/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015-2021 Intel Corporation */ #include "pmd_aesni_mb_priv.h" struct aesni_mb_op_buf_data { struct rte_mbuf *m; uint32_t offset; }; /** * Calculate the authentication pre-computes * * @param one_block_hash Function pointer * to calculate digest on ipad/opad * @param ipad Inner pad output byte array * @param opad Outer pad output byte array * @param hkey Authentication key * @param hkey_len Authentication key length * @param blocksize Block size of selected hash algo */ static void calculate_auth_precomputes(hash_one_block_t one_block_hash, uint8_t *ipad, uint8_t *opad, const uint8_t *hkey, uint16_t hkey_len, uint16_t blocksize) { uint32_t i, length; uint8_t ipad_buf[blocksize] __rte_aligned(16); uint8_t opad_buf[blocksize] __rte_aligned(16); /* Setup inner and outer pads */ memset(ipad_buf, HMAC_IPAD_VALUE, blocksize); memset(opad_buf, HMAC_OPAD_VALUE, blocksize); /* XOR hash key with inner and outer pads */ length = hkey_len > blocksize ? blocksize : hkey_len; for (i = 0; i < length; i++) { ipad_buf[i] ^= hkey[i]; opad_buf[i] ^= hkey[i]; } /* Compute partial hashes */ (*one_block_hash)(ipad_buf, ipad); (*one_block_hash)(opad_buf, opad); /* Clean up stack */ memset(ipad_buf, 0, blocksize); memset(opad_buf, 0, blocksize); } static inline int is_aead_algo(IMB_HASH_ALG hash_alg, IMB_CIPHER_MODE cipher_mode) { return (hash_alg == IMB_AUTH_CHACHA20_POLY1305 || hash_alg == IMB_AUTH_AES_CCM || (hash_alg == IMB_AUTH_AES_GMAC && cipher_mode == IMB_CIPHER_GCM)); } /** Set session authentication parameters */ static int aesni_mb_set_session_auth_parameters(const IMB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { hash_one_block_t hash_oneblock_fn = NULL; unsigned int key_larger_block_size = 0; uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 }; uint32_t auth_precompute = 1; if (xform == NULL) { sess->auth.algo = IMB_AUTH_NULL; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) { IPSEC_MB_LOG(ERR, "Crypto xform struct not of type auth"); return -1; } /* Set IV parameters */ sess->auth_iv.offset = xform->auth.iv.offset; sess->auth_iv.length = xform->auth.iv.length; /* Set the request digest size */ sess->auth.req_digest_len = xform->auth.digest_length; /* Select auth generate/verify */ sess->auth.operation = xform->auth.op; /* Set Authentication Parameters */ if (xform->auth.algo == RTE_CRYPTO_AUTH_NULL) { sess->auth.algo = IMB_AUTH_NULL; sess->auth.gen_digest_len = 0; return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) { sess->auth.algo = IMB_AUTH_AES_XCBC; uint16_t xcbc_mac_digest_len = get_truncated_digest_byte_length(IMB_AUTH_AES_XCBC); if (sess->auth.req_digest_len != xcbc_mac_digest_len) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data, sess->auth.xcbc.k1_expanded, sess->auth.xcbc.k2, sess->auth.xcbc.k3); return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) { uint32_t dust[4*15]; sess->auth.algo = IMB_AUTH_AES_CMAC; uint16_t cmac_digest_len = get_digest_byte_length(IMB_AUTH_AES_CMAC); if (sess->auth.req_digest_len > cmac_digest_len) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } /* * Multi-buffer lib supports digest sizes from 4 to 16 bytes * in version 0.50 and sizes of 12 and 16 bytes, * in version 0.49. * If size requested is different, generate the full digest * (16 bytes) in a temporary location and then memcpy * the requested number of bytes. */ if (sess->auth.req_digest_len < 4) sess->auth.gen_digest_len = cmac_digest_len; else sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data, sess->auth.cmac.expkey, dust); IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey, sess->auth.cmac.skey1, sess->auth.cmac.skey2); return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) { sess->cipher.direction = IMB_DIR_ENCRYPT; sess->chain_order = IMB_ORDER_CIPHER_HASH; } else sess->cipher.direction = IMB_DIR_DECRYPT; sess->auth.algo = IMB_AUTH_AES_GMAC; if (sess->auth.req_digest_len > get_digest_byte_length(IMB_AUTH_AES_GMAC)) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; sess->iv.length = xform->auth.iv.length; sess->iv.offset = xform->auth.iv.offset; switch (xform->auth.key.length) { case IMB_KEY_128_BYTES: IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES; break; case IMB_KEY_192_BYTES: IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = IMB_KEY_192_BYTES; break; case IMB_KEY_256_BYTES: IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data, &sess->cipher.gcm_key); sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES; break; default: IPSEC_MB_LOG(ERR, "Invalid authentication key length\n"); return -EINVAL; } return 0; } if (xform->auth.algo == RTE_CRYPTO_AUTH_ZUC_EIA3) { if (xform->auth.key.length == 16) { sess->auth.algo = IMB_AUTH_ZUC_EIA3_BITLEN; if (sess->auth.req_digest_len != 4) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } } else if (xform->auth.key.length == 32) { sess->auth.algo = IMB_AUTH_ZUC256_EIA3_BITLEN; #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM if (sess->auth.req_digest_len != 4 && sess->auth.req_digest_len != 8 && sess->auth.req_digest_len != 16) { #else if (sess->auth.req_digest_len != 4) { #endif IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } } else { IPSEC_MB_LOG(ERR, "Invalid authentication key length\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; memcpy(sess->auth.zuc_auth_key, xform->auth.key.data, xform->auth.key.length); return 0; } else if (xform->auth.algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2) { sess->auth.algo = IMB_AUTH_SNOW3G_UIA2_BITLEN; uint16_t snow3g_uia2_digest_len = get_truncated_digest_byte_length( IMB_AUTH_SNOW3G_UIA2_BITLEN); if (sess->auth.req_digest_len != snow3g_uia2_digest_len) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->auth.key.data, &sess->auth.pKeySched_snow3g_auth); return 0; } else if (xform->auth.algo == RTE_CRYPTO_AUTH_KASUMI_F9) { sess->auth.algo = IMB_AUTH_KASUMI_UIA1; uint16_t kasumi_f9_digest_len = get_truncated_digest_byte_length(IMB_AUTH_KASUMI_UIA1); if (sess->auth.req_digest_len != kasumi_f9_digest_len) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } sess->auth.gen_digest_len = sess->auth.req_digest_len; IMB_KASUMI_INIT_F9_KEY_SCHED(mb_mgr, xform->auth.key.data, &sess->auth.pKeySched_kasumi_auth); return 0; } switch (xform->auth.algo) { case RTE_CRYPTO_AUTH_MD5_HMAC: sess->auth.algo = IMB_AUTH_MD5; hash_oneblock_fn = mb_mgr->md5_one_block; break; case RTE_CRYPTO_AUTH_SHA1_HMAC: sess->auth.algo = IMB_AUTH_HMAC_SHA_1; hash_oneblock_fn = mb_mgr->sha1_one_block; if (xform->auth.key.length > get_auth_algo_blocksize( IMB_AUTH_HMAC_SHA_1)) { IMB_SHA1(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA1: sess->auth.algo = IMB_AUTH_SHA_1; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA224_HMAC: sess->auth.algo = IMB_AUTH_HMAC_SHA_224; hash_oneblock_fn = mb_mgr->sha224_one_block; if (xform->auth.key.length > get_auth_algo_blocksize( IMB_AUTH_HMAC_SHA_224)) { IMB_SHA224(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA224: sess->auth.algo = IMB_AUTH_SHA_224; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA256_HMAC: sess->auth.algo = IMB_AUTH_HMAC_SHA_256; hash_oneblock_fn = mb_mgr->sha256_one_block; if (xform->auth.key.length > get_auth_algo_blocksize( IMB_AUTH_HMAC_SHA_256)) { IMB_SHA256(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA256: sess->auth.algo = IMB_AUTH_SHA_256; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA384_HMAC: sess->auth.algo = IMB_AUTH_HMAC_SHA_384; hash_oneblock_fn = mb_mgr->sha384_one_block; if (xform->auth.key.length > get_auth_algo_blocksize( IMB_AUTH_HMAC_SHA_384)) { IMB_SHA384(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA384: sess->auth.algo = IMB_AUTH_SHA_384; auth_precompute = 0; break; case RTE_CRYPTO_AUTH_SHA512_HMAC: sess->auth.algo = IMB_AUTH_HMAC_SHA_512; hash_oneblock_fn = mb_mgr->sha512_one_block; if (xform->auth.key.length > get_auth_algo_blocksize( IMB_AUTH_HMAC_SHA_512)) { IMB_SHA512(mb_mgr, xform->auth.key.data, xform->auth.key.length, hashed_key); key_larger_block_size = 1; } break; case RTE_CRYPTO_AUTH_SHA512: sess->auth.algo = IMB_AUTH_SHA_512; auth_precompute = 0; break; default: IPSEC_MB_LOG(ERR, "Unsupported authentication algorithm selection"); return -ENOTSUP; } uint16_t trunc_digest_size = get_truncated_digest_byte_length(sess->auth.algo); uint16_t full_digest_size = get_digest_byte_length(sess->auth.algo); if (sess->auth.req_digest_len > full_digest_size || sess->auth.req_digest_len == 0) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } if (sess->auth.req_digest_len != trunc_digest_size && sess->auth.req_digest_len != full_digest_size) sess->auth.gen_digest_len = full_digest_size; else sess->auth.gen_digest_len = sess->auth.req_digest_len; /* Plain SHA does not require precompute key */ if (auth_precompute == 0) return 0; /* Calculate Authentication precomputes */ if (key_larger_block_size) { calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, hashed_key, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); } else { calculate_auth_precomputes(hash_oneblock_fn, sess->auth.pads.inner, sess->auth.pads.outer, xform->auth.key.data, xform->auth.key.length, get_auth_algo_blocksize(sess->auth.algo)); } return 0; } /** Set session cipher parameters */ static int aesni_mb_set_session_cipher_parameters(const IMB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { uint8_t is_aes = 0; uint8_t is_3DES = 0; uint8_t is_docsis = 0; uint8_t is_zuc = 0; uint8_t is_snow3g = 0; uint8_t is_kasumi = 0; if (xform == NULL) { sess->cipher.mode = IMB_CIPHER_NULL; return 0; } if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) { IPSEC_MB_LOG(ERR, "Crypto xform struct not of type cipher"); return -EINVAL; } /* Select cipher direction */ switch (xform->cipher.op) { case RTE_CRYPTO_CIPHER_OP_ENCRYPT: sess->cipher.direction = IMB_DIR_ENCRYPT; break; case RTE_CRYPTO_CIPHER_OP_DECRYPT: sess->cipher.direction = IMB_DIR_DECRYPT; break; default: IPSEC_MB_LOG(ERR, "Invalid cipher operation parameter"); return -EINVAL; } /* Select cipher mode */ switch (xform->cipher.algo) { case RTE_CRYPTO_CIPHER_AES_CBC: sess->cipher.mode = IMB_CIPHER_CBC; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_CTR: sess->cipher.mode = IMB_CIPHER_CNTR; is_aes = 1; break; case RTE_CRYPTO_CIPHER_AES_DOCSISBPI: sess->cipher.mode = IMB_CIPHER_DOCSIS_SEC_BPI; is_docsis = 1; break; case RTE_CRYPTO_CIPHER_DES_CBC: sess->cipher.mode = IMB_CIPHER_DES; break; case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: sess->cipher.mode = IMB_CIPHER_DOCSIS_DES; break; case RTE_CRYPTO_CIPHER_3DES_CBC: sess->cipher.mode = IMB_CIPHER_DES3; is_3DES = 1; break; case RTE_CRYPTO_CIPHER_AES_ECB: sess->cipher.mode = IMB_CIPHER_ECB; is_aes = 1; break; case RTE_CRYPTO_CIPHER_ZUC_EEA3: sess->cipher.mode = IMB_CIPHER_ZUC_EEA3; is_zuc = 1; break; case RTE_CRYPTO_CIPHER_SNOW3G_UEA2: sess->cipher.mode = IMB_CIPHER_SNOW3G_UEA2_BITLEN; is_snow3g = 1; break; case RTE_CRYPTO_CIPHER_KASUMI_F8: sess->cipher.mode = IMB_CIPHER_KASUMI_UEA1_BITLEN; is_kasumi = 1; break; case RTE_CRYPTO_CIPHER_NULL: sess->cipher.mode = IMB_CIPHER_NULL; sess->cipher.key_length_in_bytes = 0; sess->iv.offset = xform->cipher.iv.offset; sess->iv.length = xform->cipher.iv.length; return 0; default: IPSEC_MB_LOG(ERR, "Unsupported cipher mode parameter"); return -ENOTSUP; } /* Set IV parameters */ sess->iv.offset = xform->cipher.iv.offset; sess->iv.length = xform->cipher.iv.length; /* Check key length and choose key expansion function for AES */ if (is_aes) { switch (xform->cipher.key.length) { case IMB_KEY_128_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case IMB_KEY_192_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_192_BYTES; IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case IMB_KEY_256_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES; IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; default: IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } } else if (is_docsis) { switch (xform->cipher.key.length) { case IMB_KEY_128_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case IMB_KEY_256_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES; IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; default: IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } } else if (is_3DES) { uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0], sess->cipher.exp_3des_keys.key[1], sess->cipher.exp_3des_keys.key[2]}; switch (xform->cipher.key.length) { case 24: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, keys[1], xform->cipher.key.data + 8); IMB_DES_KEYSCHED(mb_mgr, keys[2], xform->cipher.key.data + 16); /* Initialize keys - 24 bytes: [K1-K2-K3] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2]; break; case 16: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, keys[1], xform->cipher.key.data + 8); /* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0]; break; case 8: IMB_DES_KEYSCHED(mb_mgr, keys[0], xform->cipher.key.data); /* Initialize keys - 8 bytes: [K1 = K2 = K3] */ sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0]; sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0]; break; default: IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 24; } else if (is_zuc) { if (xform->cipher.key.length != 16 && xform->cipher.key.length != 32) { IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = xform->cipher.key.length; memcpy(sess->cipher.zuc_cipher_key, xform->cipher.key.data, xform->cipher.key.length); } else if (is_snow3g) { if (xform->cipher.key.length != 16) { IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 16; IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->cipher.key.data, &sess->cipher.pKeySched_snow3g_cipher); } else if (is_kasumi) { if (xform->cipher.key.length != 16) { IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 16; IMB_KASUMI_INIT_F8_KEY_SCHED(mb_mgr, xform->cipher.key.data, &sess->cipher.pKeySched_kasumi_cipher); } else { if (xform->cipher.key.length != 8) { IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 8; IMB_DES_KEYSCHED(mb_mgr, (uint64_t *)sess->cipher.expanded_aes_keys.encode, xform->cipher.key.data); IMB_DES_KEYSCHED(mb_mgr, (uint64_t *)sess->cipher.expanded_aes_keys.decode, xform->cipher.key.data); } return 0; } static int aesni_mb_set_session_aead_parameters(const IMB_MGR *mb_mgr, struct aesni_mb_session *sess, const struct rte_crypto_sym_xform *xform) { switch (xform->aead.op) { case RTE_CRYPTO_AEAD_OP_ENCRYPT: sess->cipher.direction = IMB_DIR_ENCRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; break; case RTE_CRYPTO_AEAD_OP_DECRYPT: sess->cipher.direction = IMB_DIR_DECRYPT; sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; break; default: IPSEC_MB_LOG(ERR, "Invalid