/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2022-2023 Huawei Technologies Co.,Ltd. All rights reserved. * Copyright 2022-2023 Linaro ltd. */ #include #include #include #include #include #include #include #include "uadk_crypto_pmd_private.h" static uint8_t uadk_cryptodev_driver_id; static const struct rte_cryptodev_capabilities uadk_crypto_v2_capabilities[] = { { /* MD5 HMAC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_MD5_HMAC, .block_size = 64, .key_size = { .min = 1, .max = 64, .increment = 1 }, .digest_size = { .min = 1, .max = 16, .increment = 1 }, .iv_size = { 0 } }, } }, } }, { /* MD5 */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_MD5, .block_size = 64, .key_size = { .min = 0, .max = 0, .increment = 0 }, .digest_size = { .min = 16, .max = 16, .increment = 0 }, .iv_size = { 0 } }, } }, } }, { /* SHA1 HMAC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA1_HMAC, .block_size = 64, .key_size = { .min = 1, .max = 64, .increment = 1 }, .digest_size = { .min = 1, .max = 20, .increment = 1 }, .iv_size = { 0 } }, } }, } }, { /* SHA1 */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA1, .block_size = 64, .key_size = { .min = 0, .max = 0, .increment = 0 }, .digest_size = { .min = 20, .max = 20, .increment = 0 }, .iv_size = { 0 } }, } }, } }, { /* SHA224 HMAC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA224_HMAC, .block_size = 64, .key_size = { .min = 1, .max = 64, .increment = 1 }, .digest_size = { .min = 1, .max = 28, .increment = 1 }, .iv_size = { 0 } }, } }, } }, { /* SHA224 */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA224, .block_size = 64, .key_size = { .min = 0, .max = 0, .increment = 0 }, .digest_size = { .min = 1, .max = 28, .increment = 1 }, .iv_size = { 0 } }, } }, } }, { /* SHA256 HMAC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA256_HMAC, .block_size = 64, .key_size = { .min = 1, .max = 64, .increment = 1 }, .digest_size = { .min = 1, .max = 32, .increment = 1 }, .iv_size = { 0 } }, } }, } }, { /* SHA256 */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA256, .block_size = 64, .key_size = { .min = 0, .max = 0, .increment = 0 }, .digest_size = { .min = 32, .max = 32, .increment = 0 }, .iv_size = { 0 } }, } }, } }, { /* SHA384 HMAC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA384_HMAC, .block_size = 128, .key_size = { .min = 1, .max = 128, .increment = 1 }, .digest_size = { .min = 1, .max = 48, .increment = 1 }, .iv_size = { 0 } }, } }, } }, { /* SHA384 */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA384, .block_size = 128, .key_size = { .min = 0, .max = 0, .increment = 0 }, .digest_size = { .min = 48, .max = 48, .increment = 0 }, .iv_size = { 0 } }, } }, } }, { /* SHA512 HMAC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA512_HMAC, .block_size = 128, .key_size = { .min = 1, .max = 128, .increment = 1 }, .digest_size = { .min = 1, .max = 64, .increment = 1 }, .iv_size = { 0 } }, } }, } }, { /* SHA512 */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH, {.auth = { .algo = RTE_CRYPTO_AUTH_SHA512, .block_size = 128, .key_size = { .min = 0, .max = 0, .increment = 0 }, .digest_size = { .min = 64, .max = 64, .increment = 0 }, .iv_size = { 0 } }, } }, } }, { /* AES ECB */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER, {.cipher = { .algo = RTE_CRYPTO_CIPHER_AES_ECB, .block_size = 16, .key_size = { .min = 16, .max = 32, .increment = 8 }, .iv_size = { .min = 0, .max = 0, .increment = 0 } }, } }, } }, { /* AES CBC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER, {.cipher = { .algo = RTE_CRYPTO_CIPHER_AES_CBC, .block_size = 16, .key_size = { .min = 16, .max = 32, .increment = 8 }, .iv_size = { .min = 16, .max = 16, .increment = 0 } }, } }, } }, { /* AES XTS */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER, {.cipher = { .algo = RTE_CRYPTO_CIPHER_AES_XTS, .block_size = 1, .key_size = { .min = 32, .max = 64, .increment = 32 }, .iv_size = { .min = 0, .max = 0, .increment = 0 } }, } }, } }, { /* DES CBC */ .