/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "eal_private.h" #include "eal_vfio.h" #include "eal_thread.h" #define EAL_INTR_EPOLL_WAIT_FOREVER (-1) #define NB_OTHER_INTR 1 static RTE_DEFINE_PER_LCORE(int, _epfd) = -1; /**< epoll fd per thread */ /** * union for pipe fds. */ union intr_pipefds{ struct { int pipefd[2]; }; struct { int readfd; int writefd; }; }; /** * union buffer for reading on different devices */ union rte_intr_read_buffer { int uio_intr_count; /* for uio device */ #ifdef VFIO_PRESENT uint64_t vfio_intr_count; /* for vfio device */ #endif uint64_t timerfd_num; /* for timerfd */ char charbuf[16]; /* for others */ }; TAILQ_HEAD(rte_intr_cb_list, rte_intr_callback); TAILQ_HEAD(rte_intr_source_list, rte_intr_source); struct rte_intr_callback { TAILQ_ENTRY(rte_intr_callback) next; rte_intr_callback_fn cb_fn; /**< callback address */ void *cb_arg; /**< parameter for callback */ uint8_t pending_delete; /**< delete after callback is called */ rte_intr_unregister_callback_fn ucb_fn; /**< fn to call before cb is deleted */ }; struct rte_intr_source { TAILQ_ENTRY(rte_intr_source) next; struct rte_intr_handle intr_handle; /**< interrupt handle */ struct rte_intr_cb_list callbacks; /**< user callbacks */ uint32_t active; }; /* global spinlock for interrupt data operation */ static rte_spinlock_t intr_lock = RTE_SPINLOCK_INITIALIZER; /* union buffer for pipe read/write */ static union intr_pipefds intr_pipe; /* interrupt sources list */ static struct rte_intr_source_list intr_sources; /* interrupt handling thread */ static pthread_t intr_thread; /* VFIO interrupts */ #ifdef VFIO_PRESENT #define IRQ_SET_BUF_LEN (sizeof(struct vfio_irq_set) + sizeof(int)) /* irq set buffer length for queue interrupts and LSC interrupt */ #define MSIX_IRQ_SET_BUF_LEN (sizeof(struct vfio_irq_set) + \ sizeof(int) * (RTE_MAX_RXTX_INTR_VEC_ID + 1)) /* enable legacy (INTx) interrupts */ static int vfio_enable_intx(const struct rte_intr_handle *intr_handle) { struct vfio_irq_set *irq_set; char irq_set_buf[IRQ_SET_BUF_LEN]; int len, ret; int *fd_ptr; len = sizeof(irq_set_buf); /* enable INTx */ irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; irq_set->count = 1; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; fd_ptr = (int *) &irq_set->data; *fd_ptr = intr_handle->fd; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { RTE_LOG(ERR, EAL, "Error enabling INTx interrupts for fd %d\n", intr_handle->fd); return -1; } /* unmask INTx after enabling */ memset(irq_set, 0, len); len = sizeof(struct vfio_irq_set); irq_set->argsz = len; irq_set->count = 1; irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { RTE_LOG(ERR, EAL, "Error unmasking INTx interrupts for fd %d\n", intr_handle->fd); return -1; } return 0; } /* disable legacy (INTx) interrupts */ static int vfio_disable_intx(const struct rte_intr_handle *intr_handle) { struct vfio_irq_set *irq_set; char irq_set_buf[IRQ_SET_BUF_LEN]; int len, ret; len = sizeof(struct vfio_irq_set); /* mask interrupts before disabling */ irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; irq_set->count = 1; irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { RTE_LOG(ERR, EAL, "Error masking INTx interrupts for fd %d\n", intr_handle->fd); return -1; } /* disable INTx*/ memset(irq_set, 0, len); irq_set->argsz = len; irq_set->count = 0; irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { RTE_LOG(ERR, EAL, "Error disabling INTx interrupts for fd %d\n", intr_handle->fd); return -1; } return 0; } /* unmask/ack legacy (INTx) interrupts */ static int vfio_ack_intx(const struct rte_intr_handle *intr_handle) { struct vfio_irq_set irq_set; /* unmask INTx */ memset(&irq_set, 0, sizeof(irq_set)); irq_set.argsz = sizeof(irq_set); irq_set.count = 1; irq_set.flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK; irq_set.index = VFIO_PCI_INTX_IRQ_INDEX; irq_set.start = 0; if (ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, &irq_set)) { RTE_LOG(ERR, EAL, "Error unmasking INTx interrupts for fd %d\n", intr_handle->fd); return -1; } return 0; } /* enable MSI interrupts */ static int