/*- * Codel/FQ_Codel and PIE/FQ_PIE Code: * Copyright (C) 2016 Centre for Advanced Internet Architectures, * Swinburne University of Technology, Melbourne, Australia. * Portions of this code were made possible in part by a gift from * The Comcast Innovation Fund. * Implemented by Rasool Al-Saadi * * Copyright (c) 2002-2003,2010 Luigi Rizzo * * Redistribution and use in source forms, with and without modification, * are permitted provided that this entire comment appears intact. * * Redistribution in binary form may occur without any restrictions. * Obviously, it would be nice if you gave credit where credit is due * but requiring it would be too onerous. * * This software is provided ``AS IS'' without any warranties of any kind. * * $FreeBSD$ * * dummynet support */ #define NEW_AQM #include #include /* XXX there are several sysctl leftover here */ #include #include "ipfw2.h" #ifdef NEW_AQM #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* inet_ntoa */ static struct _s_x dummynet_params[] = { { "plr", TOK_PLR }, { "noerror", TOK_NOERROR }, { "buckets", TOK_BUCKETS }, { "dst-ip", TOK_DSTIP }, { "src-ip", TOK_SRCIP }, { "dst-port", TOK_DSTPORT }, { "src-port", TOK_SRCPORT }, { "proto", TOK_PROTO }, { "weight", TOK_WEIGHT }, { "lmax", TOK_LMAX }, { "maxlen", TOK_LMAX }, { "all", TOK_ALL }, { "mask", TOK_MASK }, /* alias for both */ { "sched_mask", TOK_SCHED_MASK }, { "flow_mask", TOK_FLOW_MASK }, { "droptail", TOK_DROPTAIL }, { "ecn", TOK_ECN }, { "red", TOK_RED }, { "gred", TOK_GRED }, #ifdef NEW_AQM { "codel", TOK_CODEL}, /* Codel AQM */ { "fq_codel", TOK_FQ_CODEL}, /* FQ-Codel */ { "pie", TOK_PIE}, /* PIE AQM */ { "fq_pie", TOK_FQ_PIE}, /* FQ-PIE */ #endif { "bw", TOK_BW }, { "bandwidth", TOK_BW }, { "delay", TOK_DELAY }, { "link", TOK_LINK }, { "pipe", TOK_PIPE }, { "queue", TOK_QUEUE }, { "flowset", TOK_FLOWSET }, { "sched", TOK_SCHED }, { "pri", TOK_PRI }, { "priority", TOK_PRI }, { "type", TOK_TYPE }, { "flow-id", TOK_FLOWID}, { "dst-ipv6", TOK_DSTIP6}, { "dst-ip6", TOK_DSTIP6}, { "src-ipv6", TOK_SRCIP6}, { "src-ip6", TOK_SRCIP6}, { "profile", TOK_PROFILE}, { "burst", TOK_BURST}, { "dummynet-params", TOK_NULL }, { NULL, 0 } /* terminator */ }; #ifdef NEW_AQM /* AQM/extra sched parameters tokens*/ static struct _s_x aqm_params[] = { { "target", TOK_TARGET}, { "interval", TOK_INTERVAL}, { "limit", TOK_LIMIT}, { "flows", TOK_FLOWS}, { "quantum", TOK_QUANTUM}, { "ecn", TOK_ECN}, { "noecn", TOK_NO_ECN}, { "tupdate", TOK_TUPDATE}, { "max_burst", TOK_MAX_BURST}, { "max_ecnth", TOK_MAX_ECNTH}, { "alpha", TOK_ALPHA}, { "beta", TOK_BETA}, { "capdrop", TOK_CAPDROP}, { "nocapdrop", TOK_NO_CAPDROP}, { "onoff", TOK_ONOFF}, { "dre", TOK_DRE}, { "ts", TOK_TS}, { "derand", TOK_DERAND}, { "noderand", TOK_NO_DERAND}, { NULL, 0 } /* terminator */ }; #endif #define O_NEXT(p, len) ((void *)((char *)p + len)) static void oid_fill(struct dn_id *oid, int len, int type, uintptr_t id) { oid->len = len; oid->type = type; oid->subtype = 0; oid->id = id; } /* make room in the buffer and move the pointer forward */ static void * o_next(struct dn_id **o, int len, int type) { struct dn_id *ret = *o; oid_fill(ret, len, type, 0); *o = O_NEXT(*o, len); return ret; } #ifdef NEW_AQM /* Codel flags */ enum { CODEL_ECN_ENABLED = 1 }; /* PIE flags, from PIE kernel module */ enum { PIE_ECN_ENABLED = 1, PIE_CAPDROP_ENABLED = 2, PIE_ON_OFF_MODE_ENABLED = 4, PIE_DEPRATEEST_ENABLED = 8, PIE_DERAND_ENABLED = 16 }; #define PIE_FIX_POINT_BITS 13 #define PIE_SCALE (1L<15) return -1; for (i = 0; ioid, l, DN_CMD_GET, DN_API_VERSION); ep->oid.len = l; ep->oid.subtype = subtype; ep->nr = nr; ret = do_cmd(-IP_DUMMYNET3, ep, (uintptr_t)&l); if (ret) { free(ep); errx(EX_DATAERR, "Error getting extra parameters\n"); } switch (subtype) { case DN_AQM_PARAMS: if( !strcasecmp(ep->name, "codel")) { us_to_time(ep->par[0], strt1); us_to_time(ep->par[1], strt2); l = sprintf(out, " AQM CoDel target %s interval %s", strt1, strt2); if (ep->par[2] & CODEL_ECN_ENABLED) l = sprintf(out + l, " ECN"); else l += sprintf(out + l, " NoECN"); } else if( !strcasecmp(ep->name, "pie")) { us_to_time(ep->par[0], strt1); us_to_time(ep->par[1], strt2); us_to_time(ep->par[2], strt3); l = sprintf(out, " AQM type PIE target %s tupdate %s alpha " "%g beta %g max_burst %s max_ecnth %.3g", strt1, strt2, ep->par[4] / (float) PIE_SCALE, ep->par[5] / (float) PIE_SCALE, strt3, ep->par[3] / (float) PIE_SCALE ); if (ep->par[6] & PIE_ECN_ENABLED) l += sprintf(out + l, " ECN"); else l += sprintf(out + l, " NoECN"); if (ep->par[6] & PIE_CAPDROP_ENABLED) l += sprintf(out + l, " CapDrop"); else l += sprintf(out + l, " NoCapDrop"); if (ep->par[6] & PIE_ON_OFF_MODE_ENABLED) l += sprintf(out + l, " OnOff"); if (ep->par[6] & PIE_DEPRATEEST_ENABLED) l += sprintf(out + l, " DRE"); else l += sprintf(out + l, " TS"); if (ep->par[6] & PIE_DERAND_ENABLED) l += sprintf(out + l, " Derand"); else l += sprintf(out + l, " NoDerand"); } break; case DN_SCH_PARAMS: if (!strcasecmp(ep->name,"FQ_CODEL")) { us_to_time(ep->par[0], strt1); us_to_time(ep->par[1], strt2); l = sprintf(out," FQ_CODEL target %s interval %s" " quantum %jd limit %jd flows %jd", strt1, strt2, (intmax_t) ep->par[3], (intmax_t) ep->par[4], (intmax_t) ep->par[5] ); if (ep->par[2] & CODEL_ECN_ENABLED) l += sprintf(out + l, " ECN"); else l += sprintf(out + l, " NoECN"); l += sprintf(out + l, "\n"); } else