/*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: frag6.c,v 1.33 2002/01/07 11:34:48 kjc Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for ECN definitions */ #include /* for ECN definitions */ #include /* * Reassembly headers are stored in hash buckets. */ #define IP6REASS_NHASH_LOG2 10 #define IP6REASS_NHASH (1 << IP6REASS_NHASH_LOG2) #define IP6REASS_HMASK (IP6REASS_NHASH - 1) static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *, uint32_t bucket __unused); static void frag6_deq(struct ip6asfrag *, uint32_t bucket __unused); static void frag6_insque_head(struct ip6q *, struct ip6q *, uint32_t bucket); static void frag6_remque(struct ip6q *, uint32_t bucket); static void frag6_freef(struct ip6q *, uint32_t bucket); struct ip6qbucket { struct ip6q ip6q; struct mtx lock; int count; }; static VNET_DEFINE(volatile u_int, frag6_nfragpackets); volatile u_int frag6_nfrags = 0; static VNET_DEFINE(struct ip6qbucket, ip6q[IP6REASS_NHASH]); static VNET_DEFINE(uint32_t, ip6q_hashseed); #define V_frag6_nfragpackets VNET(frag6_nfragpackets) #define V_ip6q VNET(ip6q) #define V_ip6q_hashseed VNET(ip6q_hashseed) #define IP6Q_LOCK(i) mtx_lock(&V_ip6q[(i)].lock) #define IP6Q_TRYLOCK(i) mtx_trylock(&V_ip6q[(i)].lock) #define IP6Q_LOCK_ASSERT(i) mtx_assert(&V_ip6q[(i)].lock, MA_OWNED) #define IP6Q_UNLOCK(i) mtx_unlock(&V_ip6q[(i)].lock) #define IP6Q_HEAD(i) (&V_ip6q[(i)].ip6q) static MALLOC_DEFINE(M_FTABLE, "fragment", "fragment reassembly header"); /* * By default, limit the number of IP6 fragments across all reassembly * queues to 1/32 of the total number of mbuf clusters. * * Limit the total number of reassembly queues per VNET to the * IP6 fragment limit, but ensure the limit will not allow any bucket * to grow above 100 items. (The bucket limit is * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct * multiplier to reach a 100-item limit.) * The 100-item limit was chosen as brief testing seems to show that * this produces "reasonable" performance on some subset of systems * under DoS attack. */ #define IP6_MAXFRAGS (nmbclusters / 32) #define IP6_MAXFRAGPACKETS (imin(IP6_MAXFRAGS, IP6REASS_NHASH * 50)) /* * Initialise reassembly queue and fragment identifier. */ void frag6_set_bucketsize() { int i; if ((i = V_ip6_maxfragpackets) > 0) V_ip6_maxfragbucketsize = imax(i / (IP6REASS_NHASH / 2), 1); } static void frag6_change(void *tag) { VNET_ITERATOR_DECL(vnet_iter); ip6_maxfrags = IP6_MAXFRAGS; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); V_ip6_maxfragpackets = IP6_MAXFRAGPACKETS; frag6_set_bucketsize(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } void frag6_init(void) { struct ip6q *q6; int i; V_ip6_maxfragpackets = IP6_MAXFRAGPACKETS; frag6_set_bucketsize(); for (i = 0; i < IP6REASS_NHASH; i++) { q6 = IP6Q_HEAD(i); q6->ip6q_next = q6->ip6q_prev = q6; mtx_init(&V_ip6q[i].lock, "ip6qlock", NULL, MTX_DEF); V_ip6q[i].count = 0; } V_ip6q_hashseed = arc4random(); V_ip6_maxfragsperpacket = 64; if (!IS_DEFAULT_VNET(curvnet)) return; ip6_maxfrags = IP6_MAXFRAGS; EVENTHANDLER_REGISTER(nmbclusters_change, frag6_change, NULL, EVENTHANDLER_PRI_ANY); } /* * In RFC2460, fragment and reassembly rule do not agree with each other, * in terms of next header field handling in fragment header. * While the sender will use the same value for all of the fragmented packets, * receiver is suggested not to check the consistency. * * fragment rule (p20): * (2) A Fragment header containing: * The Next Header value that identifies the first header of * the Fragmentable Part of the original packet. * -> next header field is same for all fragments * * reassembly rule (p21): * The Next Header