vfio_enable_msi(const struct rte_intr_handle *intr_handle) { int len, ret; char irq_set_buf[IRQ_SET_BUF_LEN]; struct vfio_irq_set *irq_set; int *fd_ptr; len = sizeof(irq_set_buf); irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; irq_set->count = 1; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSI_IRQ_INDEX; irq_set->start = 0; fd_ptr = (int *) &irq_set->data; *fd_ptr = intr_handle->fd; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { RTE_LOG(ERR, EAL, "Error enabling MSI interrupts for fd %d\n", intr_handle->fd); return -1; } return 0; } /* disable MSI interrupts */ static int vfio_disable_msi(const struct rte_intr_handle *intr_handle) { struct vfio_irq_set *irq_set; char irq_set_buf[IRQ_SET_BUF_LEN]; int len, ret; len = sizeof(struct vfio_irq_set); irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; irq_set->count = 0; irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSI_IRQ_INDEX; irq_set->start = 0; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) RTE_LOG(ERR, EAL, "Error disabling MSI interrupts for fd %d\n", intr_handle->fd); return ret; } /* enable MSI-X interrupts */ static int vfio_enable_msix(const struct rte_intr_handle *intr_handle) { int len, ret; char irq_set_buf[MSIX_IRQ_SET_BUF_LEN]; struct vfio_irq_set *irq_set; int *fd_ptr; len = sizeof(irq_set_buf); irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; /* 0 < irq_set->count < RTE_MAX_RXTX_INTR_VEC_ID + 1 */ irq_set->count = intr_handle->max_intr ? (intr_handle->max_intr > RTE_MAX_RXTX_INTR_VEC_ID + 1 ? RTE_MAX_RXTX_INTR_VEC_ID + 1 : intr_handle->max_intr) : 1; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = 0; fd_ptr = (int *) &irq_set->data; /* INTR vector offset 0 reserve for non-efds mapping */ fd_ptr[RTE_INTR_VEC_ZERO_OFFSET] = intr_handle->fd; memcpy(&fd_ptr[RTE_INTR_VEC_RXTX_OFFSET], intr_handle->efds, sizeof(*intr_handle->efds) * intr_handle->nb_efd); ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { RTE_LOG(ERR, EAL, "Error enabling MSI-X interrupts for fd %d\n", intr_handle->fd); return -1; } return 0; } /* disable MSI-X interrupts */ static int vfio_disable_msix(const struct rte_intr_handle *intr_handle) { struct vfio_irq_set *irq_set; char irq_set_buf[MSIX_IRQ_SET_BUF_LEN]; int len, ret; len = sizeof(struct vfio_irq_set); irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; irq_set->count = 0; irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = 0; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) RTE_LOG(ERR, EAL, "Error disabling MSI-X interrupts for fd %d\n", intr_handle->fd); return ret; } #ifdef HAVE_VFIO_DEV_REQ_INTERFACE /* enable req notifier */ static int vfio_enable_req(const struct rte_intr_handle *intr_handle) { int len, ret; char irq_set_buf[IRQ_SET_BUF_LEN]; struct vfio_irq_set *irq_set; int *fd_ptr; len = sizeof(irq_set_buf); irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; irq_set->count = 1; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; irq_set->start = 0; fd_ptr = (int *) &irq_set->data; *fd_ptr = intr_handle->fd; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { RTE_LOG(ERR, EAL, "Error enabling req interrupts for fd %d\n", intr_handle->fd); return -1; } return 0; } /* disable req notifier */ static int vfio_disable_req(const struct rte_intr_handle *intr_handle) { struct vfio_irq_set *irq_set; char irq_set_buf[IRQ_SET_BUF_LEN]; int len, ret; len = sizeof(struct vfio_irq_set); irq_set = (struct vfio_irq_set *) irq_set_buf; irq_set->argsz = len; irq_set->count = 0; irq_set->flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; irq_set->start = 0; ret = ioctl(intr_handle->vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) RTE_LOG(ERR, EAL, "Error disabling req interrupts for fd %d\n", intr_handle->fd); return ret; } #endif #endif static int uio_intx_intr_disable(const struct rte_intr_handle *intr_handle) { unsigned char command_high; /* use UIO config file descriptor for uio_pci_generic */ if (pread(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) { RTE_LOG(ERR, EAL, "Error reading interrupts status for fd %d\n", intr_handle->uio_cfg_fd); return -1; } /* disable interrupts */ command_high |= 0x4; if (pwrite(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) { RTE_LOG(ERR, EAL, "Error disabling interrupts for fd %d\n", intr_handle->uio_cfg_fd); return -1; } return 0; } static int uio_intx_intr_enable(const struct rte_intr_handle *intr_handle) { unsigned char command_high; /* use UIO config file descriptor for uio_pci_generic */ if (pread(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) { RTE_LOG(ERR, EAL, "Error reading interrupts status for fd %d\n", intr_handle->uio_cfg_fd); return -1; } /* enable interrupts */ command_high &= ~0x4; if (pwrite(intr_handle->uio_cfg_fd, &command_high, 1, 5) != 1) { RTE_LOG(ERR, EAL, "Error enabling interrupts for fd %d\n", intr_handle->uio_cfg_fd); return -1; } return 0; } static int uio_intr_disable(const struct rte_intr_handle *intr_handle) { const int value = 0; if (write(intr_handle->fd, &value, sizeof(value)) < 0) { RTE_LOG(ERR, EAL, "Error disabling interrupts for fd %d (%s)\n", intr_handle->fd, strerror(errno)); return -1; } return 0; } static int uio_intr_enable(const struct rte_intr_handle *intr_handle) { const int value = 1; if (write(intr_handle->fd, &value, sizeof(value)) < 0) { RTE_LOG(ERR, EAL, "Error enabling interrupts for fd %d (%s)\n", intr_handle->fd, strerror(errno)); return -1; } return 0; } int rte_intr_callback_register(const struct rte_intr_handle *intr_handle, rte_intr_callback_fn cb, void *cb_arg) { int ret, wake_thread; struct rte_intr_source *src; struct rte_intr_callback *callback; wake_thread = 0; /* first do parameter checking */ if (intr_handle == NULL || intr_handle->fd < 0 || cb == NULL) { RTE_LOG(ERR, EAL, "Registering with invalid input parameter\n"); return -EINVAL; } /* allocate a new interrupt callback entity */ callback = calloc(1, sizeof(*callback)); if (callback == NULL) { RTE_LOG(ERR, EAL, "Can not allocate memory\n"); return -ENOMEM; } callback->cb_fn = cb; callback->cb_arg = cb_arg; callback->pending_delete = 0; callback->ucb_fn = NULL; rte_spinlock_lock(&intr_lock); /* check if there is at least one callback registered for the fd */ TAILQ_FOREACH(src, &intr_sources, next) { if (src->intr_handle.fd == intr_handle->fd) { /* we had no interrupts for this */ if (TAILQ_EMPTY(&src->callbacks)) wake_thread = 1; TAILQ_INSERT_TAIL(&(src->callbacks), callback, next); ret = 0; break; } } /* no existing callbacks for this - add new source */ if (src == NULL) { src = calloc(1, sizeof(*src)); if (src == NULL) { RTE_LOG(ERR, EAL, "Can not allocate memory\n"); free(callback); ret = -ENOMEM; } else { src->intr_handle = *intr_handle; TAILQ_INIT(&src->callbacks); TAILQ_INSERT_TAIL(&(src->callbacks), callback, next); TAILQ_INSERT_TAIL(&intr_sources, src, next); wake_thread = 1; ret = 0; } } rte_spinlock_unlock(&intr_lock); /** * check if need to notify the pipe fd waited by epoll_wait to * rebuild the wait list. */ if (wake_thread) if (write(intr_pipe.writefd, "1", 1) < 0) ret = -EPIPE; rte_eal_trace_intr_callback_register(intr_handle, cb, cb_arg, ret); return ret; } int rte_intr_callback_unregister_pending(const struct rte_intr_handle *intr_handle, rte_intr_callback_fn cb_fn, void *cb_arg, rte_intr_unregister_callback_fn ucb_fn) { int ret; struct rte_intr_source *src; struct rte_intr_callback *cb, *next; /* do parameter checking first */ if (intr_handle == NULL || intr_handle->fd < 0) { RTE_LOG(ERR, EAL, "Unregistering with invalid input parameter\n"); return -EINVAL; } rte_spinlock_lock(&intr_lock); /* check if the insterrupt source for the fd is existent */ TAILQ_FOREACH(src, &intr_sources, next) if (src->intr_handle.fd == intr_handle->fd) break; /* No interrupt source registered for the fd */ if (src == NULL) { ret = -ENOENT; /* only usable if the source is active */ } else if (src->active == 0) { ret = -EAGAIN; } else { ret = 0; /* walk through the callbacks and mark all that match. */ for (cb = TAILQ_FIRST(&src->callbacks); cb != NULL; cb = next) { next = TAILQ_NEXT(cb, next); if (cb->cb_fn == cb_fn && (cb_arg == (void *)-1 || cb->cb_arg == cb_arg)) { cb->pending_delete = 1; cb->ucb_fn = ucb_fn; ret++; } } } rte_spinlock_unlock(&intr_lock); return ret; } int rte_intr_callback_unregister(const struct rte_intr_handle *intr_handle, rte_intr_callback_fn cb_fn, void *cb_arg) { int ret; struct rte_intr_source *src; struct rte_intr_callback *cb, *next; /* do parameter checking first */ if (intr_handle == NULL || intr_handle->fd < 0) { RTE_LOG(ERR, EAL, "Unregistering with invalid input parameter\n"); return -EINVAL; } rte_spinlock_lock(&intr_lock); /* check if the insterrupt source for the fd is existent */ TAILQ_FOREACH(src, &intr_sources, next) if (src->intr_handle.fd == intr_handle->fd) break; /* No interrupt source registered for the fd */ if (src == NULL) { ret = -ENOENT; /* interrupt source has some active callbacks right now. */ } else if (src->active != 0) { ret = -EAGAIN; /* ok to remove. */ } else { ret = 0; /*walk through the callbacks and remove all that match. */ for (cb = TAILQ_FIRST(&src->callbacks); cb != NULL; cb = next) { next = TAILQ_NEXT(cb, next); if (cb->cb_fn == cb_fn && (cb_arg == (void *)-1 || cb->cb_arg == cb_arg)) { TAILQ_REMOVE(&src->callbacks, cb, next); free(cb); ret++; } } /* all callbacks for that source are removed. */ if (TAILQ_EMPTY(&src->callbacks)) { TAILQ_REMOVE(&intr_sources, src, next); free(src); } } rte_spinlock_unlock(&intr_lock); /* notify the pipe fd waited by epoll_wait to rebuild the wait list */ if (ret >= 0 && write(intr_pipe.writefd, "1", 1) < 0) { ret = -EPIPE; } rte_eal_trace_intr_callback_unregister(intr_handle, cb_fn, cb_arg, ret); return ret; } int rte_intr_enable(const struct rte_intr_handle *intr_handle) { int rc = 0; if (intr_handle == NULL) return -1; if (intr_handle->type == RTE_INTR_HANDLE_VDEV) { rc = 0; goto out; } if (intr_handle->fd < 0 || intr_handle->uio_cfg_fd < 0) { rc = -1; goto out; } switch (intr_handle->type){ /* write to the uio fd to enable the interrupt */ case RTE_INTR_HANDLE_UIO: if (uio_intr_enable(intr_handle)) rc = -1; break; case RTE_INTR_HANDLE_UIO_INTX: if (uio_intx_intr_enable(intr_handle)) rc = -1; break; /* not used at this moment */ case RTE_INTR_HANDLE_ALARM: rc = -1; break; #ifdef VFIO_PRESENT case RTE_INTR_HANDLE_VFIO_MSIX: if (vfio_enable_msix(intr_handle)) rc = -1; break; case RTE_INTR_HANDLE_VFIO_MSI: if (vfio_enable_msi(intr_handle)) rc = -1; break; case RTE_INTR_HANDLE_VFIO_LEGACY: if (vfio_enable_intx(intr_handle)) rc = -1; break; #ifdef HAVE_VFIO_DEV_REQ_INTERFACE case RTE_INTR_HANDLE_VFIO_REQ: if (vfio_enable_req(intr_handle)) rc = -1; break; #endif #endif /* not used at this moment */ case RTE_INTR_HANDLE_DEV_EVENT: rc = -1; break; /* unknown handle type */ default: RTE_LOG(ERR, EAL, "Unknown handle type of fd %d\n", intr_handle->fd); rc = -1; break; } out: rte_eal_trace_intr_enable(intr_handle, rc); return rc; } /** * PMD generally calls this function at the end of its IRQ callback. * Internally, it unmasks the interrupt if possible. * * For INTx, unmasking is required as the interrupt is auto-masked prior to * invoking callback. * * For MSI/MSI-X, unmasking is typically not needed as the interrupt is not * auto-masked. In fact, for interrupt handle types VFIO_MSIX and VFIO_MSI, * this function is no-op. */ int rte_intr_ack(const struct rte_intr_handle *intr_handle) { if (intr_handle && intr_handle->type == RTE_INTR_HANDLE_VDEV) return 0; if (!intr_handle || intr_handle->fd < 0 || intr_handle->uio_cfg_fd < 0) return -1; switch (intr_handle->type) { /* Both acking and enabling are same for UIO */ case RTE_INTR_HANDLE_UIO: if (uio_intr_enable(intr_handle)) return -1; break; case RTE_INTR_HANDLE_UIO_INTX: if (uio_intx_intr_enable(intr_handle)) return -1; break; /* not used at this moment */ case RTE_INTR_HANDLE_ALARM: return -1; #ifdef VFIO_PRESENT /* VFIO MSI* is implicitly acked unlike INTx, nothing to do */ case RTE_INTR_HANDLE_VFIO_MSIX: case RTE_INTR_HANDLE_VFIO_MSI: return 0; case RTE_INTR_HANDLE_VFIO_LEGACY: if (vfio_ack_intx(intr_handle)) return -1; break; #ifdef HAVE_VFIO_DEV_REQ_INTERFACE case RTE_INTR_HANDLE_VFIO_REQ: return -1; #endif #endif /* not used at this moment */ case RTE_INTR_HANDLE_DEV_EVENT: return -1; /* unknown