return TEST_SKIPPED; } else if (sgl_in && sgl_out) { if (!(dev_info.feature_flags & RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT)) return TEST_SKIPPED; } } if (fragsz > tdata->plaintext.len) fragsz = tdata->plaintext.len; uint16_t plaintext_len = fragsz; uint16_t frag_size_oop = fragsz_oop ? fragsz_oop : fragsz; if (fragsz_oop > tdata->plaintext.len) frag_size_oop = tdata->plaintext.len; int ecx = 0; void *digest_mem = NULL; uint32_t prepend_len = RTE_ALIGN_CEIL(tdata->aad.len, 16); if (tdata->plaintext.len % fragsz != 0) { if (tdata->plaintext.len / fragsz + 1 > SGL_MAX_NO) return 1; } else { if (tdata->plaintext.len / fragsz > SGL_MAX_NO) return 1; } /* * For out-op-place we need to alloc another mbuf */ if (oop) { ut_params->obuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); rte_pktmbuf_append(ut_params->obuf, frag_size_oop + prepend_len); buf_oop = ut_params->obuf; } /* Create AEAD session */ retval = create_aead_session(ts_params->valid_devs[0], tdata->algo, RTE_CRYPTO_AEAD_OP_ENCRYPT, tdata->key.data, tdata->key.len, tdata->aad.len, tdata->auth_tag.len, tdata->iv.len); if (retval < 0) return retval; ut_params->ibuf = rte_pktmbuf_alloc(ts_params->mbuf_pool); /* clear mbuf payload */ memset(rte_pktmbuf_mtod(ut_params->ibuf, uint8_t *), 0, rte_pktmbuf_tailroom(ut_params->ibuf)); plaintext = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, plaintext_len); memcpy(plaintext, tdata->plaintext.data, plaintext_len); trn_data += plaintext_len; buf = ut_params->ibuf; /* * Loop until no more fragments */ while (trn_data < tdata->plaintext.len) { ++segs; to_trn = (tdata->plaintext.len - trn_data < fragsz) ? (tdata->plaintext.len - trn_data) : fragsz; to_trn_tbl[ecx++] = to_trn; buf->next = rte_pktmbuf_alloc(ts_params->mbuf_pool); buf = buf->next; memset(rte_pktmbuf_mtod(buf, uint8_t *), 0, rte_pktmbuf_tailroom(buf)); /* OOP */ if (oop && !fragsz_oop) { buf_last_oop = buf_oop->next = rte_pktmbuf_alloc(ts_params->mbuf_pool); buf_oop = buf_oop->next; memset(rte_pktmbuf_mtod(buf_oop, uint8_t *), 0, rte_pktmbuf_tailroom(buf_oop)); rte_pktmbuf_append(buf_oop, to_trn); } plaintext = (uint8_t *)rte_pktmbuf_append(buf, to_trn); memcpy(plaintext, tdata->plaintext.data + trn_data, to_trn); trn_data += to_trn; if (trn_data == tdata->plaintext.len) { if (oop) { if (!fragsz_oop) digest_mem = rte_pktmbuf_append(buf_oop, tdata->auth_tag.len); } else digest_mem = (uint8_t *)rte_pktmbuf_append(buf, tdata->auth_tag.len); } } uint64_t digest_phys = 0; ut_params->ibuf->nb_segs = segs; segs = 1; if (fragsz_oop && oop) { to_trn = 0; ecx = 0; if (frag_size_oop == tdata->plaintext.len) { digest_mem = rte_pktmbuf_append(ut_params->obuf, tdata->auth_tag.len); digest_phys = rte_pktmbuf_iova_offset( ut_params->obuf, tdata->plaintext.len + prepend_len); } trn_data = frag_size_oop; while (trn_data < tdata->plaintext.len) { ++segs; to_trn = (tdata->plaintext.len - trn_data < frag_size_oop) ? (tdata->plaintext.len - trn_data) : frag_size_oop; to_trn_tbl[ecx++] = to_trn; buf_last_oop = buf_oop->next = rte_pktmbuf_alloc(ts_params->mbuf_pool); buf_oop = buf_oop->next; memset(rte_pktmbuf_mtod(buf_oop, uint8_t *), 0, rte_pktmbuf_tailroom(buf_oop)); rte_pktmbuf_append(buf_oop, to_trn); trn_data += to_trn; if (trn_data == tdata->plaintext.len) { digest_mem = rte_pktmbuf_append(buf_oop, tdata->auth_tag.len); } } ut_params->obuf->nb_segs = segs; } /* * Place digest at the end of the last buffer */ if (!digest_phys) digest_phys = rte_pktmbuf_iova(buf) + to_trn; if (oop && buf_last_oop) digest_phys = rte_pktmbuf_iova(buf_last_oop) + to_trn; if (!digest_mem && !oop) { digest_mem = (uint8_t *)rte_pktmbuf_append(ut_params->ibuf, + tdata->auth_tag.len); digest_phys = rte_pktmbuf_iova_offset(ut_params->ibuf, tdata->plaintext.len); } /* Create AEAD operation */ retval = create_aead_operation_SGL(RTE_CRYPTO_AEAD_OP_ENCRYPT, tdata, digest_mem, digest_phys); if (retval < 0) return retval; rte_crypto_op_attach_sym_session(ut_params->op, ut_params->sess); ut_params->op->sym->m_src = ut_params->ibuf; if (oop) ut_params->op->sym->m_dst = ut_params->obuf; /* Process crypto operation */ if (oop == IN_PLACE && gbl_action_type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) process_cpu_aead_op(ts_params->valid_devs[0], ut_params->op); else if (global_api_test_type == CRYPTODEV_RAW_API_TEST) process_sym_raw_dp_op(ts_params->valid_devs[0], 0, ut_params->op, 0, 0, 0, 0); else TEST_ASSERT_NOT_NULL( process_crypto_request(ts_params->valid_devs[0], ut_params->op), "failed to process sym crypto op"); TEST_ASSERT_EQUAL(ut_params->op->status, RTE_CRYPTO_OP_STATUS_SUCCESS, "crypto op processing failed"); ciphertext = rte_pktmbuf_mtod_offset(ut_params->op->sym->m_src, uint8_t *, prepend_len); if (oop) { ciphertext = rte_pktmbuf_mtod_offset(ut_params->op->sym->m_dst, uint8_t *, prepend_len); } if (fragsz_oop) fragsz = fragsz_oop; TEST_ASSERT_BUFFERS_ARE_EQUAL( ciphertext, tdata->ciphertext.data, fragsz, "Ciphertext data not as expected"); buf = ut_params->op->sym->m_src->next; if (oop) buf = ut_params->op->sym->m_dst->next; unsigned int off = fragsz; ecx = 0; while (buf) { ciphertext = rte_pktmbuf_mtod(buf, uint8_t *); TEST_ASSERT_BUFFERS_ARE_EQUAL( ciphertext, tdata->ciphertext.data + off, to_trn_tbl[ecx], "Ciphertext data not as expected"); off += to_trn_tbl[ecx++]; buf = buf->next; } auth_tag = digest_mem; TEST_ASSERT_BUFFERS_ARE_EQUAL( auth_tag, tdata->auth_tag.data, tdata->auth_tag.len, "Generated auth tag not as expected"); return 0; } static int test_AES_GCM_auth_encrypt_SGL_out_of_place_400B_400B(void) { return test_authenticated_encryption_SGL( &gcm_test_case_SGL_1, OUT_OF_PLACE, 400, 400); } static int test_AES_GCM_auth_encrypt_SGL_out_of_place_1500B_2000B(void) { return test_authenticated_encryption_SGL( &gcm_test_case_SGL_1, OUT_OF_PLACE, 1500, 2000); } static int test_AES_GCM_auth_encrypt_SGL_out_of_place_400B_1seg(void) { return test_authenticated_encryption_SGL( &gcm_test_case_8, OUT_OF_PLACE, 400, gcm_test_case_8.plaintext.len); } static int test_AES_GCM_auth_encrypt_SGL_in_place_1500B(void) { /* This test is not for OPENSSL PMD */ if (gbl_driver_id == rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_OPENSSL_PMD))) return TEST_SKIPPED; return test_authenticated_encryption_SGL( &gcm_test_case_SGL_1, IN_PLACE, 1500, 0); } static int test_authentication_verify_fail_when_data_corrupted( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return test_authentication_verify_fail_when_data_corruption( ts_params, ut_params, reference, 1); } static int test_authentication_verify_fail_when_tag_corrupted( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return test_authentication_verify_fail_when_data_corruption( ts_params, ut_params, reference, 0); } static int test_authentication_verify_GMAC_fail_when_data_corrupted( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return test_authentication_verify_GMAC_fail_when_corruption( ts_params, ut_params, reference, 1); } static