aead operation parameter"); return -EINVAL; } /* Set IV parameters */ sess->iv.offset = xform->aead.iv.offset; sess->iv.length = xform->aead.iv.length; /* Set digest sizes */ sess->auth.req_digest_len = xform->aead.digest_length; sess->auth.gen_digest_len = sess->auth.req_digest_len; switch (xform->aead.algo) { case RTE_CRYPTO_AEAD_AES_CCM: sess->cipher.mode = IMB_CIPHER_CCM; sess->auth.algo = IMB_AUTH_AES_CCM; /* Check key length and choose key expansion function for AES */ switch (xform->aead.key.length) { case IMB_KEY_128_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES; IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; case IMB_KEY_256_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES; IMB_AES_KEYEXP_256(mb_mgr, xform->aead.key.data, sess->cipher.expanded_aes_keys.encode, sess->cipher.expanded_aes_keys.decode); break; default: IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } /* CCM digests must be between 4 and 16 and an even number */ if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN || sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN || (sess->auth.req_digest_len & 1) == 1) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } break; case RTE_CRYPTO_AEAD_AES_GCM: sess->cipher.mode = IMB_CIPHER_GCM; sess->auth.algo = IMB_AUTH_AES_GMAC; switch (xform->aead.key.length) { case IMB_KEY_128_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES; IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; case IMB_KEY_192_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_192_BYTES; IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; case IMB_KEY_256_BYTES: sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES; IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data, &sess->cipher.gcm_key); break; default: IPSEC_MB_LOG(ERR, "Invalid cipher key length"); return -EINVAL; } /* GCM digest size must be between 1 and 16 */ if (sess->auth.req_digest_len == 0 || sess->auth.req_digest_len > 16) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } break; case RTE_CRYPTO_AEAD_CHACHA20_POLY1305: sess->cipher.mode = IMB_CIPHER_CHACHA20_POLY1305; sess->auth.algo = IMB_AUTH_CHACHA20_POLY1305; if (xform->aead.key.length != 32) { IPSEC_MB_LOG(ERR, "Invalid key length"); return -EINVAL; } sess->cipher.key_length_in_bytes = 32; memcpy(sess->cipher.expanded_aes_keys.encode, xform->aead.key.data, 32); if (sess->auth.req_digest_len != 16) { IPSEC_MB_LOG(ERR, "Invalid digest size\n"); return -EINVAL; } break; default: IPSEC_MB_LOG(ERR, "Unsupported aead mode parameter"); return -ENOTSUP; } return 0; } /** Configure a aesni multi-buffer session from a crypto xform chain */ static int aesni_mb_session_configure(IMB_MGR *mb_mgr, void *priv_sess, const struct rte_crypto_sym_xform *xform) { const struct rte_crypto_sym_xform *auth_xform = NULL; const struct rte_crypto_sym_xform *cipher_xform = NULL; const struct rte_crypto_sym_xform *aead_xform = NULL; enum ipsec_mb_operation mode; struct aesni_mb_session *sess = (struct aesni_mb_session *) priv_sess; int ret; ret = ipsec_mb_parse_xform(xform, &mode, &auth_xform, &cipher_xform, &aead_xform); if (ret) return ret; /* Select Crypto operation - hash then cipher / cipher then hash */ switch (mode) { case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT: sess->chain_order = IMB_ORDER_HASH_CIPHER; break; case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN: case IPSEC_MB_OP_DECRYPT_THEN_HASH_VERIFY: sess->chain_order = IMB_ORDER_CIPHER_HASH; break; case IPSEC_MB_OP_HASH_GEN_ONLY: case IPSEC_MB_OP_HASH_VERIFY_ONLY: case IPSEC_MB_OP_HASH_GEN_THEN_ENCRYPT: sess->chain_order = IMB_ORDER_HASH_CIPHER; break; /* * Multi buffer library operates only at two modes, * IMB_ORDER_CIPHER_HASH and IMB_ORDER_HASH_CIPHER. * When doing ciphering only, chain order depends * on cipher operation: encryption is always * the first operation and decryption the last one. */ case IPSEC_MB_OP_ENCRYPT_ONLY: sess->chain_order = IMB_ORDER_CIPHER_HASH; break; case IPSEC_MB_OP_DECRYPT_ONLY: sess->chain_order = IMB_ORDER_HASH_CIPHER; break; case IPSEC_MB_OP_AEAD_AUTHENTICATED_ENCRYPT: sess->chain_order = IMB_ORDER_CIPHER_HASH; sess->aead.aad_len = xform->aead.aad_length; break; case IPSEC_MB_OP_AEAD_AUTHENTICATED_DECRYPT: sess->chain_order = IMB_ORDER_HASH_CIPHER; sess->aead.aad_len = xform->aead.aad_length; break; case IPSEC_MB_OP_NOT_SUPPORTED: default: IPSEC_MB_LOG(ERR, "Unsupported operation chain order parameter"); return -ENOTSUP; } /* Default IV length = 0 */ sess->iv.length = 0; sess->auth_iv.length = 0; ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform); if (ret != 0) { IPSEC_MB_LOG(ERR, "Invalid/unsupported authentication parameters"); return ret; } ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess, cipher_xform); if (ret != 0) { IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters"); return ret; } if (aead_xform) { ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess, aead_xform); if (ret != 0) { IPSEC_MB_LOG(ERR, "Invalid/unsupported aead parameters"); return ret; } } return 0; } #ifdef AESNI_MB_DOCSIS_SEC_ENABLED /** Check DOCSIS security session configuration is valid */ static int check_docsis_sec_session(struct rte_security_session_conf *conf) { struct rte_crypto_sym_xform *crypto_sym = conf->crypto_xform; struct rte_security_docsis_xform *docsis = &conf->docsis; /* Downlink: CRC generate -> Cipher encrypt */ if (docsis->direction == RTE_SECURITY_DOCSIS_DOWNLINK) { if (crypto_sym != NULL && crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER && crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT && crypto_sym->cipher.algo == RTE_CRYPTO_CIPHER_AES_DOCSISBPI && (crypto_sym->cipher.key.length == IMB_KEY_128_BYTES || crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) && crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE && crypto_sym->next == NULL) { return 0; } /* Uplink: Cipher decrypt -> CRC verify */ } else if (docsis->direction == RTE_SECURITY_DOCSIS_UPLINK) { if (crypto_sym != NULL && crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER && crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT && crypto_sym->cipher.algo == RTE_CRYPTO_CIPHER_AES_DOCSISBPI && (crypto_sym->cipher.key.length == IMB_KEY_128_BYTES || crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) && crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE && crypto_sym->next == NULL) { return 0; } } return -EINVAL; } /** Set DOCSIS security session auth (CRC) parameters */ static int aesni_mb_set_docsis_sec_session_auth_parameters(struct aesni_mb_session *sess, struct rte_security_docsis_xform *xform) { if (xform == NULL) { IPSEC_MB_LOG(ERR, "Invalid DOCSIS xform"); return -EINVAL; } /* Select CRC generate/verify */ if (xform->direction == RTE_SECURITY_DOCSIS_UPLINK) { sess->auth.algo = IMB_AUTH_DOCSIS_CRC32; sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; } else if (xform->direction == RTE_SECURITY_DOCSIS_DOWNLINK) { sess->auth.algo = IMB_AUTH_DOCSIS_CRC32; sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; } else { IPSEC_MB_LOG(ERR, "Unsupported DOCSIS direction"); return -ENOTSUP; } sess->auth.req_digest_len = RTE_ETHER_CRC_LEN; sess->auth.gen_digest_len = RTE_ETHER_CRC_LEN; return 0; } /** * Parse DOCSIS security session configuration and set private session * parameters */ static int aesni_mb_set_docsis_sec_session_parameters( __rte_unused