handle type */ default: RTE_LOG(ERR, EAL, "Unknown handle type of fd %d\n", intr_handle->fd); return -1; } return 0; } int rte_intr_disable(const struct rte_intr_handle *intr_handle) { int rc = 0; if (intr_handle == NULL) return -1; if (intr_handle->type == RTE_INTR_HANDLE_VDEV) { rc = 0; goto out; } if (intr_handle->fd < 0 || intr_handle->uio_cfg_fd < 0) { rc = -1; goto out; } switch (intr_handle->type){ /* write to the uio fd to disable the interrupt */ case RTE_INTR_HANDLE_UIO: if (uio_intr_disable(intr_handle)) rc = -1; break; case RTE_INTR_HANDLE_UIO_INTX: if (uio_intx_intr_disable(intr_handle)) rc = -1; break; /* not used at this moment */ case RTE_INTR_HANDLE_ALARM: rc = -1; break; #ifdef VFIO_PRESENT case RTE_INTR_HANDLE_VFIO_MSIX: if (vfio_disable_msix(intr_handle)) rc = -1; break; case RTE_INTR_HANDLE_VFIO_MSI: if (vfio_disable_msi(intr_handle)) rc = -1; break; case RTE_INTR_HANDLE_VFIO_LEGACY: if (vfio_disable_intx(intr_handle)) rc = -1; break; #ifdef HAVE_VFIO_DEV_REQ_INTERFACE case RTE_INTR_HANDLE_VFIO_REQ: if (vfio_disable_req(intr_handle)) rc = -1; break; #endif #endif /* not used at this moment */ case RTE_INTR_HANDLE_DEV_EVENT: rc = -1; break; /* unknown handle type */ default: RTE_LOG(ERR, EAL, "Unknown handle type of fd %d\n", intr_handle->fd); rc = -1; break; } out: rte_eal_trace_intr_disable(intr_handle, rc); return rc; } static int eal_intr_process_interrupts(struct epoll_event *events, int nfds) { bool call = false; int n, bytes_read, rv; struct rte_intr_source *src; struct rte_intr_callback *cb, *next; union rte_intr_read_buffer buf; struct rte_intr_callback active_cb; for (n = 0; n < nfds; n++) { /** * if the pipe fd is ready to read, return out to * rebuild the wait list. */ if (events[n].data.fd == intr_pipe.readfd){ int r = read(intr_pipe.readfd, buf.charbuf, sizeof(buf.charbuf)); RTE_SET_USED(r); return -1; } rte_spinlock_lock(&intr_lock); TAILQ_FOREACH(src, &intr_sources, next) if (src->intr_handle.fd == events[n].data.fd) break; if (src == NULL){ rte_spinlock_unlock(&intr_lock); continue; } /* mark this interrupt source as active and release the lock. */ src->active = 1; rte_spinlock_unlock(&intr_lock); /* set the length to be read dor different handle type */ switch (src->intr_handle.type) { case RTE_INTR_HANDLE_UIO: case RTE_INTR_HANDLE_UIO_INTX: bytes_read = sizeof(buf.uio_intr_count); break; case RTE_INTR_HANDLE_ALARM: bytes_read = sizeof(buf.timerfd_num); break; #ifdef VFIO_PRESENT case RTE_INTR_HANDLE_VFIO_MSIX: case RTE_INTR_HANDLE_VFIO_MSI: case RTE_INTR_HANDLE_VFIO_LEGACY: bytes_read = sizeof(buf.vfio_intr_count); break; #ifdef HAVE_VFIO_DEV_REQ_INTERFACE case RTE_INTR_HANDLE_VFIO_REQ: bytes_read = 0; call = true; break; #endif #endif case RTE_INTR_HANDLE_VDEV: case RTE_INTR_HANDLE_EXT: bytes_read = 0; call = true; break; case RTE_INTR_HANDLE_DEV_EVENT: bytes_read = 0; call = true; break; default: bytes_read = 1; break; } if (bytes_read > 0) { /** * read out to clear the ready-to-be-read flag * for epoll_wait. */ bytes_read = read(events[n].data.fd, &buf, bytes_read); if (bytes_read < 0) { if (errno == EINTR || errno == EWOULDBLOCK) continue; RTE_LOG(ERR, EAL, "Error reading from file " "descriptor %d: %s\n", events[n].data.fd, strerror(errno)); /* * The device is unplugged or buggy, remove * it as an interrupt source and return to * force the wait list to be rebuilt. */ rte_spinlock_lock(&intr_lock); TAILQ_REMOVE(&intr_sources, src, next); rte_spinlock_unlock(&intr_lock); for (cb = TAILQ_FIRST(&src->callbacks); cb; cb = next) { next = TAILQ_NEXT(cb, next); TAILQ_REMOVE(&src->callbacks, cb, next); free(cb); } free(src); return -1; } else if (bytes_read == 0) RTE_LOG(ERR, EAL, "Read nothing from file " "descriptor %d\n", events[n].data.fd); else call = true; } /* grab a lock, again to call callbacks and update status. */ rte_spinlock_lock(&intr_lock); if (call) { /* Finally, call all callbacks. */ TAILQ_FOREACH(cb, &src->callbacks, next) { /* make a copy and unlock. */ active_cb = *cb; rte_spinlock_unlock(&intr_lock); /* call the actual callback */ active_cb.cb_fn(active_cb.cb_arg); /*get the