int test_authentication_verify_GMAC_fail_when_tag_corrupted( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return test_authentication_verify_GMAC_fail_when_corruption( ts_params, ut_params, reference, 0); } static int test_authenticated_decryption_fail_when_data_corrupted( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return test_authenticated_decryption_fail_when_corruption( ts_params, ut_params, reference, 1); } static int test_authenticated_decryption_fail_when_tag_corrupted( struct crypto_testsuite_params *ts_params, struct crypto_unittest_params *ut_params, const struct test_crypto_vector *reference) { return test_authenticated_decryption_fail_when_corruption( ts_params, ut_params, reference, 0); } static int authentication_verify_HMAC_SHA1_fail_data_corrupt(void) { return test_authentication_verify_fail_when_data_corrupted( &testsuite_params, &unittest_params, &hmac_sha1_test_crypto_vector); } static int authentication_verify_HMAC_SHA1_fail_tag_corrupt(void) { return test_authentication_verify_fail_when_tag_corrupted( &testsuite_params, &unittest_params, &hmac_sha1_test_crypto_vector); } static int authentication_verify_AES128_GMAC_fail_data_corrupt(void) { return test_authentication_verify_GMAC_fail_when_data_corrupted( &testsuite_params, &unittest_params, &aes128_gmac_test_vector); } static int authentication_verify_AES128_GMAC_fail_tag_corrupt(void) { return test_authentication_verify_GMAC_fail_when_tag_corrupted( &testsuite_params, &unittest_params, &aes128_gmac_test_vector); } static int auth_decryption_AES128CBC_HMAC_SHA1_fail_data_corrupt(void) { return test_authenticated_decryption_fail_when_data_corrupted( &testsuite_params, &unittest_params, &aes128cbc_hmac_sha1_test_vector); } static int auth_decryption_AES128CBC_HMAC_SHA1_fail_tag_corrupt(void) { return test_authenticated_decryption_fail_when_tag_corrupted( &testsuite_params, &unittest_params, &aes128cbc_hmac_sha1_test_vector); } static int auth_encrypt_AES128CBC_HMAC_SHA1_esn_check(void) { return test_authenticated_encrypt_with_esn( &testsuite_params, &unittest_params, &aes128cbc_hmac_sha1_aad_test_vector); } static int auth_decrypt_AES128CBC_HMAC_SHA1_esn_check(void) { return test_authenticated_decrypt_with_esn( &testsuite_params, &unittest_params, &aes128cbc_hmac_sha1_aad_test_vector); } static int test_chacha20_poly1305_encrypt_test_case_rfc8439(void) { return test_authenticated_encryption(&chacha20_poly1305_case_rfc8439); } static int test_chacha20_poly1305_decrypt_test_case_rfc8439(void) { return test_authenticated_decryption(&chacha20_poly1305_case_rfc8439); } static int test_chacha20_poly1305_encrypt_SGL_out_of_place(void) { return test_authenticated_encryption_SGL( &chacha20_poly1305_case_2, OUT_OF_PLACE, 32, chacha20_poly1305_case_2.plaintext.len); } #ifdef RTE_CRYPTO_SCHEDULER /* global AESNI worker IDs for the scheduler test */ uint8_t aesni_ids[2]; static int scheduler_testsuite_setup(void) { uint32_t i = 0; int32_t nb_devs, ret; char vdev_args[VDEV_ARGS_SIZE] = {""}; char temp_str[VDEV_ARGS_SIZE] = {"mode=multi-core," "ordering=enable,name=cryptodev_test_scheduler,corelist="}; uint16_t worker_core_count = 0; uint16_t socket_id = 0; if (gbl_driver_id == rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_SCHEDULER_PMD))) { /* Identify the Worker Cores * Use 2 worker cores for the device args */ RTE_LCORE_FOREACH_WORKER(i) { if (worker_core_count > 1) break; snprintf(vdev_args, sizeof(vdev_args), "%s%d", temp_str, i); strcpy(temp_str, vdev_args); strlcat(temp_str, ";", sizeof(temp_str)); worker_core_count++; socket_id = rte_lcore_to_socket_id(i); } if (worker_core_count != 2) { RTE_LOG(ERR, USER1, "Cryptodev scheduler test require at least " "two worker cores to run. " "Please use the correct coremask.\n"); return TEST_FAILED; } strcpy(temp_str, vdev_args); snprintf(vdev_args, sizeof(vdev_args), "%s,socket_id=%d", temp_str, socket_id); RTE_LOG(DEBUG, USER1, "vdev_args: %s\n", vdev_args); nb_devs = rte_cryptodev_device_count_by_driver( rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_SCHEDULER_PMD))); if (nb_devs < 1) { ret = rte_vdev_init( RTE_STR(CRYPTODEV_NAME_SCHEDULER_PMD), vdev_args); TEST_ASSERT(ret == 0, "Failed to create instance %u of pmd : %s", i, RTE_STR(CRYPTODEV_NAME_SCHEDULER_PMD)); } } return testsuite_setup(); } static int test_scheduler_attach_worker_op(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t sched_id = ts_params->valid_devs[0]; uint32_t i, nb_devs_attached = 0; int ret; char vdev_name[32]; unsigned int count = rte_cryptodev_count(); /* create 2 AESNI_MB vdevs on top of existing devices */ for (i = count; i < count + 2; i++) { snprintf(vdev_name, sizeof(vdev_name), "%s_%u", RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD), i); ret = rte_vdev_init(vdev_name, NULL); TEST_ASSERT(ret == 0, "Failed to create instance %u of" " pmd : %s", i, RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD)); if (ret < 0) { RTE_LOG(ERR, USER1, "Failed to create 2 AESNI MB PMDs.\n"); return TEST_SKIPPED; } } /* attach 2 AESNI_MB cdevs */ for (i = count; i < count + 2; i++) { struct rte_cryptodev_info info; unsigned int session_size; rte_cryptodev_info_get(i, &info); if (info.driver_id != rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD))) continue; session_size = rte_cryptodev_sym_get_private_session_size(i); /* * Create the session mempool again, since now there are new devices * to use the mempool. */ if (ts_params->session_mpool) { rte_mempool_free(ts_params->session_mpool); ts_params->session_mpool = NULL; } if (ts_params->session_priv_mpool) { rte_mempool_free(ts_params->session_priv_mpool); ts_params->session_priv_mpool = NULL; } if (info.sym.max_nb_sessions != 0 && info.sym.max_nb_sessions < MAX_NB_SESSIONS) { RTE_LOG(ERR, USER1, "Device does not support " "at least %u sessions\n", MAX_NB_SESSIONS); return TEST_FAILED; } /* * Create mempool with maximum number of sessions, * to include the session headers */ if (ts_params->session_mpool == NULL) { ts_params->session_mpool = rte_cryptodev_sym_session_pool_create( "test_sess_mp", MAX_NB_SESSIONS, 0, 0, 0, SOCKET_ID_ANY); TEST_ASSERT_NOT_NULL(ts_params->session_mpool, "session mempool allocation failed"); } /* * Create mempool with maximum number of sessions, * to include device specific session private data */ if (ts_params->session_priv_mpool == NULL) { ts_params->session_priv_mpool = rte_mempool_create( "test_sess_mp_priv", MAX_NB_SESSIONS, session_size, 0, 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0); TEST_ASSERT_NOT_NULL(ts_params->session_priv_mpool, "session mempool allocation failed"); } ts_params->qp_conf.mp_session = ts_params->session_mpool; ts_params->qp_conf.mp_session_private = ts_params->session_priv_mpool; ret = rte_cryptodev_scheduler_worker_attach(sched_id, (uint8_t)i); TEST_ASSERT(ret == 0, "Failed to attach device %u of pmd : %s", i, RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD)); aesni_ids[nb_devs_attached] = (uint8_t)i; nb_devs_attached++; } return 