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC, {.sym = { .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER, {.cipher = { .algo = RTE_CRYPTO_CIPHER_DES_CBC, .block_size = 8, .key_size = { .min = 8, .max = 8, .increment = 0 }, .iv_size = { .min = 8, .max = 8, .increment = 0 } }, } }, } }, /* End of capabilities */ RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST() }; /* Configure device */ static int uadk_crypto_pmd_config(struct rte_cryptodev *dev __rte_unused, struct rte_cryptodev_config *config __rte_unused) { return 0; } /* Start device */ static int uadk_crypto_pmd_start(struct rte_cryptodev *dev __rte_unused) { return 0; } /* Stop device */ static void uadk_crypto_pmd_stop(struct rte_cryptodev *dev __rte_unused) { } /* Close device */ static int uadk_crypto_pmd_close(struct rte_cryptodev *dev) { struct uadk_crypto_priv *priv = dev->data->dev_private; if (priv->env_cipher_init) { wd_cipher_env_uninit(); priv->env_cipher_init = false; } if (priv->env_auth_init) { wd_digest_env_uninit(); priv->env_auth_init = false; } return 0; } /* Get device statistics */ static void uadk_crypto_pmd_stats_get(struct rte_cryptodev *dev, struct rte_cryptodev_stats *stats) { int qp_id; for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) { struct uadk_qp *qp = dev->data->queue_pairs[qp_id]; stats->enqueued_count += qp->qp_stats.enqueued_count; stats->dequeued_count += qp->qp_stats.dequeued_count; stats->enqueue_err_count += qp->qp_stats.enqueue_err_count; stats->dequeue_err_count += qp->qp_stats.dequeue_err_count; } } /* Reset device statistics */ static void uadk_crypto_pmd_stats_reset(struct rte_cryptodev *dev __rte_unused) { int qp_id; for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) { struct uadk_qp *qp = dev->data->queue_pairs[qp_id]; memset(&qp->qp_stats, 0, sizeof(qp->qp_stats)); } } /* Get device info */ static void uadk_crypto_pmd_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *dev_info) { struct uadk_crypto_priv *priv = dev->data->dev_private; if (dev_info != NULL) { dev_info->driver_id = dev->driver_id; dev_info->driver_name = dev->device->driver->name; dev_info->max_nb_queue_pairs = 128; /* No limit of number of sessions */ dev_info->sym.max_nb_sessions = 0; dev_info->feature_flags = dev->feature_flags; if (priv->version == UADK_CRYPTO_V2) dev_info->capabilities = uadk_crypto_v2_capabilities; } } /* Release queue pair */ static int uadk_crypto_pmd_qp_release(struct rte_cryptodev *dev, uint16_t qp_id) { struct uadk_qp *qp = dev->data->queue_pairs[qp_id]; if (qp) { rte_ring_free(qp->processed_pkts); rte_free(qp); dev->data->queue_pairs[qp_id] = NULL; } return 0; } /* set a unique name for the queue pair based on its name, dev_id and qp_id */ static int uadk_pmd_qp_set_unique_name(struct rte_cryptodev *dev, struct uadk_qp *qp) { unsigned int n = snprintf(qp->name, sizeof(qp->name), "uadk_crypto_pmd_%u_qp_%u", dev->data->dev_id, qp->id); if (n >= sizeof(qp->name)) return -EINVAL; return 0; } /* Create a ring to place process packets on */ static struct rte_ring * uadk_pmd_qp_create_processed_pkts_ring(struct uadk_qp *qp, unsigned int ring_size, int socket_id) { struct rte_ring *r = qp->processed_pkts; if (r) { if (rte_ring_get_size(r) >= ring_size) { UADK_LOG(INFO, "Reusing