struct rte_cryptodev *dev, struct rte_security_session_conf *conf, void *sess) { IMB_MGR *mb_mgr = alloc_init_mb_mgr(); struct rte_security_docsis_xform *docsis_xform; struct rte_crypto_sym_xform *cipher_xform; struct aesni_mb_session *ipsec_sess = sess; int ret = 0; if (!mb_mgr) return -ENOMEM; ret = check_docsis_sec_session(conf); if (ret) { IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration"); goto error_exit; } switch (conf->docsis.direction) { case RTE_SECURITY_DOCSIS_UPLINK: ipsec_sess->chain_order = IMB_ORDER_CIPHER_HASH; docsis_xform = &conf->docsis; cipher_xform = conf->crypto_xform; break; case RTE_SECURITY_DOCSIS_DOWNLINK: ipsec_sess->chain_order = IMB_ORDER_HASH_CIPHER; cipher_xform = conf->crypto_xform; docsis_xform = &conf->docsis; break; default: IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration"); ret = -EINVAL; goto error_exit; } /* Default IV length = 0 */ ipsec_sess->iv.length = 0; ret = aesni_mb_set_docsis_sec_session_auth_parameters(ipsec_sess, docsis_xform); if (ret != 0) { IPSEC_MB_LOG(ERR, "Invalid/unsupported DOCSIS parameters"); goto error_exit; } ret = aesni_mb_set_session_cipher_parameters(mb_mgr, ipsec_sess, cipher_xform); if (ret != 0) { IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters"); goto error_exit; } error_exit: free_mb_mgr(mb_mgr); return ret; } #endif static inline uint64_t auth_start_offset(struct rte_crypto_op *op, struct aesni_mb_session *session, uint32_t oop, const uint32_t auth_offset, const uint32_t cipher_offset, const uint32_t auth_length, const uint32_t cipher_length, uint8_t lb_sgl) { struct rte_mbuf *m_src, *m_dst; uint8_t *p_src, *p_dst; uintptr_t u_src, u_dst; uint32_t cipher_end, auth_end; /* Only cipher then hash needs special calculation. */ if (!oop || session->chain_order != IMB_ORDER_CIPHER_HASH || lb_sgl) return auth_offset; m_src = op->sym->m_src; m_dst = op->sym->m_dst; p_src = rte_pktmbuf_mtod(m_src, uint8_t *); p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *); u_src = (uintptr_t)p_src; u_dst = (uintptr_t)p_dst + auth_offset; /** * Copy the content between cipher offset and auth offset for generating * correct digest. */ if (cipher_offset > auth_offset) memcpy(p_dst + auth_offset, p_src + auth_offset, cipher_offset - auth_offset); /** * Copy the content between (cipher offset + length) and (auth offset + * length) for generating correct digest */ cipher_end = cipher_offset + cipher_length; auth_end = auth_offset + auth_length; if (cipher_end < auth_end) memcpy(p_dst + cipher_end, p_src + cipher_end, auth_end - cipher_end); /** * Since intel-ipsec-mb only supports positive values, * we need to deduct the correct offset between src and dst. */ return u_src < u_dst ? (u_dst - u_src) : (UINT64_MAX - u_src + u_dst + 1); } static inline void set_cpu_mb_job_params(IMB_JOB *job, struct aesni_mb_session *session, union rte_crypto_sym_ofs sofs, void *buf, uint32_t len, struct rte_crypto_va_iova_ptr *iv, struct rte_crypto_va_iova_ptr *aad, void *digest, void *udata) { /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->key_len_in_bytes = session->cipher.key_length_in_bytes; /* Set authentication parameters */ job->hash_alg = session->auth.algo; job->iv = iv->va; switch (job->hash_alg) { case IMB_AUTH_AES_XCBC: job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded; job->u.XCBC._k2 = session->auth.xcbc.k2; job->u.XCBC._k3 = session->auth.xcbc.k3; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; break; case IMB_AUTH_AES_CCM: job->u.CCM.aad = (uint8_t *)aad->va + 18; job->u.CCM.aad_len_in_bytes = session->aead.aad_len; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; job->iv++; break; case IMB_AUTH_AES_CMAC: job->u.CMAC._key_expanded = session->auth.cmac.expkey; job->u.CMAC._skey1 = session->auth.cmac.skey1; job->u.CMAC._skey2 = session->auth.cmac.skey2; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; break; case IMB_AUTH_AES_GMAC: if (session->cipher.mode == IMB_CIPHER_GCM) { job->u.GCM.aad = aad->va; job->u.GCM.aad_len_in_bytes = session->aead.aad_len; } else { /* For GMAC */ job->u.GCM.aad = buf; job->u.GCM.aad_len_in_bytes = len; job->cipher_mode = IMB_CIPHER_GCM; } job->enc_keys = &session->cipher.gcm_key; job->dec_keys = &session->cipher.gcm_key; break; case IMB_AUTH_CHACHA20_POLY1305: job->u.CHACHA20_POLY1305.aad = aad->va; job->u.CHACHA20_POLY1305.aad_len_in_bytes = session->aead.aad_len; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.encode; break; default: job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner; job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer; if (job->cipher_mode == IMB_CIPHER_DES3) { job->enc_keys = session->cipher.exp_3des_keys.ks_ptr; job->dec_keys = session->cipher.exp_3des_keys.ks_ptr; } else { job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; } } /* * Multi-buffer library current only support returning a truncated * digest length as specified in the relevant IPsec RFCs */ /* Set digest location and length */ job->auth_tag_output = digest; job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; /* Data Parameters */ job->src = buf; job->dst = (uint8_t *)buf + sofs.ofs.cipher.head; job->cipher_start_src_offset_in_bytes = sofs.ofs.cipher.head; job->hash_start_src_offset_in_bytes = sofs.ofs.auth.head; if (job->hash_alg == IMB_AUTH_AES_GMAC && session->cipher.mode != IMB_CIPHER_GCM) { job->msg_len_to_hash_in_bytes = 0; job->msg_len_to_cipher_in_bytes = 0; } else { job->msg_len_to_hash_in_bytes = len - sofs.ofs.auth.head - sofs.ofs.auth.tail; job->msg_len_to_cipher_in_bytes = len - sofs.ofs.cipher.head - sofs.ofs.cipher.tail; } job->user_data = udata; } static int handle_aead_sgl_job(IMB_JOB *job, IMB_MGR *mb_mgr, uint32_t *total_len, struct aesni_mb_op_buf_data *src_data, struct aesni_mb_op_buf_data *dst_data) { uint32_t data_len, part_len; if (*total_len == 0) { job->sgl_state = IMB_SGL_COMPLETE; return 0; } if (src_data->m == NULL) { IPSEC_MB_LOG(ERR, "Invalid source buffer"); return -EINVAL; } job->sgl_state = IMB_SGL_UPDATE; data_len = src_data->m->data_len - src_data->offset; job->src = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *, src_data->offset); if (dst_data->m != NULL) { if (dst_data->m->data_len - dst_data->offset == 0) { dst_data->m = dst_data->m->next; if (dst_data->m == NULL) { IPSEC_MB_LOG(ERR, "Invalid destination buffer"); return -EINVAL; } dst_data->offset = 0; } part_len = RTE_MIN(data_len, (dst_data->m->data_len - dst_data->offset)); job->dst = rte_pktmbuf_mtod_offset(dst_data->m, uint8_t *, dst_data->offset); dst_data->offset += part_len; } else { part_len = RTE_MIN(data_len, *total_len); job->dst = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *, src_data->offset); } job->msg_len_to_cipher_in_bytes = part_len; job->msg_len_to_hash_in_bytes = part_len; job = IMB_SUBMIT_JOB(mb_mgr); *total_len -= part_len; if (part_len != data_len) { src_data->offset += part_len; } else { src_data->m = src_data->m->next; src_data->offset = 0; } return 0; } static uint64_t sgl_linear_cipher_auth_len(IMB_JOB *job, uint64_t *auth_len) { uint64_t cipher_len; if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN || job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN) cipher_len = (job->msg_len_to_cipher_in_bits >> 3) + (job->cipher_start_src_offset_in_bits >> 3); else cipher_len = job->msg_len_to_cipher_in_bytes + job->cipher_start_src_offset_in_bytes; if (job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN || job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN) *auth_len = (job->msg_len_to_hash_in_bits >> 3) + job->hash_start_src_offset_in_bytes; else if (job->hash_alg == IMB_AUTH_AES_GMAC) *auth_len = job->u.GCM.aad_len_in_bytes; else *auth_len = job->msg_len_to_hash_in_bytes + job->hash_start_src_offset_in_bytes; return RTE_MAX(*auth_len, cipher_len); } static int handle_sgl_linear(IMB_JOB *job, struct rte_crypto_op *op, uint32_t dst_offset, struct aesni_mb_session *session) { uint64_t auth_len, total_len; uint8_t *src, *linear_buf = NULL; int lb_offset = 0; struct rte_mbuf *src_seg; uint16_t src_len; total_len = sgl_linear_cipher_auth_len(job, &auth_len); linear_buf = rte_zmalloc(NULL, total_len + job->auth_tag_output_len_in_bytes, 0); if (linear_buf == NULL) { IPSEC_MB_LOG(ERR, "Error allocating memory for SGL Linear Buffer\n"); return -1; } for (src_seg = op->sym->m_src; (src_seg != NULL) && (total_len - lb_offset > 0); src_seg = src_seg->next) { src = rte_pktmbuf_mtod(src_seg, uint8_t *); src_len = RTE_MIN(src_seg->data_len, total_len - lb_offset); rte_memcpy(linear_buf + lb_offset, src, src_len); lb_offset += src_len; } job->src = linear_buf; job->dst = linear_buf + dst_offset; job->user_data2 = linear_buf; if (job->hash_alg == IMB_AUTH_AES_GMAC) job->u.GCM.aad = linear_buf; if (session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) job->auth_tag_output = linear_buf + lb_offset; else job->auth_tag_output = linear_buf + auth_len; return 0; } static inline int imb_lib_support_sgl_algo(IMB_CIPHER_MODE alg) { if (alg == IMB_CIPHER_CHACHA20_POLY1305 || alg == IMB_CIPHER_GCM) return 1; return 0; } /** * Process a crypto operation and complete a IMB_JOB job structure for * submission to the multi buffer library for processing. * * @param qp queue pair * @param job IMB_JOB structure to fill * @param op crypto op to process * @param digest_idx ID for digest to use * * @return * - 0 on success, the IMB_JOB will be filled * - -1 if invalid session or errors allocationg SGL linear buffer, * IMB_JOB will not be filled */ static inline int set_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp, struct rte_crypto_op *op, uint8_t *digest_idx, IMB_MGR *mb_mgr) { struct rte_mbuf *m_src = op->sym->m_src, *m_dst; struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp); struct aesni_mb_op_buf_data src_sgl = {0}; struct aesni_mb_op_buf_data dst_sgl = {0}; struct aesni_mb_session *session; uint32_t m_offset, oop; uint32_t auth_off_in_bytes; uint32_t ciph_off_in_bytes; uint32_t auth_len_in_bytes; uint32_t ciph_len_in_bytes; uint32_t total_len; IMB_JOB base_job; uint8_t sgl = 0; uint8_t lb_sgl = 0; int ret; session = ipsec_mb_get_session_private(qp, op); if (session == NULL) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return -1; } /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->key_len_in_bytes = session->cipher.key_length_in_bytes; /* Set authentication parameters */ job->hash_alg = session->auth.algo; const int aead = is_aead_algo(job->hash_alg, job->cipher_mode); if (job->cipher_mode == IMB_CIPHER_DES3) { job->enc_keys = session->cipher.exp_3des_keys.ks_ptr; job->dec_keys = session->cipher.exp_3des_keys.ks_ptr; } else { job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; } if (!op->sym->m_dst) { /* in-place operation */ m_dst = m_src; oop = 0; } else if (op->sym->m_dst == op->sym->m_src) { /* in-place operation */ m_dst = m_src; oop = 0; } else { /* out-of-place operation */ m_dst = op->sym->m_dst; oop = 1; } if (m_src->nb_segs > 1 || m_dst->nb_segs > 1) { sgl = 1; if (!imb_lib_support_sgl_algo(session->cipher.mode)) lb_sgl = 1; } switch (job->hash_alg) { case IMB_AUTH_AES_XCBC: job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded; job->u.XCBC._k2 = session->auth.xcbc.k2; job->u.XCBC._k3 = session->auth.xcbc.k3; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; break; case IMB_AUTH_AES_CCM: job->u.CCM.aad = op->sym->aead.aad.data + 18; job->u.CCM.aad_len_in_bytes = session->aead.aad_len; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; break; case IMB_AUTH_AES_CMAC: job->u.CMAC._key_expanded = session->auth.cmac.expkey; job->u.CMAC._skey1 = session->auth.cmac.skey1; job->u.CMAC._skey2 = session->auth.cmac.skey2; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; break; case IMB_AUTH_AES_GMAC: if (session->cipher.mode == IMB_CIPHER_GCM) { job->u.GCM.aad = op->sym->aead.aad.data; job->u.GCM.aad_len_in_bytes = session->aead.aad_len; if (sgl) { job->u.GCM.ctx = &qp_data->gcm_sgl_ctx; job->cipher_mode = IMB_CIPHER_GCM_SGL; job->hash_alg = IMB_AUTH_GCM_SGL; } } else { /* For GMAC */ job->u.GCM.aad = rte_pktmbuf_mtod_offset(m_src, uint8_t *, op->sym->auth.data.offset); job->u.GCM.aad_len_in_bytes = op->sym->auth.data.length; job->cipher_mode = IMB_CIPHER_GCM; } job->enc_keys = &session->cipher.gcm_key; job->dec_keys = &session->cipher.gcm_key; break; case IMB_AUTH_ZUC_EIA3_BITLEN: case IMB_AUTH_ZUC256_EIA3_BITLEN: job->u.ZUC_EIA3._key = session->auth.zuc_auth_key; job->u.ZUC_EIA3._iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->auth_iv.offset); break; case IMB_AUTH_SNOW3G_UIA2_BITLEN: job->u.SNOW3G_UIA2._key = (void *) &session->auth.pKeySched_snow3g_auth; job->u.SNOW3G_UIA2._iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->auth_iv.offset); break; case IMB_AUTH_KASUMI_UIA1: job->u.KASUMI_UIA1._key = (void *) &session->auth.pKeySched_kasumi_auth; break; case IMB_AUTH_CHACHA20_POLY1305: job->u.CHACHA20_POLY1305.aad = op->sym->aead.aad.data; job->u.CHACHA20_POLY1305.aad_len_in_bytes = session->aead.aad_len; if (sgl) { job->u.CHACHA20_POLY1305.ctx = &qp_data->chacha_sgl_ctx; job->cipher_mode = IMB_CIPHER_CHACHA20_POLY1305_SGL; job->hash_alg = IMB_AUTH_CHACHA20_POLY1305_SGL; } job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.encode; break; default: job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner; job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer; } if (aead) m_offset = op->sym->aead.data.offset; else m_offset = op->sym->cipher.data.offset; if (job->cipher_mode == IMB_CIPHER_ZUC_EEA3) { job->enc_keys = session->cipher.zuc_cipher_key; job->dec_keys = session->cipher.zuc_cipher_key; m_offset >>= 3; } else if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN) { job->enc_keys = &session->cipher.pKeySched_snow3g_cipher; m_offset = 0; } else if (job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN) { job->enc_keys = &session->cipher.pKeySched_kasumi_cipher; m_offset = 0; } /* Set digest output location */ if (job->hash_alg != IMB_AUTH_NULL && session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { job->auth_tag_output = qp_data->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS; } else { if (aead) job->auth_tag_output = op->sym->aead.digest.data; else job->auth_tag_output = op->sym->auth.digest.data; if (session->auth.req_digest_len != session->auth.gen_digest_len) { job->auth_tag_output = qp_data->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS; } } /* * Multi-buffer library current only support returning a truncated * digest length as specified in the relevant IPsec RFCs */ /* Set digest length */ job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; /* Data Parameters */ if (sgl) { job->src = NULL; job->dst = NULL; } else { job->src = rte_pktmbuf_mtod(m_src, uint8_t *); job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset); } switch (job->hash_alg) { case IMB_AUTH_AES_CCM: job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset + 1); break; case IMB_AUTH_AES_GMAC: if (session->cipher.mode == IMB_CIPHER_GCM) { job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; } else { /* AES-GMAC only, only AAD used */ job->msg_len_to_hash_in_bytes = 0; job->hash_start_src_offset_in_bytes = 0; } job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; case IMB_AUTH_GCM_SGL: case IMB_AUTH_CHACHA20_POLY1305_SGL: job->hash_start_src_offset_in_bytes = 0; job->msg_len_to_hash_in_bytes = 0; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; case IMB_AUTH_CHACHA20_POLY1305: job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_hash_in_bytes = op->sym->aead.