lock back. */ rte_spinlock_lock(&intr_lock); } } /* we done with that interrupt source, release it. */ src->active = 0; rv = 0; /* check if any callback are supposed to be removed */ for (cb = TAILQ_FIRST(&src->callbacks); cb != NULL; cb = next) { next = TAILQ_NEXT(cb, next); if (cb->pending_delete) { TAILQ_REMOVE(&src->callbacks, cb, next); if (cb->ucb_fn) cb->ucb_fn(&src->intr_handle, cb->cb_arg); free(cb); rv++; } } /* all callbacks for that source are removed. */ if (TAILQ_EMPTY(&src->callbacks)) { TAILQ_REMOVE(&intr_sources, src, next); free(src); } /* notify the pipe fd waited by epoll_wait to rebuild the wait list */ if (rv > 0 && write(intr_pipe.writefd, "1", 1) < 0) { rte_spinlock_unlock(&intr_lock); return -EPIPE; } rte_spinlock_unlock(&intr_lock); } return 0; } /** * It handles all the interrupts. * * @param pfd * epoll file descriptor. * @param totalfds * The number of file descriptors added in epoll. * * @return * void */ static void eal_intr_handle_interrupts(int pfd, unsigned totalfds) { struct epoll_event events[totalfds]; int nfds = 0; for(;;) { nfds = epoll_wait(pfd, events, totalfds, EAL_INTR_EPOLL_WAIT_FOREVER); /* epoll_wait fail */ if (nfds < 0) { if (errno == EINTR) continue; RTE_LOG(ERR, EAL, "epoll_wait returns with fail\n"); return; } /* epoll_wait timeout, will never happens here */ else if (nfds == 0) continue; /* epoll_wait has at least one fd ready to read */ if (eal_intr_process_interrupts(events, nfds) < 0) return; } } /** * It builds/rebuilds up the epoll file descriptor with all the * file descriptors being waited on. Then handles the interrupts. * * @param arg * pointer. (unused) * * @return * never return; */ static __rte_noreturn void * eal_intr_thread_main(__rte_unused void *arg) { /* host thread, never break out */ for (;;) { /* build up the epoll fd with all descriptors we are to * wait on then pass it to the handle_interrupts function */ static struct epoll_event pipe_event = { .events = EPOLLIN | EPOLLPRI, }; struct rte_intr_source *src; unsigned numfds = 0; /* create epoll fd */ int pfd = epoll_create(1); if (pfd < 0) rte_panic("Cannot create epoll instance\n"); pipe_event.data.fd = intr_pipe.readfd; /** * add pipe fd into wait list, this pipe is used to * rebuild the wait list. */ if (epoll_ctl(pfd, EPOLL_CTL_ADD, intr_pipe.readfd, &pipe_event) < 0) { rte_panic("Error adding fd to %d epoll_ctl, %s\n", intr_pipe.readfd, strerror(errno)); } numfds++; rte_spinlock_lock(&intr_lock); TAILQ_FOREACH(src, &intr_sources, next) { struct epoll_event ev; if (src->callbacks.tqh_first == NULL) continue; /* skip those with no callbacks */ memset(&ev, 0, sizeof(ev)); ev.events = EPOLLIN | EPOLLPRI | EPOLLRDHUP | EPOLLHUP; ev.data.fd = src->intr_handle.fd; /** * add all the uio device file descriptor * into wait list. */ if (epoll_ctl(pfd, EPOLL_CTL_ADD, src->intr_handle.fd, &ev) < 0){ rte_panic("Error adding fd %d epoll_ctl, %s\n", src->intr_handle.fd, strerror(errno)); } else numfds++; } rte_spinlock_unlock(&intr_lock); /* serve the interrupt */ eal_intr_handle_interrupts(pfd, numfds); /** * when we return, we need to rebuild the * list of fds to monitor. */ close(pfd); } } int rte_eal_intr_init(void) { int ret = 0; /* init the global interrupt source head */ TAILQ_INIT(&intr_sources); /** * create a pipe which will be waited by epoll and notified to * rebuild the wait list of epoll. */ if (pipe(intr_pipe.pipefd) < 0) { rte_errno = errno; return -1; } /* create the host thread to wait/handle the interrupt */ ret = rte_ctrl_thread_create(&intr_thread, "eal-intr-thread", NULL, eal_intr_thread_main, NULL); if (ret != 0) { rte_errno = -ret; RTE_LOG(ERR, EAL, "Failed to create thread for interrupt handling\n"); } return ret; } static void eal_intr_proc_rxtx_intr(int fd, const struct rte_intr_handle *intr_handle) { union rte_intr_read_buffer buf; int bytes_read = 0; int nbytes; switch (intr_handle->type) { case RTE_INTR_HANDLE_UIO: case RTE_INTR_HANDLE_UIO_INTX: bytes_read = sizeof(buf.uio_intr_count); break; #ifdef VFIO_PRESENT case RTE_INTR_HANDLE_VFIO_MSIX: case RTE_INTR_HANDLE_VFIO_MSI: case