field of the last header of the Unfragmentable * Part is obtained from the Next Header field of the first * fragment's Fragment header. * -> should grab it from the first fragment only * * The following note also contradicts with fragment rule - no one is going to * send different fragment with different next header field. * * additional note (p22): * The Next Header values in the Fragment headers of different * fragments of the same original packet may differ. Only the value * from the Offset zero fragment packet is used for reassembly. * -> should grab it from the first fragment only * * There is no explicit reason given in the RFC. Historical reason maybe? */ /* * Fragment input */ int frag6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp, *t; struct ip6_hdr *ip6; struct ip6_frag *ip6f; struct ip6q *head, *q6; struct ip6asfrag *af6, *ip6af, *af6dwn; struct in6_ifaddr *ia; int offset = *offp, nxt, i, next; int first_frag = 0; int fragoff, frgpartlen; /* must be larger than u_int16_t */ uint32_t hash, hashkey[sizeof(struct in6_addr) * 2 + 1], *hashkeyp; struct ifnet *dstifp; u_int8_t ecn, ecn0; #ifdef RSS struct m_tag *mtag; struct ip6_direct_ctx *ip6dc; #endif #if 0 char ip6buf[INET6_ADDRSTRLEN]; #endif ip6 = mtod(m, struct ip6_hdr *); #ifndef PULLDOWN_TEST IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), IPPROTO_DONE); ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset); #else IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f)); if (ip6f == NULL) return (IPPROTO_DONE); #endif dstifp = NULL; /* find the destination interface of the packet. */ ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */); if (ia != NULL) { dstifp = ia->ia_ifp; ifa_free(&ia->ia_ifa); } /* jumbo payload can't contain a fragment header */ if (ip6->ip6_plen == 0) { icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset); in6_ifstat_inc(dstifp, ifs6_reass_fail); return IPPROTO_DONE; } /* * check whether fragment packet's fragment length is * multiple of 8 octets. * sizeof(struct ip6_frag) == 8 * sizeof(struct ip6_hdr) = 40 */ if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) && (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) { icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offsetof(struct ip6_hdr, ip6_plen)); in6_ifstat_inc(dstifp, ifs6_reass_fail); return IPPROTO_DONE; } IP6STAT_INC(ip6s_fragments); in6_ifstat_inc(dstifp, ifs6_reass_reqd); /* offset now points to data portion */ offset += sizeof(struct ip6_frag); /* * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0) * upfront, unrelated to any reassembly. Just skip the fragment header. */ if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) { /* XXX-BZ we want dedicated counters for this. */ IP6STAT_INC(ip6s_reassembled); in6_ifstat_inc(dstifp, ifs6_reass_ok); *offp = offset; return (ip6f->ip6f_nxt); } /* Get fragment length and discard 0-byte fragments. */ frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset; if (frgpartlen == 0) { icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offsetof(struct ip6_hdr, ip6_plen)); in6_ifstat_inc(dstifp, ifs6_reass_fail); IP6STAT_INC(ip6s_fragdropped); return IPPROTO_DONE; } hashkeyp = hashkey; memcpy(hashkeyp, &ip6->ip6_src, sizeof(struct in6_addr)); hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp); memcpy(hashkeyp, &ip6->ip6_dst, sizeof(struct in6_addr)); hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp); *hashkeyp = ip6f->ip6f_ident; hash = jenkins_hash32(hashkey, nitems(hashkey), V_ip6q_hashseed); hash &= IP6REASS_HMASK; head = IP6Q_HEAD(hash); IP6Q_LOCK(hash); /* * Enforce upper bound on number of fragments. * If maxfrag is 0, never