if (!strcasecmp(ep->name,"FQ_PIE")) { us_to_time(ep->par[0], strt1); us_to_time(ep->par[1], strt2); us_to_time(ep->par[2], strt3); l = sprintf(out, " FQ_PIE target %s tupdate %s alpha " "%g beta %g max_burst %s max_ecnth %.3g" " quantum %jd limit %jd flows %jd", strt1, strt2, ep->par[4] / (float) PIE_SCALE, ep->par[5] / (float) PIE_SCALE, strt3, ep->par[3] / (float) PIE_SCALE, (intmax_t) ep->par[7], (intmax_t) ep->par[8], (intmax_t) ep->par[9] ); if (ep->par[6] & PIE_ECN_ENABLED) l += sprintf(out + l, " ECN"); else l += sprintf(out + l, " NoECN"); if (ep->par[6] & PIE_CAPDROP_ENABLED) l += sprintf(out + l, " CapDrop"); else l += sprintf(out + l, " NoCapDrop"); if (ep->par[6] & PIE_ON_OFF_MODE_ENABLED) l += sprintf(out + l, " OnOff"); if (ep->par[6] & PIE_DEPRATEEST_ENABLED) l += sprintf(out + l, " DRE"); else l += sprintf(out + l, " TS"); if (ep->par[6] & PIE_DERAND_ENABLED) l += sprintf(out + l, " Derand"); else l += sprintf(out + l, " NoDerand"); l += sprintf(out + l, "\n"); } break; } free(ep); } #endif #if 0 static int sort_q(void *arg, const void *pa, const void *pb) { int rev = (co.do_sort < 0); int field = rev ? -co.do_sort : co.do_sort; long long res = 0; const struct dn_flow_queue *a = pa; const struct dn_flow_queue *b = pb; switch (field) { case 1: /* pkts */ res = a->len - b->len; break; case 2: /* bytes */ res = a->len_bytes - b->len_bytes; break; case 3: /* tot pkts */ res = a->tot_pkts - b->tot_pkts; break; case 4: /* tot bytes */ res = a->tot_bytes - b->tot_bytes; break; } if (res < 0) res = -1; if (res > 0) res = 1; return (int)(rev ? res : -res); } #endif /* print a mask and header for the subsequent list of flows */ static void print_mask(struct ipfw_flow_id *id) { if (!IS_IP6_FLOW_ID(id)) { printf(" " "mask: %s 0x%02x 0x%08x/0x%04x -> 0x%08x/0x%04x\n", id->extra ? "queue," : "", id->proto, id->src_ip, id->src_port, id->dst_ip, id->dst_port); } else { char buf[255]; printf("\n mask: %sproto: 0x%02x, flow_id: 0x%08x, ", id->extra ? "queue," : "", id->proto, id->flow_id6); inet_ntop(AF_INET6_LINUX, &(id->src_ip6), buf, sizeof(buf)); printf("%s/0x%04x -> ", buf, id->src_port); inet_ntop(AF_INET6_LINUX, &(id->dst_ip6), buf, sizeof(buf)); printf("%s/0x%04x\n", buf, id->dst_port); } } static void print_header(struct ipfw_flow_id *id) { if (!IS_IP6_FLOW_ID(id)) printf("BKT Prot ___Source IP/port____ " "____Dest. IP/port____ " "Tot_pkt/bytes Pkt/Byte Drp\n"); else printf("BKT ___Prot___ _flow-id_ " "______________Source IPv6/port_______________ " "_______________Dest. IPv6/port_______________ " "Tot_pkt/bytes Pkt/Byte Drp\n"); } static void list_flow(struct buf_pr *bp, struct dn_flow *ni) { char buff[255]; struct protoent *pe = NULL; struct in_addr ina; struct ipfw_flow_id *id = &ni->fid; pe = getprotobynumber(id->proto); /* XXX: Should check for IPv4 flows */ bprintf(bp, "%3u%c", (ni->oid.id) & 0xff, id->extra ? '*' : ' '); if (!IS_IP6_FLOW_ID(id)) { if (pe) bprintf(bp, "%-4s ", pe->p_name); else bprintf(bp, "%4u ", id->proto); ina.s_addr = htonl(id->src_ip); bprintf(bp, "%15s/%-5d ", inet_ntoa(ina), id->src_port); ina.s_addr = htonl(id->dst_ip); bprintf(bp, "%15s/%-5d ", inet_ntoa(ina), id->dst_port); } else { /* Print IPv6 flows */ if (pe != NULL) bprintf(bp, "%9s ", pe->p_name); else bprintf(bp, "%9u ", id->proto); bprintf(bp, "%7d %39s/%-5d ", id->flow_id6, inet_ntop(AF_INET6_LINUX, &(id->src_ip6), buff, sizeof(buff)), id->src_port); bprintf(bp, " %39s/%-5d ", inet_ntop(AF_INET6_LINUX, &(id->dst_ip6), buff, sizeof(buff)), id->dst_port); } pr_u64(bp, &ni->tot_pkts, 4); pr_u64(bp, &ni->tot_bytes, 8); bprintf(bp, "%2u %4u %3u", ni->length, ni->len_bytes, ni->drops); } static void print_flowset_parms(struct dn_fs *fs, char *prefix) { int l; char qs[30]; char plr[30]; char red[200]; /* Display RED parameters */ l = fs->qsize; if (fs->flags & DN_QSIZE_BYTES) { if (l >= 8192) sprintf(qs, "%d KB", l / 1024); else sprintf(qs, "%d B", l); } else sprintf(qs, "%3d sl.", l); if (fs->plr) sprintf(plr, "plr %f", 1.0 * fs->plr / (double)(0x7fffffff)); else plr[0] = '\0'; if (fs->flags & DN_IS_RED) { /* RED parameters */ sprintf(red, "\n\t %cRED w_q %f min_th %d max_th %d max_p %f", (fs->flags & DN_IS_GENTLE_RED) ? 'G' : ' ', 1.0 * fs->w_q / (double)(1 << SCALE_RED), fs->min_th, fs->max_th, 1.0 * fs->max_p / (double)(1 << SCALE_RED)); if (fs->flags & DN_IS_ECN) strlcat(red, " (ecn)", sizeof(red)); #ifdef NEW_AQM /* get AQM parameters */ } else if (fs->flags & DN_IS_AQM) { get_extra_parms(fs->fs_nr, red, DN_AQM_PARAMS); #endif } else sprintf(red, "droptail"); if (prefix[0]) { printf("%s %s%s %d queues (%d buckets) %s\n", prefix, qs, plr, fs->oid.id, fs->buckets, red); prefix[0] = '\0'; } else { printf("q%05d %s%s %d flows (%d buckets) sched %d " "weight %d lmax %d pri %d %s\n", fs->fs_nr, qs, plr, fs->oid.id, fs->buckets, fs->sched_nr, fs->par[0], fs->par[1], fs->par[2], red); if (fs->flags & DN_HAVE_MASK) print_mask(&fs->flow_mask); } } static void print_extra_delay_parms(struct dn_profile *p) { double loss; if (p->samples_no <= 0) return; loss = p->loss_level; loss /= p->samples_no; printf("\t profile: name \"%s\" loss %f samples %d\n", p->name, loss, p->samples_no); } static void flush_buf(char *buf) { if (buf[0]) printf("%s\n", buf); buf[0] = '\0'; } /* * generic list routine. We expect objects in a specific order, i.e. * PIPES AND SCHEDULERS: * link; scheduler; internal flowset if any; instances * we can tell a pipe from the number. * * FLOWSETS: * flowset; queues; * link i (int queue); scheduler i; si(i) { flowsets() : queues } */ static void list_pipes(struct dn_id *oid, struct dn_id *end) { char buf[160]; /* pending buffer */ int toPrint = 1; /* print header */ struct buf_pr bp; buf[0] = '\0'; bp_alloc(&bp, 4096); for (; oid != end; oid = O_NEXT(oid, oid->len)) { if (oid->len < sizeof(*oid)) errx(1, "invalid oid len %d\n", oid->len); switch (oid->type) { default: flush_buf(buf); printf("unrecognized object %d size %d\n", oid->type, oid->len); break; case DN_TEXT: /* list of attached flowsets */ { int i, l; struct { struct dn_id id; uint32_t p[0]; } *d = (void *)oid; l = (oid->len - sizeof(*oid))/sizeof(d->p[0]); if (l == 0) break; printf(" Children flowsets: "); for (i = 0; i < l; i++) printf("%u ", d->p[i]); printf("\n"); break; } case DN_CMD_GET: if (g_co.verbose) printf("answer for cmd %d, len %d\n", oid->type, oid->id); break; case DN_SCH: { struct dn_sch *s = (struct dn_sch *)oid; flush_buf(buf); printf(" sched %d type %s flags 0x%x %d buckets %d active\n", s->sched_nr, s->name, s->flags, s->buckets, s->oid.id); #ifdef NEW_AQM char parms[200]; get_extra_parms(s->sched_nr, parms, DN_SCH_PARAMS); printf("%s",parms); #endif if (s->flags & DN_HAVE_MASK) print_mask(&s->sched_mask); } break; case DN_FLOW: if (toPrint != 0) { print_header(&((struct dn_flow *)oid)->fid); toPrint = 0; } list_flow(&bp, (struct dn_flow *)oid); printf("%s\n", bp.buf); bp_flush(&bp); break; case DN_LINK: { struct dn_link *p = (struct dn_link *)oid; double b = p->bandwidth; char bwbuf[30]; char burst[5 + 7]; /* This starts a new object so flush buffer */ flush_buf(buf); /* data rate */ if (b == 0) sprintf(bwbuf, "unlimited "); else if (b >= 1000000000) sprintf(bwbuf, "%7.3f Gbit/s", b/1000000000); else if (b >= 1000000) sprintf(bwbuf, "%7.3f Mbit/s", b/1000000); else if (b >= 1000) sprintf(bwbuf, "%7.3f Kbit/s", b/1000); else sprintf(bwbuf, "%7.3f bit/s ", b); if (humanize_number(burst, sizeof(burst), p->burst, "", HN_AUTOSCALE, 0) < 0 || g_co.verbose) sprintf(burst, "%d", (int)p->burst); sprintf(buf, "%05d: %s %4d ms burst %s", p->link_nr % DN_MAX_ID, bwbuf, p->delay, burst); } break; case DN_FS: print_flowset_parms((struct dn_fs *)oid, buf); break; case DN_PROFILE: flush_buf(buf); print_extra_delay_parms((struct dn_profile *)oid); } flush_buf(buf); // XXX does it really go here ? } bp_free(&bp); } /* * Delete pipe, queue or scheduler i */ int ipfw_delete_pipe(int do_pipe, int i) { struct { struct dn_id oid; uintptr_t a[1]; /* add more if we want a list */ } cmd; oid_fill((void *)&cmd, sizeof(cmd), DN_CMD_DELETE, DN_API_VERSION); cmd.oid.subtype = (do_pipe == 1) ? DN_LINK : ( (do_pipe == 2) ? DN_FS : DN_SCH); cmd.a[0] = i; i = do_cmd(IP_DUMMYNET3, &cmd, cmd.oid.len); if (i) { i = 1; warn("rule %u: setsockopt(IP_DUMMYNET_DEL)", i); } return i; } /* * Code to parse delay profiles. * * Some link types introduce extra delays in the transmission * of a packet, e.g. because of MAC level framing, contention on * the use of the channel, MAC level retransmissions and so on. * From our point of view, the channel is effectively unavailable * for this extra time, which is constant or variable depending * on the link type. Additionally, packets may be dropped after this * time (e.g. on a wireless link after too many retransmissions). * We can model the additional delay with an empirical curve * that represents its distribution. * * cumulative probability * 1.0 ^ * | * L +-- loss-level x * | ****** * | * * | ***** * | * * | ** * | * * +-------*-------------------> * delay * * The empirical curve may have both vertical and horizontal lines. * Vertical lines represent constant delay for a range of * probabilities; horizontal lines correspond to a discontinuty * in the delay distribution: the link will use the largest delay * for a given probability. * * To pass the curve to dummynet, we must store the parameters * in a file as described below, and issue the command * * ipfw pipe config ... bw XXX profile ... * * The file format is the following, with whitespace acting as * a separator and '#' indicating the beginning a comment: * * samples N * the number of samples used in the internal * representation (2..1024; default 100); * * loss-level L * The probability above which packets are lost. * (0.0 <= L <= 1.0, default 1.0 i.e. no loss); * * name identifier * Optional a name (listed by "ipfw pipe show") * to identify the distribution; * * "delay prob" | "prob delay" * One of these two lines is mandatory and defines * the format of the following lines with data points. * * XXX YYY * 2 or more lines representing points in the curve, * with either delay or probability first, according * to the chosen format. * The unit for delay is milliseconds. * * Data points does not need to be ordered or equal to the number * specified in the "samples" line. ipfw will sort and interpolate * the curve as needed. * * Example of a profile file: name bla_bla_bla samples 100 loss-level 0.86 prob delay 0 200 # minimum overhead is 200ms 0.5 200 0.5 300 0.8 1000 0.9 1300 1 1300 * Internally, we will convert the curve to a fixed number of * samples, and when it is time to transmit a packet we will * model the extra delay as extra bits in the packet. * */ #define