RTE_INTR_HANDLE_VFIO_LEGACY: bytes_read = sizeof(buf.vfio_intr_count); break; #endif case RTE_INTR_HANDLE_VDEV: bytes_read = intr_handle->efd_counter_size; /* For vdev, number of bytes to read is set by driver */ break; case RTE_INTR_HANDLE_EXT: return; default: bytes_read = 1; RTE_LOG(INFO, EAL, "unexpected intr type\n"); break; } /** * read out to clear the ready-to-be-read flag * for epoll_wait. */ if (bytes_read == 0) return; do { nbytes = read(fd, &buf, bytes_read); if (nbytes < 0) { if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN) continue; RTE_LOG(ERR, EAL, "Error reading from fd %d: %s\n", fd, strerror(errno)); } else if (nbytes == 0) RTE_LOG(ERR, EAL, "Read nothing from fd %d\n", fd); return; } while (1); } static int eal_epoll_process_event(struct epoll_event *evs, unsigned int n, struct rte_epoll_event *events) { unsigned int i, count = 0; struct rte_epoll_event *rev; uint32_t valid_status; for (i = 0; i < n; i++) { rev = evs[i].data.ptr; valid_status = RTE_EPOLL_VALID; /* ACQUIRE memory ordering here pairs with RELEASE * ordering below acting as a lock to synchronize * the event data updating. */ if (!rev || !__atomic_compare_exchange_n(&rev->status, &valid_status, RTE_EPOLL_EXEC, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) continue; events[count].status = RTE_EPOLL_VALID; events[count].fd = rev->fd; events[count].epfd = rev->epfd; events[count].epdata.event = rev->epdata.event; events[count].epdata.data = rev->epdata.data; if (rev->epdata.cb_fun) rev->epdata.cb_fun(rev->fd, rev->epdata.cb_arg); /* the status update should be observed after * the other fields change. */ __atomic_store_n(&rev->status, RTE_EPOLL_VALID, __ATOMIC_RELEASE); count++; } return count; } static inline int eal_init_tls_epfd(void) { int pfd = epoll_create(255); if (pfd < 0) { RTE_LOG(ERR, EAL, "Cannot create epoll instance\n"); return -1; } return pfd; } int rte_intr_tls_epfd(void) { if (RTE_PER_LCORE(_epfd) == -1) RTE_PER_LCORE(_epfd) = eal_init_tls_epfd(); return RTE_PER_LCORE(_epfd); } static int eal_epoll_wait(int epfd, struct rte_epoll_event *events, int maxevents, int timeout, bool interruptible) { struct epoll_event evs[maxevents]; int rc; if (!events) { RTE_LOG(ERR, EAL, "rte_epoll_event can't be NULL\n"); return -1; } /* using per thread epoll fd */ if (epfd == RTE_EPOLL_PER_THREAD) epfd = rte_intr_tls_epfd(); while (1) { rc = epoll_wait(epfd, evs, maxevents, timeout); if (likely(rc > 0)) { /* epoll_wait has at least one fd ready to read */ rc = eal_epoll_process_event(evs, rc, events); break; } else if (rc < 0) { if (errno == EINTR) { if (interruptible) return -1; else continue; } /* epoll_wait fail */ RTE_LOG(ERR, EAL, "epoll_wait returns with fail %s\n", strerror(errno)); rc = -1; break; } else { /* rc == 0, epoll_wait timed out */ break; } } return rc; } int rte_epoll_wait(int epfd, struct rte_epoll_event *events, int maxevents, int timeout) { return eal_epoll_wait(epfd, events, maxevents, timeout, false); } int rte_epoll_wait_interruptible(int epfd, struct rte_epoll_event *events, int maxevents, int timeout) { return eal_epoll_wait(epfd, events, maxevents, timeout, true); } static inline void eal_epoll_data_safe_free(struct rte_epoll_event *ev) { uint32_t valid_status = RTE_EPOLL_VALID; while (!__atomic_compare_exchange_n(&ev->status, &valid_status, RTE_EPOLL_INVALID, 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) { while (__atomic_load_n(&ev->status, __ATOMIC_RELAXED) != RTE_EPOLL_VALID) rte_pause(); valid_status = RTE_EPOLL_VALID; } memset(&ev->epdata, 0, sizeof(ev->epdata)); ev->fd = -1; ev->epfd = -1; } int rte_epoll_ctl(int epfd, int op, int fd, struct rte_epoll_event *event) { struct epoll_event ev; if (!event) { RTE_LOG(ERR, EAL, "rte_epoll_event can't be NULL\n"); return -1; } /* using per thread epoll fd */ if (epfd == RTE_EPOLL_PER_THREAD) epfd = rte_intr_tls_epfd(); if (op == EPOLL_CTL_ADD) { __atomic_store_n(&event->status, RTE_EPOLL_VALID, __ATOMIC_RELAXED); event->fd = fd; /* ignore fd in event */ event->epfd = epfd; ev.data.ptr = (void *)event; } ev.events = event->epdata.event; if (epoll_ctl(epfd, op, fd, &ev) < 