existing ring %s for processed packets", qp->name); return r; } UADK_LOG(ERR, "Unable to reuse existing ring %s for processed packets", qp->name); return NULL; } return rte_ring_create(qp->name, ring_size, socket_id, RING_F_EXACT_SZ); } static int uadk_crypto_pmd_qp_setup(struct rte_cryptodev *dev, uint16_t qp_id, const struct rte_cryptodev_qp_conf *qp_conf, int socket_id) { struct uadk_qp *qp; /* Free memory prior to re-allocation if needed. */ if (dev->data->queue_pairs[qp_id] != NULL) uadk_crypto_pmd_qp_release(dev, qp_id); /* Allocate the queue pair data structure. */ qp = rte_zmalloc_socket("uadk PMD Queue Pair", sizeof(*qp), RTE_CACHE_LINE_SIZE, socket_id); if (qp == NULL) return (-ENOMEM); qp->id = qp_id; dev->data->queue_pairs[qp_id] = qp; if (uadk_pmd_qp_set_unique_name(dev, qp)) goto qp_setup_cleanup; qp->processed_pkts = uadk_pmd_qp_create_processed_pkts_ring(qp, qp_conf->nb_descriptors, socket_id); if (qp->processed_pkts == NULL) goto qp_setup_cleanup; memset(&qp->qp_stats, 0, sizeof(qp->qp_stats)); return 0; qp_setup_cleanup: if (qp) { rte_free(qp); qp = NULL; } return -EINVAL; } static unsigned int uadk_crypto_sym_session_get_size(struct rte_cryptodev *dev __rte_unused) { return sizeof(struct uadk_crypto_session); } static enum uadk_chain_order uadk_get_chain_order(const struct rte_crypto_sym_xform *xform) { enum uadk_chain_order res = UADK_CHAIN_NOT_SUPPORTED; if (xform != NULL) { if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { if (xform->next == NULL) res = UADK_CHAIN_ONLY_AUTH; else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) res = UADK_CHAIN_AUTH_CIPHER; } if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { if (xform->next == NULL) res = UADK_CHAIN_ONLY_CIPHER; else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) res = UADK_CHAIN_CIPHER_AUTH; } } return res; } static int uadk_set_session_cipher_parameters(struct rte_cryptodev *dev, struct uadk_crypto_session *sess, struct rte_crypto_sym_xform *xform) { struct uadk_crypto_priv *priv = dev->data->dev_private; struct rte_crypto_cipher_xform *cipher = &xform->cipher; struct wd_cipher_sess_setup setup = {0}; struct sched_params params = {0}; int ret; if (!priv->env_cipher_init) { ret = wd_cipher_env_init(NULL); if (ret < 0) return -EINVAL; priv->env_cipher_init = true; } sess->cipher.direction = cipher->op; sess->iv.offset = cipher->iv.offset; sess->iv.length = cipher->iv.length; switch (cipher->algo) { /* Cover supported cipher algorithms */ case RTE_CRYPTO_CIPHER_AES_CTR: setup.alg = WD_CIPHER_AES; setup.mode = WD_CIPHER_CTR; sess->cipher.req.out_bytes = 64; break; case RTE_CRYPTO_CIPHER_AES_ECB: setup.alg = WD_CIPHER_AES; setup.mode = WD_CIPHER_ECB; sess->cipher.req.out_bytes = 16; break; case RTE_CRYPTO_CIPHER_AES_CBC: setup.alg = WD_CIPHER_AES; setup.mode = WD_CIPHER_CBC; if (cipher->key.length == 16) sess->cipher.req.out_bytes = 16; else sess->cipher.req.out_bytes = 64; break; case RTE_CRYPTO_CIPHER_AES_XTS: setup.alg = WD_CIPHER_AES; setup.mode = WD_CIPHER_XTS; if (cipher->key.length == 16) sess->cipher.req.out_bytes = 32; else sess->cipher.req.out_bytes = 512; break; default: ret = -ENOTSUP; goto env_uninit; } params.numa_id = -1; /* choose nearby numa node */ setup.sched_param = ¶ms; sess->handle_cipher = wd_cipher_alloc_sess(&setup); if (!sess->handle_cipher) { UADK_LOG(ERR, "uadk failed to alloc session!\n"); ret = -EINVAL; goto env_uninit; } ret = wd_cipher_set_key(sess->handle_cipher, cipher->key.data, cipher->key.length); if (ret) { wd_cipher_free_sess(sess->handle_cipher); UADK_LOG(ERR, "uadk failed to set key!