ED_MAX_LINE_LEN 256+ED_MAX_NAME_LEN #define ED_TOK_SAMPLES "samples" #define ED_TOK_LOSS "loss-level" #define ED_TOK_NAME "name" #define ED_TOK_DELAY "delay" #define ED_TOK_PROB "prob" #define ED_TOK_BW "bw" #define ED_SEPARATORS " \t\n" #define ED_MIN_SAMPLES_NO 2 /* * returns 1 if s is a non-negative number, with at least one '.' */ static int is_valid_number(const char *s) { int i, dots_found = 0; int len = strlen(s); for (i = 0; i 1)) return 0; return 1; } /* * Take as input a string describing a bandwidth value * and return the numeric bandwidth value. * set clocking interface or bandwidth value */ static void read_bandwidth(char *arg, int *bandwidth, char *if_name, int namelen) { if (*bandwidth != -1) warnx("duplicate token, override bandwidth value!"); if (arg[0] >= 'a' && arg[0] <= 'z') { if (!if_name) { errx(1, "no if support"); } if (namelen >= IFNAMSIZ) warn("interface name truncated"); namelen--; /* interface name */ strlcpy(if_name, arg, namelen); *bandwidth = 0; } else { /* read bandwidth value */ int bw; char *end = NULL; bw = strtoul(arg, &end, 0); if (*end == 'K' || *end == 'k') { end++; bw *= 1000; } else if (*end == 'M' || *end == 'm') { end++; bw *= 1000000; } else if (*end == 'G' || *end == 'g') { end++; bw *= 1000000000; } if ((*end == 'B' && _substrcmp2(end, "Bi", "Bit/s") != 0) || _substrcmp2(end, "by", "bytes") == 0) bw *= 8; if (bw < 0) errx(EX_DATAERR, "bandwidth too large"); *bandwidth = bw; if (if_name) if_name[0] = '\0'; } } struct point { double prob; double delay; }; static int compare_points(const void *vp1, const void *vp2) { const struct point *p1 = vp1; const struct point *p2 = vp2; double res = 0; res = p1->prob - p2->prob; if (res == 0) res = p1->delay - p2->delay; if (res < 0) return -1; else if (res > 0) return 1; else return 0; } #define ED_EFMT(s) EX_DATAERR,"error in %s at line %d: "#s,filename,lineno static void load_extra_delays(const char *filename, struct dn_profile *p, struct dn_link *link) { char line[ED_MAX_LINE_LEN]; FILE *f; int lineno = 0; int i; int samples = -1; double loss = -1.0; char profile_name[ED_MAX_NAME_LEN]; int delay_first = -1; int do_points = 0; struct point points[ED_MAX_SAMPLES_NO]; int points_no = 0; /* XXX link never NULL? */ p->link_nr = link->link_nr; profile_name[0] = '\0'; f = fopen(filename, "r"); if (f == NULL) err(EX_UNAVAILABLE, "fopen: %s", filename); while (fgets(line, ED_MAX_LINE_LEN, f)) { /* read commands */ char *s, *cur = line, *name = NULL, *arg = NULL; ++lineno; /* parse the line */ while (cur) { s = strsep(&cur, ED_SEPARATORS); if (s == NULL || *s == '#') break; if (*s == '\0') continue; if (arg) errx(ED_EFMT("too many arguments")); if (name == NULL) name = s; else arg = s; } if (name == NULL) /* empty line */ continue; if (arg == NULL) errx(ED_EFMT("missing arg for %s"), name); if (!strcasecmp(name, ED_TOK_SAMPLES)) { if (samples > 0) errx(ED_EFMT("duplicate ``samples'' line")); if (atoi(arg) <=0) errx(ED_EFMT("invalid number of samples")); samples = atoi(arg); if (samples>ED_MAX_SAMPLES_NO) errx(ED_EFMT("too many samples, maximum is %d"), ED_MAX_SAMPLES_NO); do_points = 0; } else if (!strcasecmp(name, ED_TOK_BW)) { char buf[IFNAMSIZ]; read_bandwidth(arg, &link->bandwidth, buf, sizeof(buf)); } else if (!strcasecmp(name, ED_TOK_LOSS)) { if (loss != -1.0) errx(ED_EFMT("duplicated token: %s"), name); if (!is_valid_number(arg)) errx(ED_EFMT("invalid %s"), arg); loss = atof(arg); if (loss > 1) errx(ED_EFMT("%s greater than 1.0"), name); do_points = 0; } else if (!strcasecmp(name, ED_TOK_NAME)) { if (profile_name[0] != '\0') errx(ED_EFMT("duplicated token: %s"), name); strlcpy(profile_name, arg, sizeof(profile_name)); do_points = 0; } else if (!strcasecmp(name, ED_TOK_DELAY)) { if (do_points) errx(ED_EFMT("duplicated token: %s"), name); delay_first = 1; do_points = 1; } else if (!strcasecmp(name, ED_TOK_PROB)) { if (do_points) errx(ED_EFMT("duplicated token: %s"), name); delay_first = 0; do_points = 1; } else if (do_points) { if (!is_valid_number(name) || !is_valid_number(arg)) errx(ED_EFMT("invalid point found")); if (delay_first) { points[points_no].delay = atof(name); points[points_no].prob = atof(arg); } else { points[points_no].delay = atof(arg); points[points_no].prob = atof(name); } if (points[points_no].prob > 1.0) errx(ED_EFMT("probability greater than 1.0")); ++points_no; } else { errx(ED_EFMT("unrecognised command '%s'"), name); } } fclose (f); if (samples == -1) { warnx("'%s' not found, assuming 100", ED_TOK_SAMPLES); samples = 100; } if (loss == -1.0) { warnx("'%s' not found, assuming no loss", ED_TOK_LOSS); loss = 1; } /* make sure that there are enough points. */ if (points_no < ED_MIN_SAMPLES_NO) errx(ED_EFMT("too few samples, need at least %d"), ED_MIN_SAMPLES_NO); qsort(points, points_no, sizeof(struct point), compare_points); /* interpolation */ for (i = 0; isamples[ix] = x1; } else { double m = (y2-y1)/(x2-x1); double c = y1 - m*x1; for (; ixsamples[ix] = (ix - c)/m; } } p->samples_no = samples; p->loss_level = loss * samples; strlcpy(p->name, profile_name, sizeof(p->name)); } #ifdef NEW_AQM /* Parse AQM/extra scheduler parameters */ static int process_extra_parms(int *ac, char **av, struct dn_extra_parms *ep, uint16_t type) { int i; /* use kernel defaults */ for (i=0; ipar[i] = -1; switch(type) { case TOK_CODEL: case TOK_FQ_CODEL: /* Codel * 0- target, 