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; /* ZUC and SNOW3G require length in bits and offset in bytes */ case IMB_AUTH_ZUC_EIA3_BITLEN: case IMB_AUTH_ZUC256_EIA3_BITLEN: case IMB_AUTH_SNOW3G_UIA2_BITLEN: auth_off_in_bytes = op->sym->auth.data.offset >> 3; ciph_off_in_bytes = op->sym->cipher.data.offset >> 3; auth_len_in_bytes = op->sym->auth.data.length >> 3; ciph_len_in_bytes = op->sym->cipher.data.length >> 3; job->hash_start_src_offset_in_bytes = auth_start_offset(op, session, oop, auth_off_in_bytes, ciph_off_in_bytes, auth_len_in_bytes, ciph_len_in_bytes, lb_sgl); job->msg_len_to_hash_in_bits = op->sym->auth.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; /* KASUMI requires lengths and offset in bytes */ case IMB_AUTH_KASUMI_UIA1: auth_off_in_bytes = op->sym->auth.data.offset >> 3; ciph_off_in_bytes = op->sym->cipher.data.offset >> 3; auth_len_in_bytes = op->sym->auth.data.length >> 3; ciph_len_in_bytes = op->sym->cipher.data.length >> 3; job->hash_start_src_offset_in_bytes = auth_start_offset(op, session, oop, auth_off_in_bytes, ciph_off_in_bytes, auth_len_in_bytes, ciph_len_in_bytes, lb_sgl); job->msg_len_to_hash_in_bytes = auth_len_in_bytes; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); break; default: job->hash_start_src_offset_in_bytes = auth_start_offset(op, session, oop, op->sym->auth.data.offset, op->sym->cipher.data.offset, op->sym->auth.data.length, op->sym->cipher.data.length, lb_sgl); job->msg_len_to_hash_in_bytes = op->sym->auth.data.length; job->iv = rte_crypto_op_ctod_offset(op, uint8_t *, session->iv.offset); } switch (job->cipher_mode) { /* ZUC requires length and offset in bytes */ case IMB_CIPHER_ZUC_EEA3: job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset >> 3; job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length >> 3; break; /* ZUC and SNOW3G require length and offset in bits */ case IMB_CIPHER_SNOW3G_UEA2_BITLEN: case IMB_CIPHER_KASUMI_UEA1_BITLEN: job->cipher_start_src_offset_in_bits = op->sym->cipher.data.offset; job->msg_len_to_cipher_in_bits = op->sym->cipher.data.length; break; case IMB_CIPHER_GCM: if (session->cipher.mode == IMB_CIPHER_NULL) { /* AES-GMAC only (only AAD used) */ job->msg_len_to_cipher_in_bytes = 0; job->cipher_start_src_offset_in_bytes = 0; } else { job->cipher_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length; } break; case IMB_CIPHER_CCM: case IMB_CIPHER_CHACHA20_POLY1305: job->cipher_start_src_offset_in_bytes = op->sym->aead.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length; break; case IMB_CIPHER_GCM_SGL: case IMB_CIPHER_CHACHA20_POLY1305_SGL: job->msg_len_to_cipher_in_bytes = 0; job->cipher_start_src_offset_in_bytes = 0; break; default: job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset; job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length; } if (job->cipher_mode == IMB_CIPHER_NULL && oop) { memcpy(job->dst + job->cipher_start_src_offset_in_bytes, job->src + job->cipher_start_src_offset_in_bytes, job->msg_len_to_cipher_in_bytes); } /* Set user data to be crypto operation data struct */ job->user_data = op; if (sgl) { if (lb_sgl) return handle_sgl_linear(job, op, m_offset, session); base_job = *job; job->sgl_state = IMB_SGL_INIT; job = IMB_SUBMIT_JOB(mb_mgr); total_len = op->sym->aead.data.length; src_sgl.m = m_src; src_sgl.offset = m_offset; while (src_sgl.offset >= src_sgl.m->data_len) { src_sgl.offset -= src_sgl.m->data_len; src_sgl.m = src_sgl.m->next; RTE_ASSERT(src_sgl.m != NULL); } if (oop) { dst_sgl.m = m_dst; dst_sgl.offset = m_offset; while (dst_sgl.offset >= dst_sgl.m->data_len) { dst_sgl.offset -= dst_sgl.m->data_len; dst_sgl.m = dst_sgl.m->next; RTE_ASSERT(dst_sgl.m != NULL); } } while (job->sgl_state != IMB_SGL_COMPLETE) { job = IMB_GET_NEXT_JOB(mb_mgr); *job = base_job; ret = handle_aead_sgl_job(job, mb_mgr, &total_len, &src_sgl, &dst_sgl); if (ret < 0) return ret; } } return 0; } #ifdef AESNI_MB_DOCSIS_SEC_ENABLED /** * Process a crypto operation containing a security op and complete a * IMB_JOB job structure for submission to the multi buffer library for * processing. */ static inline int set_sec_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp, struct rte_crypto_op *op, uint8_t *digest_idx) { struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp); struct rte_mbuf *m_src, *m_dst; struct rte_crypto_sym_op *sym; struct aesni_mb_session *session = NULL; if (unlikely(op->sess_type != RTE_CRYPTO_OP_SECURITY_SESSION)) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return -1; } session = SECURITY_GET_SESS_PRIV(op->sym->session); if (unlikely(session == NULL)) { op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; return -1; } /* Only DOCSIS protocol operations supported now */ if (session->cipher.mode != IMB_CIPHER_DOCSIS_SEC_BPI || session->auth.algo != IMB_AUTH_DOCSIS_CRC32) { op->status = RTE_CRYPTO_OP_STATUS_ERROR; return -1; } sym = op->sym; m_src = sym->m_src; if (likely(sym->m_dst == NULL || sym->m_dst == m_src)) { /* in-place operation */ m_dst = m_src; } else { /* out-of-place operation not supported */ op->status = RTE_CRYPTO_OP_STATUS_ERROR; return -ENOTSUP; } /* Set crypto operation */ job->chain_order = session->chain_order; /* Set cipher parameters */ job->cipher_direction = session->cipher.direction; job->cipher_mode = session->cipher.mode; job->key_len_in_bytes = session->cipher.key_length_in_bytes; job->enc_keys = session->cipher.expanded_aes_keys.encode; job->dec_keys = session->cipher.expanded_aes_keys.decode; /* Set IV parameters */ job->iv_len_in_bytes = session->iv.length; job->iv = (uint8_t *)op + session->iv.offset; /* Set authentication parameters */ job->hash_alg = session->auth.algo; /* Set digest output location */ job->auth_tag_output = qp_data->temp_digests[*digest_idx]; *digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS; /* Set digest length */ job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len; /* Set data parameters */ job->src = rte_pktmbuf_mtod(m_src, uint8_t *); job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, sym->cipher.data.offset); job->cipher_start_src_offset_in_bytes = sym->cipher.data.offset; job->msg_len_to_cipher_in_bytes = sym->cipher.data.length; job->hash_start_src_offset_in_bytes = sym->auth.data.offset; job->msg_len_to_hash_in_bytes = sym->auth.data.length; job->user_data = op; return 0; } static inline void verify_docsis_sec_crc(IMB_JOB *job, uint8_t *status) { uint16_t crc_offset; uint8_t *crc; if (!job->msg_len_to_hash_in_bytes) return; crc_offset = job->hash_start_src_offset_in_bytes + job->msg_len_to_hash_in_bytes - job->cipher_start_src_offset_in_bytes; crc = job->dst + crc_offset; /* Verify CRC (at the end of the message) */ if (memcmp(job->auth_tag_output, crc, RTE_ETHER_CRC_LEN) != 0) *status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } #endif static inline void verify_digest(IMB_JOB *job, void *digest, uint16_t len, uint8_t *status) { /* Verify digest if required */ if (memcmp(job->auth_tag_output, digest, len) != 0) *status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; } static inline void generate_digest(IMB_JOB *job, struct rte_crypto_op *op, struct aesni_mb_session *sess) { /* No extra copy needed */ if (likely(sess->auth.req_digest_len == sess->auth.gen_digest_len)) return; /* * This can only happen for HMAC, so only digest * for authentication algos is required */ memcpy(op->sym->auth.digest.data, job->auth_tag_output, sess->auth.req_digest_len); } static void post_process_sgl_linear(struct rte_crypto_op *op, IMB_JOB *job, struct aesni_mb_session *sess, uint8_t *linear_buf) { int lb_offset = 0; struct rte_mbuf *m_dst = op->sym->m_dst == NULL ? op->sym->m_src : op->sym->m_dst; uint16_t total_len, dst_len; uint64_t auth_len; uint8_t *dst; total_len = sgl_linear_cipher_auth_len(job, &auth_len); if (sess->auth.operation != RTE_CRYPTO_AUTH_OP_VERIFY) total_len += job->auth_tag_output_len_in_bytes; for (; (m_dst != NULL) && (total_len - lb_offset > 0); m_dst = m_dst->next) { dst = rte_pktmbuf_mtod(m_dst, uint8_t *); dst_len = RTE_MIN(m_dst->data_len, total_len - lb_offset); rte_memcpy(dst, linear_buf + lb_offset, dst_len); lb_offset += dst_len; } } /** * Process a completed job and return rte_mbuf which job processed * * @param qp Queue Pair to process * @param job IMB_JOB job to process * * @return * - Returns processed crypto operation. * - Returns NULL on invalid job */ static inline struct rte_crypto_op * post_process_mb_job(struct ipsec_mb_qp *qp, IMB_JOB *job) { struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data; struct aesni_mb_session *sess = NULL; uint8_t *linear_buf = NULL; #ifdef AESNI_MB_DOCSIS_SEC_ENABLED uint8_t is_docsis_sec = 0; if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) { /* * Assuming at this point that if it's a security type op, that * this is for DOCSIS */ is_docsis_sec = 1; sess = SECURITY_GET_SESS_PRIV(op->sym->session); } else #endif sess = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session); if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) { switch (job->status) { case IMB_STATUS_COMPLETED: op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; if ((op->sym->m_src->nb_segs > 1 || (op->sym->m_dst != NULL && op->sym->m_dst->nb_segs > 1)) && !imb_lib_support_sgl_algo(sess->cipher.mode)) { linear_buf = (uint8_t *) job->user_data2; post_process_sgl_linear(op, job, sess, linear_buf); } if (job->hash_alg == IMB_AUTH_NULL) break; if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { if (is_aead_algo(job->hash_alg, sess->cipher.mode)) verify_digest(job, op->sym->aead.digest.data, sess->auth.req_digest_len, &op->status); #ifdef AESNI_MB_DOCSIS_SEC_ENABLED else if (is_docsis_sec) verify_docsis_sec_crc(job, &op->status); #endif else verify_digest(job, op->sym->auth.digest.data, sess->auth.req_digest_len, &op->status); } else generate_digest(job, op, sess); break; default: op->status = RTE_CRYPTO_OP_STATUS_ERROR; } rte_free(linear_buf); } /* Free session if a session-less crypto op */ if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { memset(sess, 0, sizeof(struct aesni_mb_session)); rte_mempool_put(qp->sess_mp, op->sym->session); op->sym->session = NULL; } return op; } static inline void post_process_mb_sync_job(IMB_JOB *job) { uint32_t *st; st = job->user_data; st[0] = (job->status == IMB_STATUS_COMPLETED) ? 0 : EBADMSG; } /** * Process a completed IMB_JOB job and keep processing jobs until * get_completed_job return NULL * * @param qp Queue Pair to process * @param mb_mgr IMB_MGR to use * @param job IMB_JOB job * @param ops crypto ops to fill * @param nb_ops number of crypto ops * * @return * - Number of processed jobs */ static unsigned handle_completed_jobs(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr, IMB_JOB *job, struct rte_crypto_op **ops, uint16_t nb_ops) { struct rte_crypto_op *op = NULL; uint16_t processed_jobs = 0; while (job != NULL) { op = post_process_mb_job(qp, job); if (op) { ops[processed_jobs++] = op; qp->stats.dequeued_count++; } else { qp->stats.dequeue_err_count++; break; } if (processed_jobs == nb_ops) break; job = IMB_GET_COMPLETED_JOB(mb_mgr); } return processed_jobs; } static inline uint32_t handle_completed_sync_jobs(IMB_JOB *job, IMB_MGR *mb_mgr) { uint32_t i; for (i = 0; job != NULL; i++, job = IMB_GET_COMPLETED_JOB(mb_mgr)) post_process_mb_sync_job(job); return i; } static inline uint32_t flush_mb_sync_mgr(IMB_MGR *mb_mgr) { IMB_JOB *job; job = IMB_FLUSH_JOB(mb_mgr); return handle_completed_sync_jobs(job, mb_mgr); } static inline uint16_t flush_mb_mgr(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr, struct rte_crypto_op **ops, uint16_t nb_ops) { int processed_ops = 0; /* Flush the remaining jobs */ IMB_JOB *job = IMB_FLUSH_JOB(mb_mgr); if (job) processed_ops += handle_completed_jobs(qp, mb_mgr, job, &ops[processed_ops], nb_ops - processed_ops); return processed_ops; } static inline IMB_JOB * set_job_null_op(IMB_JOB *job, struct rte_crypto_op *op) { job->chain_order = IMB_ORDER_HASH_CIPHER; job->cipher_mode = IMB_CIPHER_NULL; job->hash_alg = IMB_AUTH_NULL; job->cipher_direction = IMB_DIR_DECRYPT; /* Set user data to be crypto operation data struct */ job->user_data = op; return job; } static uint16_t aesni_mb_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, uint16_t nb_ops) { struct ipsec_mb_qp *qp = queue_pair; IMB_MGR *mb_mgr = qp->mb_mgr; struct rte_crypto_op *op; IMB_JOB *job; int retval, processed_jobs = 0; if (unlikely(nb_ops == 0 || mb_mgr == NULL)) return 0; uint8_t digest_idx = qp->digest_idx; do { /* Get next free mb job struct from mb manager */ job = IMB_GET_NEXT_JOB(mb_mgr); if (unlikely(job == NULL)) { /* if no free mb job structs we need to flush mb_mgr */ processed_jobs += flush_mb_mgr(qp, mb_mgr, &ops[processed_jobs], nb_ops - processed_jobs); if (nb_ops == processed_jobs) break; job = IMB_GET_NEXT_JOB(mb_mgr); } /* * Get next operation to process from ingress queue. * There is no need to return the job to the IMB_MGR * if there are no more operations to process, since the IMB_MGR * can use that pointer again in next get_next calls. */ retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op); if (retval < 0) break; #ifdef AESNI_MB_DOCSIS_SEC_ENABLED if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) retval = set_sec_mb_job_params(job, qp, op, &digest_idx); else #endif retval = set_mb_job_params(job, qp, op, &digest_idx, mb_mgr); if (unlikely(retval != 0)) { qp->stats.dequeue_err_count++; set_job_null_op(job, op); } /* Submit job to multi-buffer for processing */ #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG job = IMB_SUBMIT_JOB(mb_mgr); #else job = IMB_SUBMIT_JOB_NOCHECK(mb_mgr); #endif /* * If submit returns a processed job then handle it, * before submitting subsequent jobs */ if (job) processed_jobs += handle_completed_jobs(qp, mb_mgr, job, &ops[processed_jobs], nb_ops - processed_jobs); } while (processed_jobs < nb_ops); qp->digest_idx = digest_idx; if (processed_jobs < 1) processed_jobs += flush_mb_mgr(qp, mb_mgr, &ops[processed_jobs], nb_ops - processed_jobs); return processed_jobs; } static inline int check_crypto_sgl(union rte_crypto_sym_ofs so, const struct rte_crypto_sgl *sgl) { /* no multi-seg support with current AESNI-MB PMD */ if (sgl->num != 1) return -ENOTSUP; else if (so.ofs.cipher.head + so.ofs.cipher.tail > sgl->vec[0].len) return -EINVAL; return 0; } static inline IMB_JOB * submit_sync_job(IMB_MGR *mb_mgr) { #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG return IMB_SUBMIT_JOB(mb_mgr); #else return IMB_SUBMIT_JOB_NOCHECK(mb_mgr); #endif } static inline uint32_t generate_sync_dgst(struct rte_crypto_sym_vec *vec, const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len) { uint32_t i, k; for (i = 0, k = 0; i != vec->num; i++) { if (vec->status[i] == 0) { memcpy(vec->digest[i].va, dgst[i], len); k++; } } return k; } static inline uint32_t verify_sync_dgst(struct rte_crypto_sym_vec *vec, const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len) { uint32_t i, k; for (i = 0, k = 0; i != vec->num; i++) { if (vec->status[i] == 0) { if (memcmp(vec->digest[i].va, dgst[i], len) != 0) vec->status[i] = EBADMSG; else k++; } } return k; } static uint32_t aesni_mb_process_bulk(struct rte_cryptodev *dev __rte_unused, struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs sofs, struct rte_crypto_sym_vec *vec) { int32_t ret; uint32_t i, j, k, len; void *buf; IMB_JOB *job; IMB_MGR *mb_mgr; struct aesni_mb_session *s = CRYPTODEV_GET_SYM_SESS_PRIV(sess); uint8_t tmp_dgst[vec->num][DIGEST_LENGTH_MAX]; /* get per-thread MB MGR, create one if needed */ mb_mgr = get_per_thread_mb_mgr(); if (unlikely(mb_mgr == NULL)) return 0; for (i = 0, j = 0, k = 0; i != vec->num; i++) { ret = check_crypto_sgl(sofs, vec->src_sgl + i); if (ret != 0) { vec->status[i] = ret; continue; } buf = vec->src_sgl[i].vec[0].base; len = vec->src_sgl[i].vec[0].len; job = IMB_GET_NEXT_JOB(mb_mgr); if (job == NULL) { k += flush_mb_sync_mgr(mb_mgr); job = IMB_GET_NEXT_JOB(mb_mgr); RTE_ASSERT(job != NULL); } /* Submit job for processing */ set_cpu_mb_job_params(job, s, sofs, buf, len, &vec->iv[i], &vec->aad[i], tmp_dgst[i], &vec->status[i]); job = submit_sync_job(mb_mgr); j++; /* handle completed jobs */ k += handle_completed_sync_jobs(job, mb_mgr); } /* flush remaining jobs */ while (k != j) k += flush_mb_sync_mgr(mb_mgr); /* finish processing for successful jobs: check/update digest */ if (k != 0) { if (s->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) k = verify_sync_dgst(vec, (const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst, s->auth.req_digest_len); else k = generate_sync_dgst(vec, (const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst, s->auth.req_digest_len); } return k; } struct rte_cryptodev_ops aesni_mb_pmd_ops = { .dev_configure = ipsec_mb_config, .dev_start = ipsec_mb_start, .dev_stop = ipsec_mb_stop, .dev_close = ipsec_mb_close, .stats_get = ipsec_mb_stats_get, .stats_reset = ipsec_mb_stats_reset, .dev_infos_get = ipsec_mb_info_get, .queue_pair_setup = ipsec_mb_qp_setup, .queue_pair_release = ipsec_mb_qp_release, .sym_cpu_process = aesni_mb_process_bulk, .sym_session_get_size = ipsec_mb_sym_session_get_size, .sym_session_configure = ipsec_mb_sym_session_configure, .sym_session_clear = ipsec_mb_sym_session_clear }; #ifdef AESNI_MB_DOCSIS_SEC_ENABLED /** * Configure a aesni multi-buffer session from a security session * configuration */ static int aesni_mb_pmd_sec_sess_create(void *dev, struct rte_security_session_conf *conf, struct rte_security_session *sess) { void *sess_private_data = SECURITY_GET_SESS_PRIV(sess); struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev; int ret; if (conf->action_type != RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL || conf->protocol != RTE_SECURITY_PROTOCOL_DOCSIS) { IPSEC_MB_LOG(ERR, "Invalid security protocol"); return -EINVAL; } ret = aesni_mb_set_docsis_sec_session_parameters(cdev, conf, sess_private_data); if (ret != 0) { IPSEC_MB_LOG(ERR, "Failed to configure session parameters"); return ret; } return ret; } /** Clear the memory of session so it does not leave key material behind */ static int aesni_mb_pmd_sec_sess_destroy(void *dev __rte_unused, struct rte_security_session *sess) { void *sess_priv = SECURITY_GET_SESS_PRIV(sess); if (sess_priv) { memset(sess_priv, 0, sizeof(struct aesni_mb_session)); } return 0; } static unsigned int aesni_mb_pmd_sec_sess_get_size(void *device __rte_unused) { return sizeof(struct aesni_mb_session); } /** Get security capabilities for aesni multi-buffer */ static const struct rte_security_capability * aesni_mb_pmd_sec_capa_get(void *device __rte_unused) { return aesni_mb_pmd_security_cap; } static struct rte_security_ops aesni_mb_pmd_sec_ops = { .session_create = aesni_mb_pmd_sec_sess_create, .session_update = NULL, .session_get_size = aesni_mb_pmd_sec_sess_get_size, .session_stats_get = NULL, .session_destroy = aesni_mb_pmd_sec_sess_destroy, .set_pkt_metadata = NULL, .capabilities_get = aesni_mb_pmd_sec_capa_get }; struct rte_security_ops *rte_aesni_mb_pmd_sec_ops = &aesni_mb_pmd_sec_ops; static int aesni_mb_configure_dev(struct rte_cryptodev *dev) { struct rte_security_ctx *security_instance; security_instance = rte_malloc("aesni_mb_sec", sizeof(struct rte_security_ctx), RTE_CACHE_LINE_SIZE); if (security_instance != NULL) { security_instance->device = (void *)dev; security_instance->ops = rte_aesni_mb_pmd_sec_ops; security_instance->sess_cnt = 0; dev->security_ctx = security_instance; return 0; } return -ENOMEM; } #endif static int aesni_mb_probe(struct rte_vdev_device *vdev) { return ipsec_mb_create(vdev, IPSEC_MB_PMD_TYPE_AESNI_MB); } static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = { .probe = aesni_mb_probe, .remove = ipsec_mb_remove }; static struct cryptodev_driver aesni_mb_crypto_drv; RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv); RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd); RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD, "max_nb_queue_pairs= socket_id="); RTE_PMD_REGISTER_CRYPTO_DRIVER( aesni_mb_crypto_drv, cryptodev_aesni_mb_pmd_drv.driver, pmd_driver_id_aesni_mb); /* Constructor function to register aesni-mb PMD */ RTE_INIT(ipsec_mb_register_aesni_mb) { struct ipsec_mb_internals *aesni_mb_data = &ipsec_mb_pmds[IPSEC_MB_PMD_TYPE_AESNI_MB]; aesni_mb_data->caps = aesni_mb_capabilities; aesni_mb_data->dequeue_burst = aesni_mb_dequeue_burst; aesni_mb_data->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO | RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA | RTE_CRYPTODEV_FF_SYM_SESSIONLESS | RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT | RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT; aesni_mb_data->internals_priv_size = 0; aesni_mb_data->ops = &aesni_mb_pmd_ops; aesni_mb_data->qp_priv_size = sizeof(struct aesni_mb_qp_data); aesni_mb_data->queue_pair_configure = NULL; #ifdef AESNI_MB_DOCSIS_SEC_ENABLED aesni_mb_data->security_ops = &aesni_mb_pmd_sec_ops; aesni_mb_data->dev_config = aesni_mb_configure_dev; aesni_mb_data->feature_flags |= RTE_CRYPTODEV_FF_SECURITY; #endif aesni_mb_data->session_configure = aesni_mb_session_configure; aesni_mb_data->session_priv_size = sizeof(struct aesni_mb_session); }