\n"); ret = -EINVAL; goto env_uninit; } return 0; env_uninit: wd_cipher_env_uninit(); priv->env_cipher_init = false; return ret; } /* Set session auth parameters */ static int uadk_set_session_auth_parameters(struct rte_cryptodev *dev, struct uadk_crypto_session *sess, struct rte_crypto_sym_xform *xform) { struct uadk_crypto_priv *priv = dev->data->dev_private; struct wd_digest_sess_setup setup = {0}; struct sched_params params = {0}; int ret; if (!priv->env_auth_init) { ret = wd_digest_env_init(NULL); if (ret < 0) return -EINVAL; priv->env_auth_init = true; } sess->auth.operation = xform->auth.op; sess->auth.digest_length = xform->auth.digest_length; switch (xform->auth.algo) { case RTE_CRYPTO_AUTH_MD5: case RTE_CRYPTO_AUTH_MD5_HMAC: setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_MD5) ? WD_DIGEST_NORMAL : WD_DIGEST_HMAC; setup.alg = WD_DIGEST_MD5; sess->auth.req.out_buf_bytes = 16; sess->auth.req.out_bytes = 16; break; case RTE_CRYPTO_AUTH_SHA1: case RTE_CRYPTO_AUTH_SHA1_HMAC: setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA1) ? WD_DIGEST_NORMAL : WD_DIGEST_HMAC; setup.alg = WD_DIGEST_SHA1; sess->auth.req.out_buf_bytes = 20; sess->auth.req.out_bytes = 20; break; case RTE_CRYPTO_AUTH_SHA224: case RTE_CRYPTO_AUTH_SHA224_HMAC: setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA224) ? WD_DIGEST_NORMAL : WD_DIGEST_HMAC; setup.alg = WD_DIGEST_SHA224; sess->auth.req.out_buf_bytes = 28; sess->auth.req.out_bytes = 28; break; case RTE_CRYPTO_AUTH_SHA256: case RTE_CRYPTO_AUTH_SHA256_HMAC: setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA256) ? WD_DIGEST_NORMAL : WD_DIGEST_HMAC; setup.alg = WD_DIGEST_SHA256; sess->auth.req.out_buf_bytes = 32; sess->auth.req.out_bytes = 32; break; case RTE_CRYPTO_AUTH_SHA384: case RTE_CRYPTO_AUTH_SHA384_HMAC: setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA384) ? WD_DIGEST_NORMAL : WD_DIGEST_HMAC; setup.alg = WD_DIGEST_SHA384; sess->auth.req.out_buf_bytes = 48; sess->auth.req.out_bytes = 48; break; case RTE_CRYPTO_AUTH_SHA512: case RTE_CRYPTO_AUTH_SHA512_HMAC: setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA512) ? WD_DIGEST_NORMAL : WD_DIGEST_HMAC; setup.alg = WD_DIGEST_SHA512; sess->auth.req.out_buf_bytes = 64; sess->auth.req.out_bytes = 64; break; default: ret = -ENOTSUP; goto env_uninit; } params.numa_id = -1; /* choose nearby numa node */ setup.sched_param = ¶ms; sess->handle_digest = wd_digest_alloc_sess(&setup); if (!sess->handle_digest) { UADK_LOG(ERR, "uadk failed to alloc session!\n"); ret = -EINVAL; goto env_uninit; } /* if mode is HMAC, should set key */ if (setup.mode == WD_DIGEST_HMAC) { ret = wd_digest_set_key(sess->handle_digest, xform->auth.key.data, xform->auth.key.length); if (ret) { UADK_LOG(ERR, "uadk failed to alloc session!\n"); wd_digest_free_sess(sess->handle_digest); sess->handle_digest = 0; ret = -EINVAL; goto env_uninit; } } return 0; env_uninit: wd_digest_env_uninit(); priv->env_auth_init = false; return ret; } static int uadk_crypto_sym_session_configure(struct rte_cryptodev *dev, struct rte_crypto_sym_xform *xform, struct rte_cryptodev_sym_session *session) { struct rte_crypto_sym_xform *cipher_xform = NULL; struct rte_crypto_sym_xform *auth_xform = NULL; struct uadk_crypto_session *sess = CRYPTODEV_GET_SYM_SESS_PRIV(session); int ret; if (unlikely(!sess)) { UADK_LOG(ERR, "Session not available"); return -EINVAL; } sess->chain_order = uadk_get_chain_order(xform); switch (sess->chain_order) { case UADK_CHAIN_ONLY_CIPHER: cipher_xform = xform; break; case UADK_CHAIN_ONLY_AUTH: auth_xform = xform; break; case UADK_CHAIN_CIPHER_AUTH: cipher_xform = xform; auth_xform = xform->next; break; case