1- interval, 2- flags, * FQ_CODEL * 3- quantum, 4- limit, 5- flows */ if (type==TOK_CODEL) ep->par[2] = 0; else ep->par[2] = CODEL_ECN_ENABLED; while (*ac > 0) { int tok = match_token(aqm_params, *av); (*ac)--; av++; switch(tok) { case TOK_TARGET: if (*ac <= 0 || time_to_us(av[0]) < 0) errx(EX_DATAERR, "target needs time\n"); ep->par[0] = time_to_us(av[0]); (*ac)--; av++; break; case TOK_INTERVAL: if (*ac <= 0 || time_to_us(av[0]) < 0) errx(EX_DATAERR, "interval needs time\n"); ep->par[1] = time_to_us(av[0]); (*ac)--; av++; break; case TOK_ECN: ep->par[2] = CODEL_ECN_ENABLED; break; case TOK_NO_ECN: ep->par[2] &= ~CODEL_ECN_ENABLED; break; /* Config fq_codel parameters */ case TOK_QUANTUM: if (type != TOK_FQ_CODEL) errx(EX_DATAERR, "quantum is not for codel\n"); if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "quantum needs number\n"); ep->par[3]= atoi(av[0]); (*ac)--; av++; break; case TOK_LIMIT: if (type != TOK_FQ_CODEL) errx(EX_DATAERR, "limit is not for codel, use queue instead\n"); if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "limit needs number\n"); ep->par[4] = atoi(av[0]); (*ac)--; av++; break; case TOK_FLOWS: if (type != TOK_FQ_CODEL) errx(EX_DATAERR, "flows is not for codel\n"); if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "flows needs number\n"); ep->par[5] = atoi(av[0]); (*ac)--; av++; break; default: printf("%s is Invalid parameter\n", av[-1]); } } break; case TOK_PIE: case TOK_FQ_PIE: /* PIE * 0- target , 1- tupdate, 2- max_burst, * 3- max_ecnth, 4- alpha, * 5- beta, 6- flags * FQ_CODEL * 7- quantum, 8- limit, 9- flows */ if ( type == TOK_PIE) ep->par[6] = PIE_CAPDROP_ENABLED | PIE_DEPRATEEST_ENABLED | PIE_DERAND_ENABLED; else /* for FQ-PIE, use TS mode */ ep->par[6] = PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED | PIE_ECN_ENABLED; while (*ac > 0) { int tok = match_token(aqm_params, *av); (*ac)--; av++; switch(tok) { case TOK_TARGET: if (*ac <= 0 || time_to_us(av[0]) < 0) errx(EX_DATAERR, "target needs time\n"); ep->par[0] = time_to_us(av[0]); (*ac)--; av++; break; case TOK_TUPDATE: if (*ac <= 0 || time_to_us(av[0]) < 0) errx(EX_DATAERR, "tupdate needs time\n"); ep->par[1] = time_to_us(av[0]); (*ac)--; av++; break; case TOK_MAX_BURST: if (*ac <= 0 || time_to_us(av[0]) < 0) errx(EX_DATAERR, "max_burst needs time\n"); ep->par[2] = time_to_us(av[0]); (*ac)--; av++; break; case TOK_MAX_ECNTH: if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "max_ecnth needs number\n"); ep->par[3] = atof(av[0]) * PIE_SCALE; (*ac)--; av++; break; case TOK_ALPHA: if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "alpha needs number\n"); ep->par[4] = atof(av[0]) * PIE_SCALE; (*ac)--; av++; break; case TOK_BETA: if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "beta needs number\n"); ep->par[5] = atof(av[0]) * PIE_SCALE; (*ac)--; av++; break; case TOK_ECN: ep->par[6] |= PIE_ECN_ENABLED; break; case TOK_NO_ECN: ep->par[6] &= ~PIE_ECN_ENABLED; break; case TOK_CAPDROP: ep->par[6] |= PIE_CAPDROP_ENABLED; break; case TOK_NO_CAPDROP: ep->par[6] &= ~PIE_CAPDROP_ENABLED; break; case TOK_ONOFF: ep->par[6] |= PIE_ON_OFF_MODE_ENABLED; break; case TOK_DRE: ep->par[6] |= PIE_DEPRATEEST_ENABLED; break; case TOK_TS: ep->par[6] &= ~PIE_DEPRATEEST_ENABLED; break; case TOK_DERAND: ep->par[6] |= PIE_DERAND_ENABLED; break; case TOK_NO_DERAND: ep->par[6] &= ~PIE_DERAND_ENABLED; break; /* Config fq_pie parameters */ case TOK_QUANTUM: if (type != TOK_FQ_PIE) errx(EX_DATAERR, "quantum is not for pie\n"); if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "quantum needs number\n"); ep->par[7]= atoi(av[0]); (*ac)--; av++; break; case TOK_LIMIT: if (type != TOK_FQ_PIE) errx(EX_DATAERR, "limit is not for pie, use queue instead\n"); if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "limit needs number\n"); ep->par[8] = atoi(av[0]); (*ac)--; av++; break; case TOK_FLOWS: if (type != TOK_FQ_PIE) errx(EX_DATAERR, "flows is not for pie\n"); if (*ac <= 0 || !is_valid_number(av[0])) errx(EX_DATAERR, "flows needs number\n"); ep->par[9] = atoi(av[0]); (*ac)--; av++; break; default: printf("%s is invalid parameter\n", av[-1]); } } break; } return 0; } #endif /* * configuration of pipes, schedulers, flowsets. * When we configure a new scheduler, an empty pipe is created, so: * * do_pipe = 1 -> "pipe N config ..." only for backward compatibility * sched N+Delta type fifo sched_mask ... * pipe N+Delta * flowset N+Delta pipe N+Delta (no parameters) * sched N type wf2q+ sched_mask ... * pipe N * * do_pipe = 2 -> flowset N config * flowset N parameters * * do_pipe = 3 -> sched N config * sched N parameters (default no pipe) * optional Pipe N config ... * pipe ==> */ void ipfw_config_pipe(int ac, char **av) { int i; u_int j; char *end; struct dn_id *buf, *base; struct dn_sch *sch = NULL; struct dn_link *p = NULL; struct dn_fs *fs = NULL; struct dn_profile *pf = NULL; struct ipfw_flow_id *mask = NULL; #ifdef NEW_AQM struct dn_extra_parms *aqm_extra = NULL; struct dn_extra_parms *sch_extra = NULL; int lmax_extra; #endif int lmax; uint32_t _foo = 0, *flags = &_foo , *buckets = &_foo; /* * allocate space for 1 header, * 1 scheduler, 1 link, 1 flowset, 1 profile */ lmax = sizeof(struct dn_id); /* command header */ lmax += sizeof(struct dn_sch) + sizeof(struct dn_link) + sizeof(struct dn_fs) + sizeof(struct dn_profile); #ifdef NEW_AQM /* Extra Params */ lmax_extra = sizeof(struct dn_extra_parms); /* two lmax_extra because one for AQM params and another * sch params */ lmax += lmax_extra*2; #endif av++; ac--; /* Pipe number */ if (ac && isdigit(**av)) { i = atoi(*av); av++; ac--; } else i = -1; if (i <= 0) errx(EX_USAGE, "need a pipe/flowset/sched number"); base = buf = safe_calloc(1, lmax); /* all commands start with a 'CONFIGURE' and a version */ o_next(&buf, sizeof(struct dn_id), DN_CMD_CONFIG); base->id = DN_API_VERSION; switch (g_co.do_pipe) { case 1: /* "pipe N config ..." */ /* Allocate space for the WF2Q+ scheduler, its link * and the FIFO flowset. Set the number, but leave * the scheduler subtype and other parameters to 0 * so the kernel will use appropriate defaults. * XXX todo: add a flag to record if a parameter * is actually configured. * If we do a 'pipe config' mask -> sched_mask. * The FIFO scheduler and link are derived from the * WF2Q+ one in the kernel. */ #ifdef NEW_AQM sch_extra = o_next(&buf, lmax_extra, DN_TEXT); sch_extra ->oid.subtype = 0; /* don't configure scheduler */ #endif sch = o_next(&buf, sizeof(*sch), DN_SCH); p = o_next(&buf, sizeof(*p), DN_LINK); #ifdef NEW_AQM aqm_extra = o_next(&buf, lmax_extra, DN_TEXT); aqm_extra ->oid.subtype = 0; /* don't configure AQM */ #endif fs = o_next(&buf, sizeof(*fs), DN_FS); sch->sched_nr = i; sch->oid.subtype = 0; /* defaults to WF2Q+ */ mask = &sch->sched_mask; flags = &sch->flags; buckets = &sch->buckets; *flags |= DN_PIPE_CMD; p->link_nr = i; /* This flowset is only for the FIFO scheduler */ fs->fs_nr = i + 2*DN_MAX_ID; fs->sched_nr = i + DN_MAX_ID; break; case 2: /* "queue N config ... " */ #ifdef NEW_AQM aqm_extra = o_next(&buf, lmax_extra, DN_TEXT); aqm_extra ->oid.subtype = 0; #endif fs = o_next(&buf, sizeof(*fs), DN_FS); fs->fs_nr = i; mask = &fs->flow_mask; flags = &fs->flags; buckets = &fs->buckets; break; case 3: /* "sched N config ..." */ #ifdef NEW_AQM sch_extra = o_next(&buf, lmax_extra, DN_TEXT); sch_extra ->oid.subtype = 0; #endif sch = o_next(&buf, sizeof(*sch), DN_SCH); #ifdef NEW_AQM aqm_extra = o_next(&buf, lmax_extra, DN_TEXT); aqm_extra ->oid.subtype = 0; #endif fs = o_next(&buf, sizeof(*fs), DN_FS); sch->sched_nr = i; mask = &sch->sched_mask; flags = &sch->flags; buckets = &sch->buckets; /* fs is used only with !MULTIQUEUE schedulers */ fs->fs_nr = i + DN_MAX_ID; fs->sched_nr = i; break; } /* set to -1 those fields for which we want to reuse existing * values from the kernel. * Also, *_nr and subtype = 0 mean reuse the value from the kernel. * XXX todo: support reuse of the mask. */ if (p) p->bandwidth = -1; for (j = 0; j < sizeof(fs->par)/sizeof(fs->par[0]); j++) fs->par[j] = -1; while (ac > 0) { double d; int tok = match_token(dummynet_params, *av); ac--; av++; switch(tok) { case TOK_NOERROR: NEED(fs, "noerror is only for pipes"); fs->flags |= DN_NOERROR; break; case TOK_PLR: NEED(fs, "plr is only for pipes"); NEED1("plr needs argument 0..1\n"); d = strtod(av[0], NULL); if (d > 1) d = 1; else if (d < 0) d = 0; fs->plr = (int)(d*0x7fffffff); ac--; av++; break; case TOK_QUEUE: NEED(fs, "queue is only for pipes or flowsets"); NEED1("queue needs queue size\n"); end = NULL; fs->qsize = strtoul(av[0], &end, 0); if (*end == 'K' || *end == 'k') { fs->flags |= DN_QSIZE_BYTES; fs->qsize *= 1024; } else if (*end == 'B' || _substrcmp2(end, "by", "bytes") == 0) { fs->flags |= DN_QSIZE_BYTES; } ac--; av++; break; case TOK_BUCKETS: NEED(fs, "buckets is only for pipes or flowsets"); NEED1("buckets needs argument\n"); *buckets = strtoul(av[0], NULL, 0); ac--; av++; break; case TOK_FLOW_MASK: case TOK_SCHED_MASK: case TOK_MASK: NEED(mask, "tok_mask"); NEED1("mask needs mask specifier\n"); /* * per-flow queue, mask is dst_ip, dst_port, * src_ip, src_port, proto measured in bits */ bzero(mask, sizeof(*mask)); end = NULL; while (ac >= 1) { uint32_t *p32 = NULL; uint16_t *p16 = NULL; uint32_t *p20 = NULL; struct in6_addr *pa6 = NULL; uint32_t a; tok = match_token(dummynet_params, *av); ac--; av++; switch(tok) { case TOK_ALL: /* * special case, all bits significant * except 'extra' (the queue number) */ mask->dst_ip = ~0; mask->src_ip = ~0; mask->dst_port = ~0; mask->src_port = ~0; mask->proto = ~0; n2mask(&mask->dst_ip6, 128); n2mask(&mask->src_ip6, 128); mask->flow_id6 = ~0; *flags |= DN_HAVE_MASK; goto end_mask; case TOK_QUEUE: mask->extra = ~0; *flags |= DN_HAVE_MASK; goto end_mask; case TOK_DSTIP: mask->addr_type = 4; p32 = &mask->dst_ip; break; case TOK_SRCIP: mask->addr_type = 4; p32 = &mask->src_ip; break; case TOK_DSTIP6: mask->addr_type = 6; pa6 = &mask->dst_ip6; break; case TOK_SRCIP6: mask->addr_type = 6; pa6 = &mask->src_ip6; break; case TOK_FLOWID: mask->addr_type = 6; p20 = &mask->flow_id6; break; case TOK_DSTPORT: p16 = &mask->dst_port; break; case TOK_SRCPORT: p16 = &mask->src_port; break; case TOK_PROTO: break; default: ac++; av--; /* backtrack */ goto end_mask; } if (ac < 1) errx(EX_USAGE, "mask: value missing"); if (*av[0] == '/') { a = strtoul(av[0]+1, &end, 0); if (pa6 == NULL) a = (a == 32) ? ~0 : (1 << a) - 1; } else a = strtoul(av[0], &end, 0); if (p32 != NULL) *p32 = a; else if (p16 != NULL) { if (a > 0xFFFF) errx(EX_DATAERR, "port mask must be 16 bit"); *p16 = (uint16_t)a; } else if (p20 != NULL) { if (a > 0xfffff) errx(EX_DATAERR, "flow_id mask must be 20 bit"); *p20 = (uint32_t)a; } else if (pa6 != NULL) { if (a > 128) errx(EX_DATAERR, "in6addr invalid mask len"); else n2mask(pa6, a); } else { if (a > 0xFF) errx(EX_DATAERR, "proto mask must be 8 bit"); mask->proto = (uint8_t)a; } if (a != 0) *flags |= DN_HAVE_MASK; ac--; av++; } /* end while, config masks */ end_mask: break; #ifdef NEW_AQM case TOK_CODEL: case TOK_PIE: NEED(fs, "codel/pie is only for flowsets"); fs->flags &= ~(DN_IS_RED|DN_IS_GENTLE_RED); fs->flags |= DN_IS_AQM; strlcpy(aqm_extra->name, av[-1], sizeof(aqm_extra->name)); aqm_extra->oid.subtype = DN_AQM_PARAMS; process_extra_parms(&ac, av, aqm_extra, tok); break; case TOK_FQ_CODEL: case TOK_FQ_PIE: if (!strcmp(av[-1],"type")) errx(EX_DATAERR, "use type before fq_codel/fq_pie"); NEED(sch, "fq_codel/fq_pie is only for schd"); strlcpy(sch_extra->name, av[-1], sizeof(sch_extra->name)); sch_extra->oid.subtype = DN_SCH_PARAMS; process_extra_parms(&ac, av, sch_extra, tok); break; #endif case TOK_RED: case TOK_GRED: NEED1("red/gred needs w_q/min_th/max_th/max_p\n"); fs->flags |= DN_IS_RED; if (tok == TOK_GRED) fs->flags |= DN_IS_GENTLE_RED; /* * the format for parameters is w_q/min_th/max_th/max_p */ if ((end = strsep(&av[0], "/"))) { double w_q = strtod(end, NULL); if (w_q > 1 || w_q <= 0) errx(EX_DATAERR, "0 < w_q <= 1"); fs->w_q = (int) (w_q * (1 << SCALE_RED)); } if ((end = strsep(&av[0], "/"))) { fs->min_th = strtoul(end, &end, 0); if (*end == 'K' || *end == 'k') fs->min_th *= 1024; } if ((end = strsep(&av[0], "/"))) { fs->max_th = strtoul(end, &end, 0); if (*end == 'K' || *end == 'k') fs->max_th *= 1024; } if ((end = strsep(&av[0], "/"))) { double max_p = strtod(end, NULL); if (max_p > 1 || max_p < 0) errx(EX_DATAERR, "0 <= max_p <= 1"); fs->max_p = (int)(max_p * (1 << SCALE_RED)); } ac--; av++; break; case TOK_ECN: fs->flags |= DN_IS_ECN; break; case TOK_DROPTAIL: NEED(fs, "droptail is only for flowsets"); fs->flags &= ~(DN_IS_RED|DN_IS_GENTLE_RED); break; case TOK_BW: NEED(p, "bw is only for links"); NEED1("bw needs bandwidth or interface\n"); read_bandwidth(av[0], &p->bandwidth, NULL, 0); ac--; av++; break; case TOK_DELAY: NEED(p, "delay is only for links"); NEED1("delay needs argument 0..10000ms\n"); p->delay = strtoul(av[0], NULL, 0); ac--; av++; break; case TOK_TYPE: { int l; NEED(sch, "type is only for schedulers"); NEED1("type needs a string"); l = strlen(av[0]); if (l == 0 || l > 15) errx(1, "type %s too long\n", av[0]); strlcpy(sch->name, av[0], sizeof(sch->name)); sch->oid.subtype = 0; /* use string */ #ifdef NEW_AQM /* if fq_codel is selected, consider all tokens after it * as parameters */ if (!strcasecmp(av[0],"fq_codel") || !strcasecmp(av[0],"fq_pie")){ strlcpy(sch_extra->name, av[0], sizeof(sch_extra->name)); sch_extra->oid.subtype = DN_SCH_PARAMS; process_extra_parms(&ac, av, sch_extra, tok); } else { ac--;av++; } #else ac--;av++; #endif break; } case TOK_WEIGHT: NEED(fs, "weight is only for flowsets"); NEED1("weight needs argument\n"); fs->par[0] = strtol(av[0], &end, 0); ac--; av++; break; case TOK_LMAX: NEED(fs, "lmax is only for flowsets"); NEED1("lmax needs argument\n"); fs->par[1] = strtol(av[0], &end, 0); ac--; av++; break; case TOK_PRI: NEED(fs, "priority is only for flowsets"); NEED1("priority needs argument\n"); fs->par[2] = strtol(av[0], &end, 0); ac--; av++; break; case TOK_SCHED: case TOK_PIPE: NEED(fs, "pipe/sched"); NEED1("pipe/link/sched needs number\n"); fs->sched_nr = strtoul(av[0], &end, 0); ac--; av++; break; case TOK_PROFILE: NEED((!pf), "profile already set"); NEED(p, "profile"); { NEED1("extra delay needs the file name\n"); pf = o_next(&buf, sizeof(*pf), DN_PROFILE); load_extra_delays(av[0], pf, p); //XXX can't fail? --ac; ++av; } break; case TOK_BURST: NEED(p, "burst"); NEED1("burst needs argument\n"); errno = 0; if (expand_number(av[0], &p->burst) < 0) if (errno != ERANGE) errx(EX_DATAERR, "burst: invalid argument"); if (errno || p->burst > (1ULL << 48) - 1) errx(EX_DATAERR, "burst: out of range (0..2^48-1)"); ac--; av++; break; default: errx(EX_DATAERR, "unrecognised option ``%s''", av[-1]); } } /* check validity of parameters */ if (p) { if (p->delay > 10000) errx(EX_DATAERR, "delay must be < 10000"); if (p->bandwidth == -1) p->bandwidth = 0; } if (fs) { /* XXX accept a 0 scheduler to keep the default */ if (fs->flags & DN_QSIZE_BYTES) { size_t len; long limit; len = sizeof(limit); if (sysctlbyname("net.inet.ip.dummynet.pipe_byte_limit", &limit, &len, NULL, 0) == -1) limit = 1024*1024; if (fs->qsize > limit) errx(EX_DATAERR, "queue size must be < %ldB", limit); } else { size_t len; long limit; len = sizeof(limit); if (sysctlbyname("net.inet.ip.dummynet.pipe_slot_limit", &limit, &len, NULL, 0) == -1) limit = 100; if (fs->qsize > limit) errx(EX_DATAERR, "2 <= queue size <= %ld", limit); } #ifdef NEW_AQM if ((fs->flags & DN_IS_ECN) && !((fs->flags & DN_IS_RED)|| (fs->flags & DN_IS_AQM))) errx(EX_USAGE, "ECN can be used with red/gred/" "codel/fq_codel only!"); #else if ((fs->flags & DN_IS_ECN) && !(fs->flags & DN_IS_RED)) errx(EX_USAGE, "enable red/gred for ECN"); #endif if (fs->flags & DN_IS_RED) { size_t len; int lookup_depth, avg_pkt_size; if (!