0; } static int test_scheduler_detach_worker_op(void) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t sched_id = ts_params->valid_devs[0]; uint32_t i; int ret; for (i = 0; i < 2; i++) { ret = rte_cryptodev_scheduler_worker_detach(sched_id, aesni_ids[i]); TEST_ASSERT(ret == 0, "Failed to detach device %u", aesni_ids[i]); } return 0; } static int test_scheduler_mode_op(enum rte_cryptodev_scheduler_mode scheduler_mode) { struct crypto_testsuite_params *ts_params = &testsuite_params; uint8_t sched_id = ts_params->valid_devs[0]; /* set mode */ return rte_cryptodev_scheduler_mode_set(sched_id, scheduler_mode); } static int test_scheduler_mode_roundrobin_op(void) { TEST_ASSERT(test_scheduler_mode_op(CDEV_SCHED_MODE_ROUNDROBIN) == 0, "Failed to set roundrobin mode"); return 0; } static int test_scheduler_mode_multicore_op(void) { TEST_ASSERT(test_scheduler_mode_op(CDEV_SCHED_MODE_MULTICORE) == 0, "Failed to set multicore mode"); return 0; } static int test_scheduler_mode_failover_op(void) { TEST_ASSERT(test_scheduler_mode_op(CDEV_SCHED_MODE_FAILOVER) == 0, "Failed to set failover mode"); return 0; } static int test_scheduler_mode_pkt_size_distr_op(void) { TEST_ASSERT(test_scheduler_mode_op(CDEV_SCHED_MODE_PKT_SIZE_DISTR) == 0, "Failed to set pktsize mode"); return 0; } static int scheduler_multicore_testsuite_setup(void) { if (test_scheduler_attach_worker_op() < 0) return TEST_SKIPPED; if (test_scheduler_mode_op(CDEV_SCHED_MODE_MULTICORE) < 0) return TEST_SKIPPED; return 0; } static int scheduler_roundrobin_testsuite_setup(void) { if (test_scheduler_attach_worker_op() < 0) return TEST_SKIPPED; if (test_scheduler_mode_op(CDEV_SCHED_MODE_ROUNDROBIN) < 0) return TEST_SKIPPED; return 0; } static int scheduler_failover_testsuite_setup(void) { if (test_scheduler_attach_worker_op() < 0) return TEST_SKIPPED; if (test_scheduler_mode_op(CDEV_SCHED_MODE_FAILOVER) < 0) return TEST_SKIPPED; return 0; } static int scheduler_pkt_size_distr_testsuite_setup(void) { if (test_scheduler_attach_worker_op() < 0) return TEST_SKIPPED; if (test_scheduler_mode_op(CDEV_SCHED_MODE_PKT_SIZE_DISTR) < 0) return TEST_SKIPPED; return 0; } static void scheduler_mode_testsuite_teardown(void) { test_scheduler_detach_worker_op(); } #endif /* RTE_CRYPTO_SCHEDULER */ static struct unit_test_suite end_testsuite = { .suite_name = NULL, .setup = NULL, .teardown = NULL, .unit_test_suites = NULL }; #ifdef RTE_LIB_SECURITY static struct unit_test_suite ipsec_proto_testsuite = { .suite_name = "IPsec Proto Unit Test Suite", .setup = ipsec_proto_testsuite_setup, .unit_test_cases = { TEST_CASE_NAMED_WITH_DATA( "Outbound known vector (ESP tunnel mode IPv4 AES-GCM 128)", ut_setup_security, ut_teardown, test_ipsec_proto_known_vec, &pkt_aes_128_gcm), TEST_CASE_NAMED_WITH_DATA( "Outbound known vector (ESP tunnel mode IPv4 AES-GCM 192)", ut_setup_security, ut_teardown, test_ipsec_proto_known_vec, &pkt_aes_192_gcm), TEST_CASE_NAMED_WITH_DATA( "Outbound known vector (ESP tunnel mode IPv4 AES-GCM 256)", ut_setup_security, ut_teardown, test_ipsec_proto_known_vec, &pkt_aes_256_gcm), TEST_CASE_NAMED_WITH_DATA( "Inbound known vector (ESP tunnel mode IPv4 AES-GCM 128)", ut_setup_security, ut_teardown, test_ipsec_proto_known_vec_inb, &pkt_aes_128_gcm), TEST_CASE_NAMED_WITH_DATA( "Inbound known vector (ESP tunnel mode IPv4 AES-GCM 192)", ut_setup_security, ut_teardown, test_ipsec_proto_known_vec_inb, &pkt_aes_192_gcm), TEST_CASE_NAMED_WITH_DATA( "Inbound known vector (ESP tunnel mode IPv4 AES-GCM 256)", ut_setup_security, ut_teardown, test_ipsec_proto_known_vec_inb, &pkt_aes_256_gcm), TEST_CASE_NAMED_ST( "Combined test alg list", ut_setup_security, ut_teardown, test_ipsec_proto_display_list), TEST_CASE_NAMED_ST( "IV generation", ut_setup_security, ut_teardown, test_ipsec_proto_iv_gen), TEST_CASE_NAMED_ST( "UDP encapsulation", ut_setup_security, ut_teardown, test_ipsec_proto_udp_encap), TEST_CASE_NAMED_ST( "UDP encapsulation ports verification test", ut_setup_security, ut_teardown, test_ipsec_proto_udp_ports_verify), TEST_CASE_NAMED_ST( "SA expiry packets soft", ut_setup_security, ut_teardown, test_ipsec_proto_sa_exp_pkts_soft), TEST_CASE_NAMED_ST( "SA expiry packets hard", ut_setup_security, ut_teardown, test_ipsec_proto_sa_exp_pkts_hard), TEST_CASE_NAMED_ST( "Negative test: ICV corruption", ut_setup_security, ut_teardown, test_ipsec_proto_err_icv_corrupt), TEST_CASE_NAMED_ST( "Tunnel dst addr verification", ut_setup_security, ut_teardown, test_ipsec_proto_tunnel_dst_addr_verify), TEST_CASE_NAMED_ST( "Tunnel src and dst addr verification", ut_setup_security, ut_teardown, test_ipsec_proto_tunnel_src_dst_addr_verify), TEST_CASE_NAMED_ST( "Inner IP checksum", ut_setup_security, ut_teardown, test_ipsec_proto_inner_ip_csum), TEST_CASE_NAMED_ST( "Inner L4 checksum", ut_setup_security, ut_teardown, test_ipsec_proto_inner_l4_csum), TEST_CASES_END() /**< NULL terminate unit test array */ } }; static struct unit_test_suite pdcp_proto_testsuite = { .suite_name = "PDCP Proto Unit Test Suite", .setup = pdcp_proto_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup_security, ut_teardown, test_PDCP_PROTO_all), TEST_CASES_END() /**< NULL terminate unit test array */ } }; #define ADD_UPLINK_TESTCASE(data) \ TEST_CASE_NAMED_WITH_DATA(data.test_descr_uplink, ut_setup_security, \ ut_teardown, test_docsis_proto_uplink, (const void *) &data), \ #define ADD_DOWNLINK_TESTCASE(data) \ TEST_CASE_NAMED_WITH_DATA(data.test_descr_downlink, ut_setup_security, \ ut_teardown, test_docsis_proto_downlink, (const void *) &data), \ static struct unit_test_suite docsis_proto_testsuite = { .suite_name = "DOCSIS Proto Unit Test Suite", .setup = docsis_proto_testsuite_setup, .unit_test_cases = { /* Uplink */ ADD_UPLINK_TESTCASE(docsis_test_case_1) ADD_UPLINK_TESTCASE(docsis_test_case_2) ADD_UPLINK_TESTCASE(docsis_test_case_3) ADD_UPLINK_TESTCASE(docsis_test_case_4) ADD_UPLINK_TESTCASE(docsis_test_case_5) ADD_UPLINK_TESTCASE(docsis_test_case_6) ADD_UPLINK_TESTCASE(docsis_test_case_7) ADD_UPLINK_TESTCASE(docsis_test_case_8) ADD_UPLINK_TESTCASE(docsis_test_case_9) ADD_UPLINK_TESTCASE(docsis_test_case_10) ADD_UPLINK_TESTCASE(docsis_test_case_11) ADD_UPLINK_TESTCASE(docsis_test_case_12) ADD_UPLINK_TESTCASE(docsis_test_case_13) ADD_UPLINK_TESTCASE(docsis_test_case_14) ADD_UPLINK_TESTCASE(docsis_test_case_15) ADD_UPLINK_TESTCASE(docsis_test_case_16) ADD_UPLINK_TESTCASE(docsis_test_case_17) ADD_UPLINK_TESTCASE(docsis_test_case_18) ADD_UPLINK_TESTCASE(docsis_test_case_19) ADD_UPLINK_TESTCASE(docsis_test_case_20) ADD_UPLINK_TESTCASE(docsis_test_case_21) ADD_UPLINK_TESTCASE(docsis_test_case_22) ADD_UPLINK_TESTCASE(docsis_test_case_23) ADD_UPLINK_TESTCASE(docsis_test_case_24) ADD_UPLINK_TESTCASE(docsis_test_case_25) ADD_UPLINK_TESTCASE(docsis_test_case_26) /* Downlink */ ADD_DOWNLINK_TESTCASE(docsis_test_case_1) ADD_DOWNLINK_TESTCASE(docsis_test_case_2) ADD_DOWNLINK_TESTCASE(docsis_test_case_3) ADD_DOWNLINK_TESTCASE(docsis_test_case_4) ADD_DOWNLINK_TESTCASE(docsis_test_case_5) ADD_DOWNLINK_TESTCASE(docsis_test_case_6) ADD_DOWNLINK_TESTCASE(docsis_test_case_7) ADD_DOWNLINK_TESTCASE(docsis_test_case_8) ADD_DOWNLINK_TESTCASE(docsis_test_case_9) ADD_DOWNLINK_TESTCASE(docsis_test_case_10) ADD_DOWNLINK_TESTCASE(docsis_test_case_11) ADD_DOWNLINK_TESTCASE(docsis_test_case_12) ADD_DOWNLINK_TESTCASE(docsis_test_case_13) ADD_DOWNLINK_TESTCASE(docsis_test_case_14) ADD_DOWNLINK_TESTCASE(docsis_test_case_15) ADD_DOWNLINK_TESTCASE(docsis_test_case_16) ADD_DOWNLINK_TESTCASE(docsis_test_case_17) ADD_DOWNLINK_TESTCASE(docsis_test_case_18) ADD_DOWNLINK_TESTCASE(docsis_test_case_19) ADD_DOWNLINK_TESTCASE(docsis_test_case_20) ADD_DOWNLINK_TESTCASE(docsis_test_case_21) ADD_DOWNLINK_TESTCASE(docsis_test_case_22) ADD_DOWNLINK_TESTCASE(docsis_test_case_23) ADD_DOWNLINK_TESTCASE(docsis_test_case_24) ADD_DOWNLINK_TESTCASE(docsis_test_case_25) ADD_DOWNLINK_TESTCASE(docsis_test_case_26) TEST_CASES_END() /**< NULL terminate unit test array */ } }; #endif static struct unit_test_suite cryptodev_gen_testsuite = { .suite_name = "Crypto General Unit Test Suite", .setup = crypto_gen_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, test_device_configure_invalid_dev_id), TEST_CASE_ST(ut_setup, ut_teardown, test_queue_pair_descriptor_setup), TEST_CASE_ST(ut_setup, ut_teardown, test_device_configure_invalid_queue_pair_ids), TEST_CASE_ST(ut_setup, ut_teardown, test_stats), TEST_CASE_ST(ut_setup, ut_teardown, test_enq_callback_setup), TEST_CASE_ST(ut_setup, ut_teardown, test_deq_callback_setup), TEST_CASES_END() /**< NULL terminate unit test array */ } }; static struct unit_test_suite cryptodev_negative_hmac_sha1_testsuite = { .suite_name = "Negative HMAC SHA1 Unit Test Suite", .setup = negative_hmac_sha1_testsuite_setup, .unit_test_cases = { /** Negative tests */ TEST_CASE_ST(ut_setup, ut_teardown, authentication_verify_HMAC_SHA1_fail_data_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, authentication_verify_HMAC_SHA1_fail_tag_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, auth_decryption_AES128CBC_HMAC_SHA1_fail_data_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, auth_decryption_AES128CBC_HMAC_SHA1_fail_tag_corrupt), TEST_CASES_END() /**< NULL terminate unit test array */ } }; static struct unit_test_suite cryptodev_multi_session_testsuite = { .suite_name = "Multi Session Unit Test Suite", .setup = multi_session_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, test_multi_session), TEST_CASE_ST(ut_setup, ut_teardown, test_multi_session_random_usage), TEST_CASES_END() /**< NULL terminate unit test array */ } }; static struct unit_test_suite cryptodev_null_testsuite = { .suite_name = "NULL Test Suite", .setup = null_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, test_null_invalid_operation), TEST_CASE_ST(ut_setup, ut_teardown, test_null_burst_operation), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_aes_ccm_auth_testsuite = { .suite_name = "AES CCM Authenticated Test Suite", .setup = aes_ccm_auth_testsuite_setup, .unit_test_cases = { /** AES CCM Authenticated Encryption 128 bits key*/ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_128_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_128_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_128_3), /** AES CCM Authenticated Decryption 128 bits key*/ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_128_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_128_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_128_3), /** AES CCM Authenticated Encryption 192 bits key */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_192_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_192_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_192_3), /** AES CCM Authenticated Decryption 192 bits key*/ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_192_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_192_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_192_3), /** AES CCM Authenticated Encryption 256 bits key */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_256_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_256_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_encryption_test_case_256_3), /** AES CCM Authenticated Decryption 256 bits key*/ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_256_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_256_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_CCM_authenticated_decryption_test_case_256_3), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_aes_gcm_auth_testsuite = { .suite_name = "AES GCM Authenticated Test Suite", .setup = aes_gcm_auth_testsuite_setup, .unit_test_cases = { /** AES GCM Authenticated Encryption */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encrypt_SGL_in_place_1500B), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encrypt_SGL_out_of_place_400B_400B), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encrypt_SGL_out_of_place_1500B_2000B), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encrypt_SGL_out_of_place_400B_1seg), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_6), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_7), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_test_case_8), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_J0_authenticated_encryption_test_case_1), /** AES GCM Authenticated Decryption */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_6), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_7), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_test_case_8), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_J0_authenticated_decryption_test_case_1), /** AES GCM Authenticated Encryption 192 bits key */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_192_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_192_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_192_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_192_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_192_5), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_192_6), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_192_7), /** AES GCM Authenticated Decryption 192 bits key */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_192_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_192_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_192_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_192_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_192_5), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_192_6), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_192_7), /** AES GCM Authenticated Encryption 256 bits key */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_256_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_256_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_256_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_256_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_256_5), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_256_6), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_256_7), /** AES