accept fragments. * If maxfrag is -1, accept all fragments without limitation. */ if (ip6_maxfrags < 0) ; else if (frag6_nfrags >= (u_int)ip6_maxfrags) goto dropfrag; for (q6 = head->ip6q_next; q6 != head; q6 = q6->ip6q_next) if (ip6f->ip6f_ident == q6->ip6q_ident && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) && IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst) #ifdef MAC && mac_ip6q_match(m, q6) #endif ) break; if (q6 == head) { /* * the first fragment to arrive, create a reassembly queue. */ first_frag = 1; /* * Enforce upper bound on number of fragmented packets * for which we attempt reassembly; * If maxfragpackets is 0, never accept fragments. * If maxfragpackets is -1, accept all fragments without * limitation. */ if (V_ip6_maxfragpackets < 0) ; else if (V_ip6q[hash].count >= V_ip6_maxfragbucketsize || V_frag6_nfragpackets >= (u_int)V_ip6_maxfragpackets) goto dropfrag; atomic_add_int(&V_frag6_nfragpackets, 1); q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FTABLE, M_NOWAIT); if (q6 == NULL) goto dropfrag; bzero(q6, sizeof(*q6)); #ifdef MAC if (mac_ip6q_init(q6, M_NOWAIT) != 0) { free(q6, M_FTABLE); goto dropfrag; } mac_ip6q_create(m, q6); #endif frag6_insque_head(q6, head, hash); /* ip6q_nxt will be filled afterwards, from 1st fragment */ q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6; #ifdef notyet q6->ip6q_nxtp = (u_char *)nxtp; #endif q6->ip6q_ident = ip6f->ip6f_ident; q6->ip6q_ttl = IPV6_FRAGTTL; q6->ip6q_src = ip6->ip6_src; q6->ip6q_dst = ip6->ip6_dst; q6->ip6q_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */ q6->ip6q_nfrag = 0; } /* * If it's the 1st fragment, record the length of the * unfragmentable part and the next header of the fragment header. */ fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK); if (fragoff == 0) { q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) - sizeof(struct ip6_frag); q6->ip6q_nxt = ip6f->ip6f_nxt; } /* * Check that the reassembled packet would not exceed 65535 bytes * in size. * If it would exceed, discard the fragment and return an ICMP error. */ if (q6->ip6q_unfrglen >= 0) { /* The 1st fragment has already arrived. */ if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) { icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset - sizeof(struct ip6_frag) + offsetof(struct ip6_frag, ip6f_offlg)); IP6Q_UNLOCK(hash); return (IPPROTO_DONE); } } else if (fragoff + frgpartlen > IPV6_MAXPACKET) { icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset - sizeof(struct ip6_frag) + offsetof(struct ip6_frag, ip6f_offlg)); IP6Q_UNLOCK(hash); return (IPPROTO_DONE); } /* * If it's the first fragment, do the above check for each * fragment already stored in the reassembly queue. */ if (fragoff == 0) { for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; af6 = af6dwn) { af6dwn = af6->ip6af_down; if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen > IPV6_MAXPACKET) { struct mbuf *merr = IP6_REASS_MBUF(af6); struct ip6_hdr *ip6err; int erroff = af6->ip6af_offset; /* dequeue the fragment. */ frag6_deq(af6, hash); free(af6, M_FTABLE); /* adjust pointer. */ ip6err = mtod(merr, struct ip6_hdr *); /* * Restore source and destination addresses * in the erroneous IPv6 header. */ ip6err->ip6_src = q6->ip6q_src; ip6err->ip6_dst = q6->ip6q_dst; icmp6_error(merr, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, erroff - sizeof(struct ip6_frag) + offsetof(struct ip6_frag, ip6f_offlg)); } } } ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FTABLE, M_NOWAIT); if (ip6af == NULL) goto dropfrag; bzero(ip6af, sizeof(*ip6af)); ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG; ip6af->ip6af_off = fragoff; ip6af->ip6af_frglen = frgpartlen; ip6af->ip6af_offset = offset; IP6_REASS_MBUF(ip6af) = m; if (first_frag) { af6 = (struct ip6asfrag *)q6; goto insert; } /* * Handle ECN by comparing this segment with the first one; * if CE is set, do not lose CE. * drop if CE and not-ECT are mixed for the same packet. */ ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; ecn0 = q6->ip6q_ecn; if (ecn == IPTOS_ECN_CE) { if (ecn0 == IPTOS_ECN_NOTECT) { free(ip6af, M_FTABLE); goto dropfrag; } if (ecn0 != IPTOS_ECN_CE) q6->ip6q_ecn = IPTOS_ECN_CE; } if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) { free(ip6af, M_FTABLE); goto dropfrag; } /* * Find a segment which begins after this one does. */ for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; af6 = af6->ip6af_down) if (af6->ip6af_off > ip6af->ip6af_off) break; #if 0 /* * If there is a preceding segment, it may provide some of * our data already. If so, drop the data from the incoming * segment. If it provides all of our data, drop us. */ if (af6->ip6af_up != (struct ip6asfrag *)q6) { i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen - ip6af->ip6af_off; if (i > 0) { if (i >= ip6af->ip6af_frglen) goto dropfrag; m_adj(IP6_REASS_MBUF(ip6af), i); ip6af->ip6af_off += i; ip6af->ip6af_frglen -= i; } } /* * While we overlap succeeding segments trim them or, * if they are completely covered, dequeue them. */ while (af6 != (struct ip6asfrag *)q6 && ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) { i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; if (i < af6->ip6af_frglen) { af6->ip6af_frglen -= i; af6->ip6af_off += i; m_adj(IP6_REASS_MBUF(af6), i); break; } af6 = af6->ip6af_down; m_freem(IP6_REASS_MBUF(af6->ip6af_up)); frag6_deq(af6->ip6af_up, hash); } #else /* * If the incoming framgent overlaps some existing fragments in * the reassembly queue, drop it, since it is dangerous to override * existing fragments from a security point of view. * We don't know which fragment is the bad guy - here we trust * fragment that came in earlier, with no real reason. * * Note: due to changes after disabling this part, mbuf passed to * m_adj() below now does not meet the requirement. */ if (af6->ip6af_up != (struct ip6asfrag *)q6) { i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen - ip6af->ip6af_off; if (i > 0) { #if 0 /* suppress the noisy log */ log(LOG_ERR, "%d bytes of a fragment from %s " "overlaps the previous fragment\n", i, ip6_sprintf(ip6buf, &q6->ip6q_src)); #endif free(ip6af, M_FTABLE); goto dropfrag; } } if (af6 != (struct ip6asfrag *)q6) { i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; if (i > 0) { #if 0 /* suppress the noisy log */ log(LOG_ERR, "%d bytes of a fragment from %s " "overlaps the succeeding fragment", i, ip6_sprintf(ip6buf, &q6->ip6q_src)); #endif free(ip6af, M_FTABLE); goto dropfrag; } } #endif insert: #ifdef MAC if (!first_frag) mac_ip6q_update(m, q6); #endif /* * Stick new segment in its place; * check for complete reassembly. * If not complete, check fragment limit. * Move to front of packet queue, as we are * the most recently active fragmented packet. */ frag6_enq(ip6af, af6->ip6af_up, hash); atomic_add_int(&frag6_nfrags, 1); q6->ip6q_nfrag++; #if 0 /* xxx */ if (q6 != head->ip6q_next) { frag6_remque(q6, hash); frag6_insque_head(q6, head, hash); } #endif next = 0; for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; af6 = af6->ip6af_down) { if (af6->ip6af_off != next) { if (q6->ip6q_nfrag > V_ip6_maxfragsperpacket) { IP6STAT_INC(ip6s_fragdropped); frag6_freef(q6, hash); } IP6Q_UNLOCK(hash); return IPPROTO_DONE; } next += af6->ip6af_frglen; } if (af6->ip6af_up->ip6af_mff) { if (q6->ip6q_nfrag > V_ip6_maxfragsperpacket) { IP6STAT_INC(ip6s_fragdropped); frag6_freef(q6, hash); } IP6Q_UNLOCK(hash); return IPPROTO_DONE; } /* * Reassembly is complete; concatenate fragments. */ ip6af = q6->ip6q_down; t = m = IP6_REASS_MBUF(ip6af); af6 = ip6af->ip6af_down; frag6_deq(ip6af, hash); while (af6 != (struct ip6asfrag *)q6) { af6dwn = af6->ip6af_down; frag6_deq(af6, hash); while (t->m_next) t = t->m_next; m_adj(IP6_REASS_MBUF(af6), af6->ip6af_offset); m_cat(t, IP6_REASS_MBUF(af6)); free(af6, M_FTABLE); af6 = af6dwn; } /* adjust offset to point where the original next header starts */ offset = ip6af->ip6af_offset - sizeof(struct ip6_frag); free(ip6af, M_FTABLE); ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr)); if (q6->ip6q_ecn == IPTOS_ECN_CE) ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20); nxt = q6->ip6q_nxt; #ifdef notyet *q6->ip6q_nxtp = (u_char)(nxt & 0xff); #endif if (ip6_deletefraghdr(m, offset, M_NOWAIT) != 0) { frag6_remque(q6, hash); atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag); #ifdef MAC mac_ip6q_destroy(q6); #endif free(q6, M_FTABLE); atomic_subtract_int(&V_frag6_nfragpackets, 1); goto dropfrag; } /* * Store NXT to the original. */ { char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */ *prvnxtp = nxt; } frag6_remque(q6, hash); atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag); #ifdef MAC mac_ip6q_reassemble(q6, m); mac_ip6q_destroy(q6); #endif free(q6, M_FTABLE); atomic_subtract_int(&V_frag6_nfragpackets, 1); if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */ int plen = 0; for (t = m; t; t = t->m_next) plen += t->m_len; m->m_pkthdr.len = plen; } #ifdef RSS mtag = m_tag_alloc(MTAG_ABI_IPV6, IPV6_TAG_DIRECT, sizeof(*ip6dc), M_NOWAIT); if (mtag == NULL) goto dropfrag; ip6dc = (struct ip6_direct_ctx *)(mtag + 1); ip6dc->ip6dc_nxt = nxt; ip6dc->ip6dc_off = offset; m_tag_prepend(m, mtag); #endif IP6Q_UNLOCK(hash); IP6STAT_INC(ip6s_reassembled); in6_ifstat_inc(dstifp, ifs6_reass_ok); #ifdef RSS /* * Queue/dispatch for reprocessing. */ netisr_dispatch(NETISR_IPV6_DIRECT, m); return IPPROTO_DONE; #endif /* * Tell launch routine the next header */ *mp = m; *offp = offset; return nxt; dropfrag: IP6Q_UNLOCK(hash); in6_ifstat_inc(dstifp, ifs6_reass_fail); IP6STAT_INC(ip6s_fragdropped); m_freem(m); return IPPROTO_DONE; } /* * Free a fragment reassembly header and all * associated datagrams. */ static void frag6_freef(struct ip6q *q6, uint32_t bucket) { struct ip6asfrag *af6, *down6; IP6Q_LOCK_ASSERT(bucket); for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; af6 = down6) { struct mbuf *m = IP6_REASS_MBUF(af6); down6 = af6->ip6af_down; frag6_deq(af6, bucket); /* * Return ICMP time exceeded error for the 1st fragment. * Just free other fragments. */ if (af6->ip6af_off == 0) { struct ip6_hdr *ip6; /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); /* restore source and destination addresses */ ip6->ip6_src = q6->ip6q_src; ip6->ip6_dst = q6->ip6q_dst; icmp6_error(m, ICMP6_TIME_EXCEEDED, ICMP6_TIME_EXCEED_REASSEMBLY, 0); } else m_freem(m); free(af6, M_FTABLE); } frag6_remque(q6, bucket); atomic_subtract_int(&frag6_nfrags, q6->ip6q_nfrag); #ifdef MAC mac_ip6q_destroy(q6); #endif free(q6, M_FTABLE); atomic_subtract_int(&V_frag6_nfragpackets, 1); } /* * Put an ip fragment on a reassembly chain. * Like insque, but pointers in middle of structure. */ static void frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6, uint32_t bucket __unused) { IP6Q_LOCK_ASSERT(bucket); af6->ip6af_up = up6; af6->ip6af_down = up6->ip6af_down; up6->ip6af_down->ip6af_up = af6; up6->ip6af_down = af6; } /* * To frag6_enq as remque