(fs->flags & DN_IS_ECN) && (fs->min_th >= fs->max_th)) errx(EX_DATAERR, "min_th %d must be < than max_th %d", fs->min_th, fs->max_th); else if ((fs->flags & DN_IS_ECN) && (fs->min_th > fs->max_th)) errx(EX_DATAERR, "min_th %d must be =< than max_th %d", fs->min_th, fs->max_th); if (fs->max_th == 0) errx(EX_DATAERR, "max_th must be > 0"); len = sizeof(int); if (sysctlbyname("net.inet.ip.dummynet.red_lookup_depth", &lookup_depth, &len, NULL, 0) == -1) lookup_depth = 256; if (lookup_depth == 0) errx(EX_DATAERR, "net.inet.ip.dummynet.red_lookup_depth" " must be greater than zero"); len = sizeof(int); if (sysctlbyname("net.inet.ip.dummynet.red_avg_pkt_size", &avg_pkt_size, &len, NULL, 0) == -1) avg_pkt_size = 512; if (avg_pkt_size == 0) errx(EX_DATAERR, "net.inet.ip.dummynet.red_avg_pkt_size must" " be greater than zero"); #if 0 /* the following computation is now done in the kernel */ /* * Ticks needed for sending a medium-sized packet. * Unfortunately, when we are configuring a WF2Q+ queue, we * do not have bandwidth information, because that is stored * in the parent pipe, and also we have multiple queues * competing for it. So we set s=0, which is not very * correct. But on the other hand, why do we want RED with * WF2Q+ ? */ if (p.bandwidth==0) /* this is a WF2Q+ queue */ s = 0; else s = (double)ck.hz * avg_pkt_size * 8 / p.bandwidth; /* * max idle time (in ticks) before avg queue size becomes 0. * NOTA: (3/w_q) is approx the value x so that * (1-w_q)^x < 10^-3. */ w_q = ((double)fs->w_q) / (1 << SCALE_RED); idle = s * 3. / w_q; fs->lookup_step = (int)idle / lookup_depth; if (!fs->lookup_step) fs->lookup_step = 1; weight = 1 - w_q; for (t = fs->lookup_step; t > 1; --t) weight *= 1 - w_q; fs->lookup_weight = (int)(weight * (1 << SCALE_RED)); #endif /* code moved in the kernel */ } } i = do_cmd(IP_DUMMYNET3, base, (char *)buf - (char *)base); if (i) err(1, "setsockopt(%s)", "IP_DUMMYNET_CONFIGURE"); } void dummynet_flush(void) { struct dn_id oid; oid_fill(&oid, sizeof(oid), DN_CMD_FLUSH, DN_API_VERSION); do_cmd(IP_DUMMYNET3, &oid, oid.len); } /* Parse input for 'ipfw [pipe|sched|queue] show [range list]' * Returns the number of ranges, and possibly stores them * in the array v of size len. */ static int parse_range(int ac, char *av[], uint32_t *v, int len) { int n = 0; char *endptr, *s; uint32_t base[2]; if (v == NULL || len < 2) { v = base; len = 2; } for (s = *av; s != NULL; av++, ac--) { v[0] = strtoul(s, &endptr, 10); v[1] = (*endptr != '-') ? v[0] : strtoul(endptr+1, &endptr, 10); if (*endptr == '\0') { /* prepare for next round */ s = (ac > 0) ? *(av+1) : NULL; } else { if (*endptr != ',') { warn("invalid number: %s", s); s = ++endptr; continue; } /* continue processing from here */ s = ++endptr; ac++; av--; } if (v[1] < v[0] || v[0] >= DN_MAX_ID-1 || v[1] >= DN_MAX_ID-1) { continue; /* invalid entry */ } n++; /* translate if 'pipe list' */ if (g_co.do_pipe == 1) { v[0] += DN_MAX_ID; v[1] += DN_MAX_ID; } v = (n*2 < len) ? v + 2 : base; } return n; } /* main entry point for dummynet list functions. co.do_pipe indicates * which function we want to support. * av may contain filtering arguments, either individual entries * or ranges, or lists (space or commas are valid separators). * Format for a range can be n1-n2 or n3 n4 n5 ... * In a range n1 must be <= n2, otherwise the range is ignored. * A number 'n4' is translate in a range 'n4-n4' * All number must be > 0 and < DN_MAX_ID-1 */ void dummynet_list(int ac, char *av[], int show_counters) { struct dn_id *oid, *x = NULL; int ret, i; int n; /* # of ranges */ u_int buflen, l; u_int max_size; /* largest obj passed up */ (void)show_counters; // XXX unused, but we should use it. ac--; av++; /* skip 'list' | 'show' word */ n = parse_range(ac, av, NULL, 0); /* Count # of ranges. */ /* Allocate space to store ranges */ l = sizeof(*oid) + sizeof(uint32_t) * n * 2; oid = safe_calloc(1, l); oid_fill(oid, l, DN_CMD_GET, DN_API_VERSION); if (n > 0) /* store ranges in idx */ parse_range(ac, av, (uint32_t *)(oid + 1), n*2); /* * Compute the size of the largest object returned. If the * response leaves at least this much spare space in the * buffer, then surely the response is complete; otherwise * there might be a risk of truncation and we will need to * retry with a larger buffer. * XXX don't bother with smaller structs. */ max_size = sizeof(struct dn_fs); if (max_size < sizeof(struct dn_sch)) max_size = sizeof(struct dn_sch); if (max_size < sizeof(struct dn_flow)) max_size = sizeof(struct dn_flow); switch (g_co.do_pipe) { case 1: oid->subtype = DN_LINK; /* list pipe */ break; case 2: oid->subtype = DN_FS; /* list queue */ break; case 3: oid->subtype = DN_SCH; /* list sched */ break; } /* * Ask the kernel an estimate of the required space (result * in oid.id), unless we are requesting a subset of objects, * in which case the kernel does not give an exact answer. * In any case, space might grow in the meantime due to the * creation of new queues, so we must be prepared to retry. */ if (n > 0) { buflen = 4*1024; } else { ret = do_cmd(-IP_DUMMYNET3, oid, (uintptr_t)&l); if (ret != 0 || oid->id <= sizeof(*oid)) goto done; buflen = oid->id + max_size; oid->len = sizeof(*oid); /* restore */ } /* Try a few times, until the buffer fits */ for (i = 0; i < 20; i++) { l = buflen; x = safe_realloc(x, l); bcopy(oid, x, oid->len); ret = do_cmd(-IP_DUMMYNET3, x, (uintptr_t)&l); if (ret != 0 || x->id <= sizeof(*oid)) goto done; /* no response */ if (l + max_size <= buflen) break; /* ok */ buflen *= 2; /* double for next attempt */ } list_pipes(x, O_NEXT(x, l)); done: if (x) free(x); free(oid); }