GCM Authenticated Decryption 256 bits key */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_256_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_256_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_256_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_256_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_256_5), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_256_6), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_256_7), /** AES GCM Authenticated Encryption big aad size */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_aad_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_test_case_aad_2), /** AES GCM Authenticated Decryption big aad size */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_aad_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_test_case_aad_2), /** Out of place tests */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_oop_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_oop_test_case_1), /** Session-less tests */ TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_encryption_sessionless_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_authenticated_decryption_sessionless_test_case_1), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_aes_gmac_auth_testsuite = { .suite_name = "AES GMAC Authentication Test Suite", .setup = aes_gmac_auth_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_verify_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_verify_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_verify_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_verify_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_SGL_40B), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_SGL_80B), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_SGL_2048B), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GMAC_authentication_SGL_2047B), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_chacha20_poly1305_testsuite = { .suite_name = "Chacha20-Poly1305 Test Suite", .setup = chacha20_poly1305_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, test_chacha20_poly1305_encrypt_test_case_rfc8439), TEST_CASE_ST(ut_setup, ut_teardown, test_chacha20_poly1305_decrypt_test_case_rfc8439), TEST_CASE_ST(ut_setup, ut_teardown, test_chacha20_poly1305_encrypt_SGL_out_of_place), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_snow3g_testsuite = { .suite_name = "SNOW 3G Test Suite", .setup = snow3g_testsuite_setup, .unit_test_cases = { /** SNOW 3G encrypt only (UEA2) */ TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_1_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_1_oop_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_encryption_test_case_1_offset_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_decryption_test_case_1_oop), /** SNOW 3G generate auth, then encrypt (UEA2) */ TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_test_case_2_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_part_digest_enc), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_part_digest_enc_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_test_case_3_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_test_case_3_oop_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_part_digest_enc_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_part_digest_enc_oop_sgl), /** SNOW 3G decrypt (UEA2), then verify auth */ TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_test_case_2_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_part_digest_enc), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_part_digest_enc_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_test_case_3_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_test_case_3_oop_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_part_digest_enc_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_verify_part_digest_enc_oop_sgl), /** SNOW 3G decrypt only (UEA2) */ TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_decryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_decryption_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_decryption_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_decryption_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_decryption_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_decryption_with_digest_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_generate_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_generate_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_generate_test_case_3), /* Tests with buffers which length is not byte-aligned */ TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_generate_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_generate_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_generate_test_case_6), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_verify_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_verify_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_verify_test_case_3), /* Tests with buffers which length is not byte-aligned */ TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_verify_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_verify_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_hash_verify_test_case_6), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_cipher_auth_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_snow3g_auth_cipher_with_digest_test_case_1), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_zuc_testsuite = { .suite_name = "ZUC Test Suite", .setup = zuc_testsuite_setup, .unit_test_cases = { /** ZUC encrypt only (EEA3) */ TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_encryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_encryption_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_encryption_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_encryption_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_encryption_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_encryption_test_case_6_sgl), /** ZUC authenticate (EIA3) */ TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_6), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_7), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_8), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_9), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_10), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_hash_generate_test_case_11), /** ZUC alg-chain (EEA3/EIA3) */ TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_cipher_auth_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_cipher_auth_test_case_2), /** ZUC generate auth, then encrypt (EEA3) */ TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_test_case_1_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_test_case_1_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_test_case_1_oop_sgl), /** ZUC