is to insque. */ static void frag6_deq(struct ip6asfrag *af6, uint32_t bucket __unused) { IP6Q_LOCK_ASSERT(bucket); af6->ip6af_up->ip6af_down = af6->ip6af_down; af6->ip6af_down->ip6af_up = af6->ip6af_up; } static void frag6_insque_head(struct ip6q *new, struct ip6q *old, uint32_t bucket) { IP6Q_LOCK_ASSERT(bucket); KASSERT(IP6Q_HEAD(bucket) == old, ("%s: attempt to insert at head of wrong bucket" " (bucket=%u, old=%p)", __func__, bucket, old)); new->ip6q_prev = old; new->ip6q_next = old->ip6q_next; old->ip6q_next->ip6q_prev= new; old->ip6q_next = new; V_ip6q[bucket].count++; } static void frag6_remque(struct ip6q *p6, uint32_t bucket) { IP6Q_LOCK_ASSERT(bucket); p6->ip6q_prev->ip6q_next = p6->ip6q_next; p6->ip6q_next->ip6q_prev = p6->ip6q_prev; V_ip6q[bucket].count--; } /* * IPv6 reassembling timer processing; * if a timer expires on a reassembly * queue, discard it. */ void frag6_slowtimo(void) { VNET_ITERATOR_DECL(vnet_iter); struct ip6q *head, *q6; int i; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); for (i = 0; i < IP6REASS_NHASH; i++) { IP6Q_LOCK(i); head = IP6Q_HEAD(i); q6 = head->ip6q_next; if (q6 == NULL) { /* * XXXJTL: This should never happen. This * should turn into an assertion. */ IP6Q_UNLOCK(i); continue; } while (q6 != head) { --q6->ip6q_ttl; q6 = q6->ip6q_next; if (q6->ip6q_prev->ip6q_ttl == 0) { IP6STAT_INC(ip6s_fragtimeout); /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ frag6_freef(q6->ip6q_prev, i); } } /* * If we are over the maximum number of fragments * (due to the limit being lowered), drain off * enough to get down to the new limit. * Note that we drain all reassembly queues if * maxfragpackets is 0 (fragmentation is disabled), * and don't enforce a limit when maxfragpackets * is negative. */ while ((V_ip6_maxfragpackets == 0 || (V_ip6_maxfragpackets > 0 && V_ip6q[i].count > V_ip6_maxfragbucketsize)) && head->ip6q_prev != head) { IP6STAT_INC(ip6s_fragoverflow); /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ frag6_freef(head->ip6q_prev, i); } IP6Q_UNLOCK(i); } /* * If we are still over the maximum number of fragmented * packets, drain off enough to get down to the new limit. */ i = 0; while (V_ip6_maxfragpackets >= 0 && V_frag6_nfragpackets > (u_int)V_ip6_maxfragpackets) { IP6Q_LOCK(i); head = IP6Q_HEAD(i); if (head->ip6q_prev != head) { IP6STAT_INC(ip6s_fragoverflow); /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ frag6_freef(head->ip6q_prev, i); } IP6Q_UNLOCK(i); i = (i + 1) % IP6REASS_NHASH; } CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Drain off all datagram fragments. */ void frag6_drain(void) { VNET_ITERATOR_DECL(vnet_iter); struct ip6q *head; int i; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); for (i = 0; i < IP6REASS_NHASH; i++) { if (IP6Q_TRYLOCK(i) == 0) continue; head = IP6Q_HEAD(i); while (head->ip6q_next != head) { IP6STAT_INC(ip6s_fragdropped); /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ frag6_freef(head->ip6q_next, i); } IP6Q_UNLOCK(i); } CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } int ip6_deletefraghdr(struct mbuf *m, int offset, int wait) { struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); struct mbuf *t; /* Delete frag6 header. */ if (m->m_len >= offset + sizeof(struct ip6_frag)) { /* This is the only possible case with !PULLDOWN_TEST. */ bcopy(ip6, (char *)ip6 + sizeof(struct ip6_frag), offset); m->m_data += sizeof(struct ip6_frag); m->m_len -= sizeof(struct ip6_frag); } else { /* This comes with no copy if the boundary is on cluster. */ if ((t = m_split(m, offset, wait)) == NULL) return (ENOMEM); m_adj(t, sizeof(struct ip6_frag)); m_cat(m, t); } return (0); }