0) { RTE_LOG(ERR, EAL, "Error op %d fd %d epoll_ctl, %s\n", op, fd, strerror(errno)); if (op == EPOLL_CTL_ADD) /* rollback status when CTL_ADD fail */ __atomic_store_n(&event->status, RTE_EPOLL_INVALID, __ATOMIC_RELAXED); return -1; } if (op == EPOLL_CTL_DEL && __atomic_load_n(&event->status, __ATOMIC_RELAXED) != RTE_EPOLL_INVALID) eal_epoll_data_safe_free(event); return 0; } int rte_intr_rx_ctl(struct rte_intr_handle *intr_handle, int epfd, int op, unsigned int vec, void *data) { struct rte_epoll_event *rev; struct rte_epoll_data *epdata; int epfd_op; unsigned int efd_idx; int rc = 0; efd_idx = (vec >= RTE_INTR_VEC_RXTX_OFFSET) ? (vec - RTE_INTR_VEC_RXTX_OFFSET) : vec; if (!intr_handle || intr_handle->nb_efd == 0 || efd_idx >= intr_handle->nb_efd) { RTE_LOG(ERR, EAL, "Wrong intr vector number.\n"); return -EPERM; } switch (op) { case RTE_INTR_EVENT_ADD: epfd_op = EPOLL_CTL_ADD; rev = &intr_handle->elist[efd_idx]; if (__atomic_load_n(&rev->status, __ATOMIC_RELAXED) != RTE_EPOLL_INVALID) { RTE_LOG(INFO, EAL, "Event already been added.\n"); return -EEXIST; } /* attach to intr vector fd */ epdata = &rev->epdata; epdata->event = EPOLLIN | EPOLLPRI | EPOLLET; epdata->data = data; epdata->cb_fun = (rte_intr_event_cb_t)eal_intr_proc_rxtx_intr; epdata->cb_arg = (void *)intr_handle; rc = rte_epoll_ctl(epfd, epfd_op, intr_handle->efds[efd_idx], rev); if (!rc) RTE_LOG(DEBUG, EAL, "efd %d associated with vec %d added on epfd %d" "\n", rev->fd, vec, epfd); else rc = -EPERM; break; case RTE_INTR_EVENT_DEL: epfd_op = EPOLL_CTL_DEL; rev = &intr_handle->elist[efd_idx]; if (__atomic_load_n(&rev->status, __ATOMIC_RELAXED) == RTE_EPOLL_INVALID) { RTE_LOG(INFO, EAL, "Event does not exist.\n"); return -EPERM; } rc = rte_epoll_ctl(rev->epfd, epfd_op, rev->fd, rev); if (rc) rc = -EPERM; break; default: RTE_LOG(ERR, EAL, "event op type mismatch\n"); rc = -EPERM; } return rc; } void rte_intr_free_epoll_fd(struct rte_intr_handle *intr_handle) { uint32_t i; struct rte_epoll_event *rev; for (i = 0; i < intr_handle->nb_efd; i++) { rev = &intr_handle->elist[i]; if (__atomic_load_n(&rev->status, __ATOMIC_RELAXED) == RTE_EPOLL_INVALID) continue; if (rte_epoll_ctl(rev->epfd, EPOLL_CTL_DEL, rev->fd, rev)) { /* force free if the entry valid */ eal_epoll_data_safe_free(rev); } } } int rte_intr_efd_enable(struct rte_intr_handle *intr_handle, uint32_t nb_efd) { uint32_t i; int fd; uint32_t n = RTE_MIN(nb_efd, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID); assert(nb_efd != 0); if (intr_handle->type == RTE_INTR_HANDLE_VFIO_MSIX) { for (i = 0; i < n; i++) { fd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); if (fd < 0) { RTE_LOG(ERR, EAL, "can't setup eventfd, error %i (%s)\n", errno, strerror(errno)); return -errno; } intr_handle->efds[i] = fd; } intr_handle->nb_efd = n; intr_handle->max_intr = NB_OTHER_INTR + n; } else if (intr_handle->type == RTE_INTR_HANDLE_VDEV) { /* only check, initialization would be done in vdev driver.*/ if (intr_handle->efd_counter_size > sizeof(union rte_intr_read_buffer)) { RTE_LOG(ERR, EAL, "the efd_counter_size is oversized"); return -EINVAL; } } else { intr_handle->efds[0] = intr_handle->fd; intr_handle->nb_efd = RTE_MIN(nb_efd, 1U); intr_handle->max_intr = NB_OTHER_INTR; } return 0; } void rte_intr_efd_disable(struct rte_intr_handle *intr_handle) { uint32_t i; rte_intr_free_epoll_fd(intr_handle); if (intr_handle->max_intr > intr_handle->nb_efd) { for (i = 0; i < intr_handle->nb_efd; i++) close(intr_handle->efds[i]); } intr_handle->nb_efd = 0; intr_handle->max_intr = 0; } int rte_intr_dp_is_en(struct rte_intr_handle *intr_handle) { return !(!intr_handle->nb_efd); } int rte_intr_allow_others(struct rte_intr_handle *intr_handle) { if (!rte_intr_dp_is_en(intr_handle)) return 1; else return !!(intr_handle->max_intr - intr_handle->nb_efd); } int rte_intr_cap_multiple(struct rte_intr_handle *intr_handle) { if (intr_handle->type == RTE_INTR_HANDLE_VFIO_MSIX) return 1; if (intr_handle->type == RTE_INTR_HANDLE_VDEV) return 1; return 0; } int rte_thread_is_intr(void) { return pthread_equal(intr_thread, pthread_self()); }