UADK_CHAIN_AUTH_CIPHER: auth_xform = xform; cipher_xform = xform->next; break; default: return -ENOTSUP; } if (cipher_xform) { ret = uadk_set_session_cipher_parameters(dev, sess, cipher_xform); if (ret != 0) { UADK_LOG(ERR, "Invalid/unsupported cipher parameters"); return ret; } } if (auth_xform) { ret = uadk_set_session_auth_parameters(dev, sess, auth_xform); if (ret != 0) { UADK_LOG(ERR, "Invalid/unsupported auth parameters"); return ret; } } return 0; } static void uadk_crypto_sym_session_clear(struct rte_cryptodev *dev __rte_unused, struct rte_cryptodev_sym_session *session) { struct uadk_crypto_session *sess = CRYPTODEV_GET_SYM_SESS_PRIV(session); if (unlikely(sess == NULL)) { UADK_LOG(ERR, "Session not available"); return; } if (sess->handle_cipher) { wd_cipher_free_sess(sess->handle_cipher); sess->handle_cipher = 0; } if (sess->handle_digest) { wd_digest_free_sess(sess->handle_digest); sess->handle_digest = 0; } } static struct rte_cryptodev_ops uadk_crypto_pmd_ops = { .dev_configure = uadk_crypto_pmd_config, .dev_start = uadk_crypto_pmd_start, .dev_stop = uadk_crypto_pmd_stop, .dev_close = uadk_crypto_pmd_close, .stats_get = uadk_crypto_pmd_stats_get, .stats_reset = uadk_crypto_pmd_stats_reset, .dev_infos_get = uadk_crypto_pmd_info_get, .queue_pair_setup = uadk_crypto_pmd_qp_setup, .queue_pair_release = uadk_crypto_pmd_qp_release, .sym_session_get_size = uadk_crypto_sym_session_get_size, .sym_session_configure = uadk_crypto_sym_session_configure, .sym_session_clear = uadk_crypto_sym_session_clear, }; static void uadk_process_cipher_op(struct rte_crypto_op *op, struct uadk_crypto_session *sess, struct rte_mbuf *msrc, struct rte_mbuf *mdst) { uint32_t off = op->sym->cipher.data.offset; int ret; if (!sess) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; return; } sess->cipher.req.src = rte_pktmbuf_mtod_offset(msrc, uint8_t *, off); sess->cipher.req.in_bytes = op->sym->cipher.data.length; sess->cipher.req.dst = rte_pktmbuf_mtod_offset(mdst, uint8_t *, off); sess->cipher.req.out_buf_bytes = sess->cipher.req.in_bytes; sess->cipher.req.iv_bytes = sess->iv.length; sess->cipher.req.iv = rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv.offset); if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) sess->cipher.req.op_type = WD_CIPHER_ENCRYPTION; else sess->cipher.req.op_type = WD_CIPHER_DECRYPTION; do { ret = wd_do_cipher_sync(sess->handle_cipher, &sess->cipher.req); } while (ret == -WD_EBUSY); if (ret) op->status = RTE_CRYPTO_OP_STATUS_ERROR; } static void uadk_process_auth_op(struct uadk_qp *qp, struct rte_crypto_op *op, struct uadk_crypto_session *sess, struct rte_mbuf *msrc, struct rte_mbuf *mdst) { uint32_t srclen = op->sym->auth.data.length; uint32_t off = op->sym->auth.data.offset; uint8_t *dst = qp->temp_digest; int ret; if (!sess) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; return; } sess->auth.req.in = rte_pktmbuf_mtod_offset(msrc, uint8_t *, off); sess->auth.req.in_bytes = srclen; sess->auth.req.out = dst; do { ret = wd_do_digest_sync(sess->handle_digest, &sess->auth.req); } while (ret == -WD_EBUSY); if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { if (memcmp(dst, op->sym->auth.digest.data, sess->auth.digest_length) != 0) { op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } } else { uint8_t *auth_dst; auth_dst = op->sym->auth.digest.data; if (auth_dst == NULL) auth_dst = rte_pktmbuf_mtod_offset(mdst, uint8_t *, op->sym->auth.data.offset + op->sym->auth.data.length); memcpy(auth_dst, dst, sess->auth.digest_length); } if (ret) op->status = RTE_CRYPTO_OP_STATUS_ERROR; } static uint16_t