/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2018-2022 Advanced Micro Devices, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include "ionic.h" #include "ionic_if.h" #include "ionic_dev.h" #include "ionic_lif.h" #include "ionic_rxtx.h" static __rte_always_inline void ionic_tx_flush_sg(struct ionic_tx_qcq *txq) { struct ionic_cq *cq = &txq->qcq.cq; struct ionic_queue *q = &txq->qcq.q; struct rte_mbuf *txm; struct ionic_txq_comp *cq_desc, *cq_desc_base = cq->base; void **info; uint32_t i; cq_desc = &cq_desc_base[cq->tail_idx]; while (color_match(cq_desc->color, cq->done_color)) { cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1); if (cq->tail_idx == 0) cq->done_color = !cq->done_color; /* Prefetch 4 x 16B comp at cq->tail_idx + 4 */ if ((cq->tail_idx & 0x3) == 0) rte_prefetch0(&cq_desc_base[Q_NEXT_TO_SRVC(cq, 4)]); while (q->tail_idx != rte_le_to_cpu_16(cq_desc->comp_index)) { /* Prefetch 8 mbuf ptrs at q->tail_idx + 2 */ rte_prefetch0(IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 2))); /* Prefetch next mbuf */ void **next_info = IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 1)); if (next_info[0]) rte_mbuf_prefetch_part2(next_info[0]); if (next_info[1]) rte_mbuf_prefetch_part2(next_info[1]); info = IONIC_INFO_PTR(q, q->tail_idx); for (i = 0; i < q->num_segs; i++) { txm = info[i]; if (!txm) break; if (txq->flags & IONIC_QCQ_F_FAST_FREE) rte_mempool_put(txm->pool, txm); else rte_pktmbuf_free_seg(txm); info[i] = NULL; } q->tail_idx = Q_NEXT_TO_SRVC(q, 1); } cq_desc = &cq_desc_base[cq->tail_idx]; } } static __rte_always_inline int ionic_tx_sg(struct ionic_tx_qcq *txq, struct rte_mbuf *txm) { struct ionic_queue *q = &txq->qcq.q; struct ionic_txq_desc *desc, *desc_base = q->base; struct ionic_txq_sg_desc_v1 *sg_desc, *sg_desc_base = q->sg_base; struct ionic_txq_sg_elem *elem; struct ionic_tx_stats *stats = &txq->stats; struct rte_mbuf *txm_seg; rte_iova_t data_iova; void **info; uint64_t ol_flags = txm->ol_flags; uint64_t addr, cmd; uint8_t opcode = IONIC_TXQ_DESC_OPCODE_CSUM_NONE; uint8_t flags = 0; desc = &desc_base[q->head_idx]; sg_desc = &sg_desc_base[q->head_idx]; info = IONIC_INFO_PTR(q, q->head_idx); if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM) && (txq->flags & IONIC_QCQ_F_CSUM_L3)) { opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW; flags |= IONIC_TXQ_DESC_FLAG_CSUM_L3; } if (((ol_flags & RTE_MBUF_F_TX_TCP_CKSUM) && (txq->flags & IONIC_QCQ_F_CSUM_TCP)) || ((ol_flags & RTE_MBUF_F_TX_UDP_CKSUM) && (txq->flags & IONIC_QCQ_F_CSUM_UDP))) { opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW; flags |= IONIC_TXQ_DESC_FLAG_CSUM_L4; } if (opcode == IONIC_TXQ_DESC_OPCODE_CSUM_NONE) stats->no_csum++; if (((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) || (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) && ((ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) || (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))) { flags |= IONIC_TXQ_DESC_FLAG_ENCAP; } if (ol_flags & RTE_MBUF_F_TX_VLAN) { flags |= IONIC_TXQ_DESC_FLAG_VLAN; desc->vlan_tci = rte_cpu_to_le_16(txm->vlan_tci); } addr = rte_cpu_to_le_64(rte_mbuf_data_iova(txm)); cmd = encode_txq_desc_cmd(opcode, flags, txm->nb_segs - 1, addr); desc->cmd = rte_cpu_to_le_64(cmd); desc->len = rte_cpu_to_le_16(txm->data_len); info[0] = txm; if (txm->nb_segs > 1) { txm_seg = txm->next; elem = sg_desc->elems; while (txm_seg != NULL) { /* Stash the mbuf ptr in the array */ info++; *info = txm_seg; /* Configure the SGE */ data_iova = rte_mbuf_data_iova(txm_seg); elem->len = rte_cpu_to_le_16(txm_seg->data_len); elem->addr = rte_cpu_to_le_64(data_iova); elem++; txm_seg = txm_seg->next; } } q->head_idx = Q_NEXT_TO_POST(q, 1); return 0; } uint16_t ionic_xmit_pkts_sg(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct ionic_tx_qcq *txq = tx_queue; struct ionic_queue *q = &txq->qcq.q; struct ionic_tx_stats *stats = &txq->stats; struct rte_mbuf *mbuf; uint32_t bytes_tx = 0; uint16_t nb_avail, nb_tx = 0; uint64_t then, now, hz, delta; int err; struct ionic_txq_desc *desc_base = q->base; if (!(txq->flags & IONIC_QCQ_F_CMB)) rte_prefetch0(&desc_base[q->head_idx]); rte_prefetch0(IONIC_INFO_PTR(q, q->head_idx)); if (nb_pkts) { rte_mbuf_prefetch_part1(tx_pkts[0]); rte_mbuf_prefetch_part2(tx_pkts[0]); } if (ionic_q_space_avail(q) < txq->free_thresh) { /* Cleaning old buffers */ ionic_tx_flush_sg(txq); } nb_avail = ionic_q_space_avail(q); if (nb_avail < nb_pkts) { stats->stop += nb_pkts - nb_avail; nb_pkts = nb_avail; } while (nb_tx < nb_pkts) { uint16_t next_idx = Q_NEXT_TO_POST(q, 1); if (!(txq->flags & IONIC_QCQ_F_CMB)) rte_prefetch0(&desc_base[next_idx]); rte_prefetch0(IONIC_INFO_PTR(q, next_idx)); if (nb_tx + 1 < nb_pkts) { rte_mbuf_prefetch_part1(tx_pkts[nb_tx + 1]); rte_mbuf_prefetch_part2(tx_pkts[nb_tx + 1]); } mbuf = tx_pkts[nb_tx]; if (mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) err = ionic_tx_tso(txq, mbuf); else err = ionic_tx_sg(txq, mbuf); if (err) { stats->drop += nb_pkts - nb_tx; break; } bytes_tx += mbuf->pkt_len; nb_tx++; } if (nb_tx > 0) { rte_wmb(); ionic_q_flush(q); txq->last_wdog_cycles = rte_get_timer_cycles(); stats->packets += nb_tx; stats->bytes += bytes_tx; } else { /* * Ring the doorbell again if no work could be posted and work * is still pending after the deadline. */ if (q->head_idx != q->tail_idx) { then = txq->last_wdog_cycles; now = rte_get_timer_cycles(); hz = rte_get_timer_hz(); delta = (now - then) * 1000; if (delta >= hz * IONIC_Q_WDOG_MS) { ionic_q_flush(q); txq->last_wdog_cycles = now; } } } return nb_tx; } /* * Cleans one descriptor. Connects the filled mbufs into a chain. * Does not advance the tail index. */ static __rte_always_inline void ionic_rx_clean_one_sg(struct ionic_rx_qcq *rxq, struct ionic_rxq_comp *cq_desc, struct ionic_rx_service *rx_svc) { struct ionic_queue *q = &rxq->qcq.q; struct rte_mbuf *rxm; struct rte_mbuf *rxm_seg, *prev_rxm; struct ionic_rx_stats *stats = &rxq->stats; uint64_t pkt_flags = 0; uint32_t pkt_type; uint32_t left, i; uint16_t cq_desc_len; uint8_t ptype, cflags; void **info; cq_desc_len = rte_le_to_cpu_16(cq_desc->len); info = IONIC_INFO_PTR(q, q->tail_idx); rxm = info[0]; if (cq_desc->status) { stats->bad_cq_status++; return; } if (cq_desc_len > rxq->frame_size || cq_desc_len == 0) { stats->bad_len++; return; } info[0] = NULL; /* Set the mbuf metadata based on the cq entry */ rxm->rearm_data[0] = rxq->rearm_data; rxm->pkt_len = cq_desc_len; rxm->data_len = RTE_MIN(rxq->hdr_seg_size, cq_desc_len); left = cq_desc_len - rxm->data_len; rxm->nb_segs = cq_desc->num_sg_elems + 1; prev_rxm = rxm; for (i = 1; i < rxm->nb_segs && left; i++) { rxm_seg = info[i]; info[i] = NULL; /* Set the chained mbuf metadata */ rxm_seg->rearm_data[0] = rxq->rearm_seg_data; rxm_seg->data_len = RTE_MIN(rxq->seg_size, left); left -= rxm_seg->data_len; /* Link the mbuf */ prev_rxm->next = rxm_seg; prev_rxm = rxm_seg; } /* Terminate the mbuf chain */ prev_rxm->next = NULL; /* RSS */ pkt_flags |= RTE_MBUF_F_RX_RSS_HASH; rxm->hash.rss = rte_le_to_cpu_32(cq_desc->rss_hash); /* Vlan Strip */ if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN) { pkt_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED; rxm->vlan_tci = rte_le_to_cpu_16(cq_desc->vlan_tci); } /* Checksum */ if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC) { cflags = cq_desc->csum_flags & IONIC_CSUM_FLAG_MASK; pkt_flags |= ionic_csum_flags[cflags]; } rxm->ol_flags = pkt_flags; /* Packet Type */ ptype = cq_desc->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK; pkt_type = ionic_ptype_table[ptype]; if (pkt_type == RTE_PTYPE_UNKNOWN) { struct rte_ether_hdr *eth_h = rte_pktmbuf_mtod(rxm, struct rte_ether_hdr *); uint16_t ether_type = eth_h->ether_type; if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) pkt_type = RTE_PTYPE_L2_ETHER_ARP; else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_LLDP)) pkt_type = RTE_PTYPE_L2_ETHER_LLDP; else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_1588)) pkt_type = RTE_PTYPE_L2_ETHER_TIMESYNC; stats->mtods++; } else if (pkt_flags & RTE_MBUF_F_RX_VLAN) { pkt_type |= RTE_PTYPE_L2_ETHER_VLAN; } else { pkt_type |= RTE_PTYPE_L2_ETHER; } rxm->packet_type = pkt_type; rx_svc->rx_pkts[rx_svc->nb_rx] = rxm; rx_svc->nb_rx++; stats->packets++; stats->bytes += rxm->pkt_len; } /* * Fills one descriptor with mbufs. Does not advance the head index. */ static __rte_always_inline int ionic_rx_fill_one_sg(struct ionic_rx_qcq *rxq) { struct ionic_queue *q = &rxq->qcq.q; struct rte_mbuf *rxm; struct rte_mbuf *rxm_seg; struct ionic_rxq_desc *desc, *desc_base = q->base; struct ionic_rxq_sg_desc *sg_desc, *sg_desc_base = q->sg_base; rte_iova_t data_iova; uint32_t i; void **info; int ret; info = IONIC_INFO_PTR(q, q->head_idx); desc = &desc_base[q->head_idx]; sg_desc = &sg_desc_base[q->head_idx]; /* mbuf is unused => whole chain is unused */ if (info[0]) return 0; if (rxq->mb_idx == 0) { ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->mbs, IONIC_MBUF_BULK_ALLOC); if (ret) { assert(0); return -ENOMEM; } rxq->mb_idx = IONIC_MBUF_BULK_ALLOC; } rxm = rxq->mbs[--rxq->mb_idx]; info[0] = rxm; data_iova = rte_mbuf_data_iova_default(rxm); desc->addr = rte_cpu_to_le_64(data_iova); for (i = 1; i < q->num_segs; i++) { /* mbuf is unused => rest of the chain is unused */ if (info[i]) return 0; if (rxq->mb_idx == 0) { ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->mbs, IONIC_MBUF_BULK_ALLOC); if (ret) { assert(0); return -ENOMEM; } rxq->mb_idx = IONIC_MBUF_BULK_ALLOC; } rxm_seg = rxq->mbs[--rxq->mb_idx]; info[i] = rxm_seg; /* The data_off does not get set to 0 until later */ data_iova = rxm_seg->buf_iova; sg_desc->elems[i - 1].addr = rte_cpu_to_le_64(data_iova); } return 0; } /* * Walk the CQ to find completed receive descriptors. * Any completed descriptor found is refilled. */ static __rte_always_inline void ionic_rxq_service_sg(struct ionic_rx_qcq *rxq, uint32_t work_to_do, struct ionic_rx_service *rx_svc) { struct ionic_cq *cq = &rxq->qcq.cq; struct ionic_queue *q = &rxq->qcq.q; struct ionic_rxq_desc *q_desc_base = q->base; struct ionic_rxq_comp *cq_desc, *cq_desc_base = cq->base; uint32_t work_done = 0; uint64_t then, now, hz, delta; cq_desc = &cq_desc_base[cq->tail_idx]; while (color_match(cq_desc->pkt_type_color, cq->done_color)) { cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1); if (cq->tail_idx == 0) cq->done_color = !cq->done_color; /* Prefetch 8 x 8B bufinfo */ rte_prefetch0(IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 8))); /* Prefetch 4 x 16B comp */ rte_prefetch0(&cq_desc_base[Q_NEXT_TO_SRVC(cq, 4)]); /* Prefetch 4 x 16B descriptors */ if (!(rxq->flags & IONIC_QCQ_F_CMB)) rte_prefetch0(&q_desc_base[Q_NEXT_TO_POST(q, 4)]); /* Clean one descriptor */ ionic_rx_clean_one_sg(rxq, cq_desc, rx_svc); q->tail_idx = Q_NEXT_TO_SRVC(q, 1); /* Fill one descriptor */ (void)ionic_rx_fill_one_sg(rxq); q->head_idx = Q_NEXT_TO_POST(q, 1); if (++work_done == work_to_do) break; cq_desc = &cq_desc_base[cq->tail_idx]; } /* Update the queue indices and ring the doorbell */ if (work_done) { ionic_q_flush(q); rxq->last_wdog_cycles = rte_get_timer_cycles(); rxq->wdog_ms = IONIC_Q_WDOG_MS; } else { /* * Ring the doorbell again if no recvs were posted and the * recv queue is not empty after the deadline. * * Exponentially back off the deadline to avoid excessive * doorbells when the recv queue is idle. */ if (q->head_idx != q->tail_idx) { then = rxq->last_wdog_cycles; now = rte_get_timer_cycles(); hz = rte_get_timer_hz(); delta = (now - then) * 1000; if (delta >= hz * rxq->wdog_ms) { ionic_q_flush(q); rxq->last_wdog_cycles = now; delta = 2 * rxq->wdog_ms; if (delta > IONIC_Q_WDOG_MAX_MS) delta = IONIC_Q_WDOG_MAX_MS; rxq->wdog_ms = delta; } } } } uint16_t ionic_recv_pkts_sg(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct ionic_rx_qcq *rxq = rx_queue; struct ionic_rx_service rx_svc; rx_svc.rx_pkts = rx_pkts; rx_svc.nb_rx = 0; ionic_rxq_service_sg(rxq, nb_pkts, &rx_svc); return rx_svc.nb_rx; } /* * Fills all descriptors with mbufs. */ int __rte_cold ionic_rx_fill_sg(struct ionic_rx_qcq *rxq) { struct ionic_queue *q = &rxq->qcq.q; uint32_t i; int err = 0; for (i = 0; i < q->num_descs - 1u; i++) { err = ionic_rx_fill_one_sg(rxq); if (err) break; q->head_idx = Q_NEXT_TO_POST(q, 1); } ionic_q_flush(q); return err; }