decrypt (EEA3), then verify auth */ TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_verify_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_verify_test_case_1_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_verify_test_case_1_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc_auth_cipher_verify_test_case_1_oop_sgl), /** ZUC-256 encrypt only **/ TEST_CASE_ST(ut_setup, ut_teardown, test_zuc256_encryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc256_encryption_test_case_2), /** ZUC-256 authentication only **/ TEST_CASE_ST(ut_setup, ut_teardown, test_zuc256_authentication_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_zuc256_authentication_test_case_2), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_hmac_md5_auth_testsuite = { .suite_name = "HMAC_MD5 Authentication Test Suite", .setup = hmac_md5_auth_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, test_MD5_HMAC_generate_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_MD5_HMAC_verify_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_MD5_HMAC_generate_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_MD5_HMAC_verify_case_2), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_kasumi_testsuite = { .suite_name = "Kasumi Test Suite", .setup = kasumi_testsuite_setup, .unit_test_cases = { /** KASUMI hash only (UIA1) */ TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_generate_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_generate_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_generate_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_generate_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_generate_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_generate_test_case_6), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_verify_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_verify_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_verify_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_verify_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_hash_verify_test_case_5), /** KASUMI encrypt only (UEA1) */ TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_1_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_1_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_1_oop_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_encryption_test_case_5), /** KASUMI decrypt only (UEA1) */ TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_decryption_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_decryption_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_decryption_test_case_3), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_decryption_test_case_4), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_decryption_test_case_5), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_decryption_test_case_1_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_cipher_auth_test_case_1), /** KASUMI generate auth, then encrypt (F8) */ TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_test_case_2_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_test_case_2_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_test_case_2_oop_sgl), /** KASUMI decrypt (F8), then verify auth */ TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_verify_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_verify_test_case_2), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_verify_test_case_2_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_verify_test_case_2_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_kasumi_auth_cipher_verify_test_case_2_oop_sgl), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_esn_testsuite = { .suite_name = "ESN Test Suite", .setup = esn_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, auth_encrypt_AES128CBC_HMAC_SHA1_esn_check), TEST_CASE_ST(ut_setup, ut_teardown, auth_decrypt_AES128CBC_HMAC_SHA1_esn_check), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_negative_aes_gcm_testsuite = { .suite_name = "Negative AES GCM Test Suite", .setup = negative_aes_gcm_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_fail_iv_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_fail_in_data_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_fail_out_data_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_fail_aad_len_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_fail_aad_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_encryption_fail_tag_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_fail_iv_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_fail_in_data_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_fail_out_data_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_fail_aad_len_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_fail_aad_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, test_AES_GCM_auth_decryption_fail_tag_corrupt), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_negative_aes_gmac_testsuite = { .suite_name = "Negative AES GMAC Test Suite", .setup = negative_aes_gmac_testsuite_setup, .unit_test_cases = { TEST_CASE_ST(ut_setup, ut_teardown, authentication_verify_AES128_GMAC_fail_data_corrupt), TEST_CASE_ST(ut_setup, ut_teardown, authentication_verify_AES128_GMAC_fail_tag_corrupt), TEST_CASES_END() } }; static struct unit_test_suite cryptodev_mixed_cipher_hash_testsuite = { .suite_name = "Mixed CIPHER + HASH algorithms Test Suite", .setup = mixed_cipher_hash_testsuite_setup, .unit_test_cases = { /** AUTH AES CMAC + CIPHER AES CTR */ TEST_CASE_ST(ut_setup, ut_teardown, test_aes_cmac_aes_ctr_digest_enc_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_aes_cmac_aes_ctr_digest_enc_test_case_1_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_aes_cmac_aes_ctr_digest_enc_test_case_1_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_aes_cmac_aes_ctr_digest_enc_test_case_1_oop_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1_oop), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1_sgl), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_aes_cmac_aes_ctr_digest_enc_test_case_1_oop_sgl), /** AUTH ZUC + CIPHER SNOW3G */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_zuc_cipher_snow_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_zuc_cipher_snow_test_case_1), /** AUTH AES CMAC + CIPHER SNOW3G */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_aes_cmac_cipher_snow_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_aes_cmac_cipher_snow_test_case_1), /** AUTH ZUC + CIPHER AES CTR */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_zuc_cipher_aes_ctr_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_zuc_cipher_aes_ctr_test_case_1), /** AUTH SNOW3G + CIPHER AES CTR */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_snow_cipher_aes_ctr_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_snow_cipher_aes_ctr_test_case_1), /** AUTH SNOW3G + CIPHER ZUC */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_snow_cipher_zuc_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_snow_cipher_zuc_test_case_1), /** AUTH AES CMAC + CIPHER ZUC */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_aes_cmac_cipher_zuc_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_aes_cmac_cipher_zuc_test_case_1), /** AUTH NULL + CIPHER SNOW3G */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_null_cipher_snow_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_null_cipher_snow_test_case_1), /** AUTH NULL + CIPHER ZUC */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_null_cipher_zuc_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_null_cipher_zuc_test_case_1), /** AUTH SNOW3G + CIPHER NULL */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_snow_cipher_null_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_snow_cipher_null_test_case_1), /** AUTH ZUC + CIPHER NULL */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_zuc_cipher_null_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_zuc_cipher_null_test_case_1), /** AUTH NULL + CIPHER AES CTR */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_null_cipher_aes_ctr_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_null_cipher_aes_ctr_test_case_1), /** AUTH AES CMAC + CIPHER NULL */ TEST_CASE_ST(ut_setup, ut_teardown, test_auth_aes_cmac_cipher_null_test_case_1), TEST_CASE_ST(ut_setup, ut_teardown, test_verify_auth_aes_cmac_cipher_null_test_case_1), TEST_CASES_END() } }; static int run_cryptodev_testsuite(const char *pmd_name) { uint8_t ret, j, i = 0, blk_start_idx = 0; const enum blockcipher_test_type blk_suites[] = { BLKCIPHER_AES_CHAIN_TYPE, BLKCIPHER_AES_CIPHERONLY_TYPE, BLKCIPHER_AES_DOCSIS_TYPE, BLKCIPHER_3DES_CHAIN_TYPE, BLKCIPHER_3DES_CIPHERONLY_TYPE, BLKCIPHER_DES_CIPHERONLY_TYPE, BLKCIPHER_DES_DOCSIS_TYPE, BLKCIPHER_AUTHONLY_TYPE}; struct unit_test_suite *static_suites[] = { &cryptodev_multi_session_testsuite, &cryptodev_null_testsuite, &cryptodev_aes_ccm_auth_testsuite, &cryptodev_aes_gcm_auth_testsuite, &cryptodev_aes_gmac_auth_testsuite, &cryptodev_snow3g_testsuite, &cryptodev_chacha20_poly1305_testsuite, &cryptodev_zuc_testsuite, &cryptodev_hmac_md5_auth_testsuite, &cryptodev_kasumi_testsuite, &cryptodev_esn_testsuite, &cryptodev_negative_aes_gcm_testsuite, &cryptodev_negative_aes_gmac_testsuite, &cryptodev_mixed_cipher_hash_testsuite, &cryptodev_negative_hmac_sha1_testsuite, &cryptodev_gen_testsuite, #ifdef RTE_LIB_SECURITY &ipsec_proto_testsuite, &pdcp_proto_testsuite, &docsis_proto_testsuite, #endif &end_testsuite }; static struct unit_test_suite ts = { .suite_name = "Cryptodev Unit Test Suite", .setup = testsuite_setup, .teardown = testsuite_teardown, .unit_test_cases = {TEST_CASES_END()} }; gbl_driver_id = rte_cryptodev_driver_id_get(pmd_name); if (gbl_driver_id == -1) { RTE_LOG(ERR, USER1, "%s PMD must be loaded.\n", pmd_name); return TEST_SKIPPED; } ts.unit_test_suites = malloc(sizeof(struct unit_test_suite *) * (RTE_DIM(blk_suites) + RTE_DIM(static_suites))); ADD_BLOCKCIPHER_TESTSUITE(i, ts, blk_suites, RTE_DIM(blk_suites)); ADD_STATIC_TESTSUITE(i, ts, static_suites, RTE_DIM(static_suites)); ret = unit_test_suite_runner(&ts); FREE_BLOCKCIPHER_TESTSUITE(blk_start_idx, ts, RTE_DIM(blk_suites)); free(ts.unit_test_suites); return ret; } static int require_feature_flag(const char *pmd_name, uint64_t flag, const char *flag_name) { struct rte_cryptodev_info dev_info; uint8_t i, nb_devs; int driver_id; driver_id = rte_cryptodev_driver_id_get(pmd_name); if (driver_id == -1) { RTE_LOG(WARNING, USER1, "%s PMD must be loaded.\n", pmd_name); return TEST_SKIPPED; } nb_devs = rte_cryptodev_count(); if (nb_devs < 1) { RTE_LOG(WARNING, USER1, "No crypto devices found?\n"); return TEST_SKIPPED; } for (i = 0; i < nb_devs; i++) { rte_cryptodev_info_get(i, &dev_info); if (dev_info.driver_id == driver_id) { if (!(dev_info.feature_flags & flag)) { RTE_LOG(INFO, USER1, "%s not supported\n", flag_name); return TEST_SKIPPED; } return 0; /* found */ } } RTE_LOG(INFO, USER1, "%s not supported\n", flag_name); return TEST_SKIPPED; } static int test_cryptodev_qat(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_QAT_SYM_PMD)); } static int test_cryptodev_virtio(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_VIRTIO_PMD)); } static int test_cryptodev_aesni_mb(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD)); } static int test_cryptodev_cpu_aesni_mb(void) { int32_t rc; enum rte_security_session_action_type at = gbl_action_type; gbl_action_type = RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO; rc = run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD)); gbl_action_type = at; return rc; } static int test_cryptodev_chacha_poly_mb(void) { int32_t rc; enum rte_security_session_action_type at = gbl_action_type; rc = run_cryptodev_testsuite( RTE_STR(CRYPTODEV_NAME_CHACHA20_POLY1305_PMD)); gbl_action_type = at; return rc; } static int test_cryptodev_openssl(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_OPENSSL_PMD)); } static int test_cryptodev_aesni_gcm(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_AESNI_GCM_PMD)); } static int test_cryptodev_cpu_aesni_gcm(void) { int32_t rc; enum rte_security_session_action_type at = gbl_action_type; gbl_action_type = RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO; rc = run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_AESNI_GCM_PMD)); gbl_action_type = at; return rc; } static int test_cryptodev_mlx5(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_MLX5_PMD)); } static int test_cryptodev_null(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_NULL_PMD)); } static int test_cryptodev_sw_snow3g(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_SNOW3G_PMD)); } static int test_cryptodev_sw_kasumi(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_KASUMI_PMD)); } static int test_cryptodev_sw_zuc(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_ZUC_PMD)); } static int test_cryptodev_armv8(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_ARMV8_PMD)); } static int test_cryptodev_mrvl(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_MVSAM_PMD)); } #ifdef RTE_CRYPTO_SCHEDULER static int test_cryptodev_scheduler(void) { uint8_t ret, sched_i, j, i = 0, blk_start_idx = 0; const enum blockcipher_test_type blk_suites[] = { BLKCIPHER_AES_CHAIN_TYPE, BLKCIPHER_AES_CIPHERONLY_TYPE, BLKCIPHER_AUTHONLY_TYPE }; static struct unit_test_suite scheduler_multicore = { .suite_name = "Scheduler Multicore Unit Test Suite", .setup = scheduler_multicore_testsuite_setup, .teardown = scheduler_mode_testsuite_teardown, .unit_test_cases = {TEST_CASES_END()} }; static struct unit_test_suite scheduler_round_robin = { .suite_name = "Scheduler Round Robin Unit Test Suite", .setup = scheduler_roundrobin_testsuite_setup, .teardown = scheduler_mode_testsuite_teardown, .unit_test_cases = {TEST_CASES_END()} }; static struct unit_test_suite scheduler_failover = { .suite_name = "Scheduler Failover Unit Test Suite", .setup = scheduler_failover_testsuite_setup, .teardown = scheduler_mode_testsuite_teardown, .unit_test_cases = {TEST_CASES_END()} }; static struct unit_test_suite scheduler_pkt_size_distr = { .suite_name = "Scheduler Pkt Size Distr Unit Test Suite", .setup = scheduler_pkt_size_distr_testsuite_setup, .teardown = scheduler_mode_testsuite_teardown, .unit_test_cases = {TEST_CASES_END()} }; struct unit_test_suite *sched_mode_suites[] = { &scheduler_multicore, &scheduler_round_robin, &scheduler_failover, &scheduler_pkt_size_distr }; static struct unit_test_suite scheduler_config = { .suite_name = "Crypto Device Scheduler Config Unit Test Suite", .unit_test_cases = { TEST_CASE(test_scheduler_attach_worker_op), TEST_CASE(test_scheduler_mode_multicore_op), TEST_CASE(test_scheduler_mode_roundrobin_op), TEST_CASE(test_scheduler_mode_failover_op), TEST_CASE(test_scheduler_mode_pkt_size_distr_op), TEST_CASE(test_scheduler_detach_worker_op), TEST_CASES_END() /**< NULL terminate array */ } }; struct unit_test_suite *static_suites[] = { &scheduler_config, &end_testsuite }; static struct unit_test_suite ts = { .suite_name = "Scheduler Unit Test Suite", .setup = scheduler_testsuite_setup, .teardown = testsuite_teardown, .unit_test_cases = {TEST_CASES_END()} }; gbl_driver_id = rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_SCHEDULER_PMD)); if (gbl_driver_id == -1) { RTE_LOG(ERR, USER1, "SCHEDULER PMD must be loaded.\n"); return TEST_SKIPPED; } if (rte_cryptodev_driver_id_get( RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD)) == -1) { RTE_LOG(ERR, USER1, "AESNI MB PMD must be loaded.\n"); return TEST_SKIPPED; } for (sched_i = 0; sched_i < RTE_DIM(sched_mode_suites); sched_i++) { uint8_t blk_i = 0; sched_mode_suites[sched_i]->unit_test_suites = malloc(sizeof (struct unit_test_suite *) * (RTE_DIM(blk_suites) + 1)); ADD_BLOCKCIPHER_TESTSUITE(blk_i, (*sched_mode_suites[sched_i]), blk_suites, RTE_DIM(blk_suites)); sched_mode_suites[sched_i]->unit_test_suites[blk_i] = &end_testsuite; } ts.unit_test_suites = malloc(sizeof(struct unit_test_suite *) * (RTE_DIM(static_suites) + RTE_DIM(sched_mode_suites))); ADD_STATIC_TESTSUITE(i, ts, sched_mode_suites, RTE_DIM(sched_mode_suites)); ADD_STATIC_TESTSUITE(i, ts, static_suites, RTE_DIM(static_suites)); ret = unit_test_suite_runner(&ts); for (sched_i = 0; sched_i < RTE_DIM(sched_mode_suites); sched_i++) { FREE_BLOCKCIPHER_TESTSUITE(blk_start_idx, (*sched_mode_suites[sched_i]), RTE_DIM(blk_suites)); free(sched_mode_suites[sched_i]->unit_test_suites); } free(ts.unit_test_suites); return ret; } REGISTER_TEST_COMMAND(cryptodev_scheduler_autotest, test_cryptodev_scheduler); #endif static int test_cryptodev_dpaa2_sec(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_DPAA2_SEC_PMD)); } static int test_cryptodev_dpaa_sec(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_DPAA_SEC_PMD)); } static int test_cryptodev_ccp(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_CCP_PMD)); } static int test_cryptodev_octeontx(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_OCTEONTX_SYM_PMD)); } static int test_cryptodev_octeontx2(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_OCTEONTX2_PMD)); } static int test_cryptodev_caam_jr(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_CAAM_JR_PMD)); } static int test_cryptodev_nitrox(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_NITROX_PMD)); } static int test_cryptodev_bcmfs(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_BCMFS_PMD)); } static int test_cryptodev_qat_raw_api(void) { static const char *pmd_name = RTE_STR(CRYPTODEV_NAME_QAT_SYM_PMD); int ret; ret = require_feature_flag(pmd_name, RTE_CRYPTODEV_FF_SYM_RAW_DP, "RAW API"); if (ret) return ret; global_api_test_type = CRYPTODEV_RAW_API_TEST; ret = run_cryptodev_testsuite(pmd_name); global_api_test_type = CRYPTODEV_API_TEST; return ret; } static int test_cryptodev_cn9k(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_CN9K_PMD)); } static int test_cryptodev_cn10k(void) { return run_cryptodev_testsuite(RTE_STR(CRYPTODEV_NAME_CN10K_PMD)); } static int test_cryptodev_dpaa2_sec_raw_api(void) { static const char *pmd_name = RTE_STR(CRYPTODEV_NAME_DPAA2_SEC_PMD); int ret; ret = require_feature_flag(pmd_name, RTE_CRYPTODEV_FF_SYM_RAW_DP, "RAW API"); if (ret) return ret; global_api_test_type = CRYPTODEV_RAW_API_TEST; ret = run_cryptodev_testsuite(pmd_name); global_api_test_type = CRYPTODEV_API_TEST; return ret; } static int test_cryptodev_dpaa_sec_raw_api(void) { static const char *pmd_name = RTE_STR(CRYPTODEV_NAME_DPAA_SEC_PMD); int ret; ret = require_feature_flag(pmd_name, RTE_CRYPTODEV_FF_SYM_RAW_DP, "RAW API"); if (ret) return ret; global_api_test_type = CRYPTODEV_RAW_API_TEST; ret = run_cryptodev_testsuite(pmd_name); global_api_test_type = CRYPTODEV_API_TEST; return ret; } REGISTER_TEST_COMMAND(cryptodev_dpaa2_sec_raw_api_autotest, test_cryptodev_dpaa2_sec_raw_api); REGISTER_TEST_COMMAND(cryptodev_dpaa_sec_raw_api_autotest, test_cryptodev_dpaa_sec_raw_api); REGISTER_TEST_COMMAND(cryptodev_qat_raw_api_autotest, test_cryptodev_qat_raw_api); REGISTER_TEST_COMMAND(cryptodev_qat_autotest, test_cryptodev_qat); REGISTER_TEST_COMMAND(cryptodev_aesni_mb_autotest, test_cryptodev_aesni_mb); REGISTER_TEST_COMMAND(cryptodev_cpu_aesni_mb_autotest, test_cryptodev_cpu_aesni_mb); REGISTER_TEST_COMMAND(cryptodev_chacha_poly_mb_autotest, test_cryptodev_chacha_poly_mb); REGISTER_TEST_COMMAND(cryptodev_openssl_autotest, test_cryptodev_openssl); REGISTER_TEST_COMMAND(cryptodev_aesni_gcm_autotest, test_cryptodev_aesni_gcm); REGISTER_TEST_COMMAND(cryptodev_cpu_aesni_gcm_autotest, test_cryptodev_cpu_aesni_gcm); REGISTER_TEST_COMMAND(cryptodev_mlx5_autotest, test_cryptodev_mlx5); REGISTER_TEST_COMMAND(cryptodev_null_autotest, test_cryptodev_null); REGISTER_TEST_COMMAND(cryptodev_sw_snow3g_autotest, test_cryptodev_sw_snow3g); REGISTER_TEST_COMMAND(cryptodev_sw_kasumi_autotest, test_cryptodev_sw_kasumi); REGISTER_TEST_COMMAND(cryptodev_sw_zuc_autotest, test_cryptodev_sw_zuc); REGISTER_TEST_COMMAND(cryptodev_sw_armv8_autotest, test_cryptodev_armv8); REGISTER_TEST_COMMAND(cryptodev_sw_mvsam_autotest, test_cryptodev_mrvl); REGISTER_TEST_COMMAND(cryptodev_dpaa2_sec_autotest, test_cryptodev_dpaa2_sec); REGISTER_TEST_COMMAND(cryptodev_dpaa_sec_autotest, test_cryptodev_dpaa_sec); REGISTER_TEST_COMMAND(cryptodev_ccp_autotest, test_cryptodev_ccp); REGISTER_TEST_COMMAND(cryptodev_virtio_autotest, test_cryptodev_virtio); REGISTER_TEST_COMMAND(cryptodev_octeontx_autotest, test_cryptodev_octeontx); REGISTER_TEST_COMMAND(cryptodev_octeontx2_autotest, test_cryptodev_octeontx2); REGISTER_TEST_COMMAND(cryptodev_caam_jr_autotest, test_cryptodev_caam_jr); REGISTER_TEST_COMMAND(cryptodev_nitrox_autotest, test_cryptodev_nitrox); REGISTER_TEST_COMMAND(cryptodev_bcmfs_autotest, test_cryptodev_bcmfs); REGISTER_TEST_COMMAND(cryptodev_cn9k_autotest, test_cryptodev_cn9k); REGISTER_TEST_COMMAND(cryptodev_cn10k_autotest, test_cryptodev_cn10k);