uadk_crypto_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct uadk_qp *qp = queue_pair; struct uadk_crypto_session *sess = NULL; struct rte_mbuf *msrc, *mdst; struct rte_crypto_op *op; uint16_t enqd = 0; int i, ret; for (i = 0; i < nb_ops; i++) { op = ops[i]; op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; msrc = op->sym->m_src; mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src; if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { if (likely(op->sym->session != NULL)) sess = CRYPTODEV_GET_SYM_SESS_PRIV( op->sym->session); } switch (sess->chain_order) { case UADK_CHAIN_ONLY_CIPHER: uadk_process_cipher_op(op, sess, msrc, mdst); break; case UADK_CHAIN_ONLY_AUTH: uadk_process_auth_op(qp, op, sess, msrc, mdst); break; case UADK_CHAIN_CIPHER_AUTH: uadk_process_cipher_op(op, sess, msrc, mdst); uadk_process_auth_op(qp, op, sess, mdst, mdst); break; case UADK_CHAIN_AUTH_CIPHER: uadk_process_auth_op(qp, op, sess, msrc, mdst); uadk_process_cipher_op(op, sess, msrc, mdst); break; default: op->status = RTE_CRYPTO_OP_STATUS_ERROR; break; } if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) { ret = rte_ring_enqueue(qp->processed_pkts, (void *)op); if (ret < 0) goto enqueue_err; qp->qp_stats.enqueued_count++; enqd++; } else { /* increment count if failed to enqueue op */ qp->qp_stats.enqueue_err_count++; } } return enqd; enqueue_err: qp->qp_stats.enqueue_err_count++; return enqd; } static uint16_t uadk_crypto_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct uadk_qp *qp = queue_pair; unsigned int nb_dequeued; nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts, (void **)ops, nb_ops, NULL); qp->qp_stats.dequeued_count += nb_dequeued; return nb_dequeued; } static int uadk_cryptodev_probe(struct rte_vdev_device *vdev) { struct rte_cryptodev_pmd_init_params init_params = { .name = "", .private_data_size = sizeof(struct uadk_crypto_priv), .max_nb_queue_pairs = RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS, }; enum uadk_crypto_version version = UADK_CRYPTO_V2; struct uadk_crypto_priv *priv; struct rte_cryptodev *dev; struct uacce_dev *udev; const char *name; udev = wd_get_accel_dev("cipher"); if (!udev) return -ENODEV; if (!strcmp(udev->api, "hisi_qm_v2")) version = UADK_CRYPTO_V2; free(udev); name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; dev = rte_cryptodev_pmd_create(name, &vdev->device, &init_params); if (dev == NULL) { UADK_LOG(ERR, "driver %s: create failed", init_params.name); return -ENODEV; } dev->dev_ops = &uadk_crypto_pmd_ops; dev->driver_id = uadk_cryptodev_driver_id; dev->dequeue_burst = uadk_crypto_dequeue_burst; dev->enqueue_burst = uadk_crypto_enqueue_burst; dev->feature_flags = RTE_CRYPTODEV_FF_HW_ACCELERATED | RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO; priv = dev->data->dev_private; priv->version = version; rte_cryptodev_pmd_probing_finish(dev); return 0; } static int uadk_cryptodev_remove(struct rte_vdev_device *vdev) { struct rte_cryptodev *cryptodev; const char *name; name = rte_vdev_device_name(vdev); if (name == NULL) return -EINVAL; cryptodev = rte_cryptodev_pmd_get_named_dev(name); if (cryptodev == NULL) return -ENODEV; return rte_cryptodev_pmd_destroy(cryptodev); } static struct rte_vdev_driver uadk_crypto_pmd = { .probe = uadk_cryptodev_probe, .remove = uadk_cryptodev_remove, }; static struct cryptodev_driver uadk_crypto_drv; #define UADK_CRYPTO_DRIVER_NAME crypto_uadk RTE_PMD_REGISTER_VDEV(UADK_CRYPTO_DRIVER_NAME, uadk_crypto_pmd); RTE_PMD_REGISTER_CRYPTO_DRIVER(uadk_crypto_drv, uadk_crypto_pmd.driver, uadk_cryptodev_driver_id); RTE_LOG_REGISTER_DEFAULT(uadk_crypto_logtype, INFO);