add my icmp

This commit is contained in:
siben-NUAA 2024-12-27 18:54:39 +08:00
parent 23801ba246
commit f20ad1a420
2 changed files with 473 additions and 0 deletions

63
user_stack/icmp/Makefile Normal file
View File

@ -0,0 +1,63 @@
# SPDX-License-Identifier: BSD-3-Clause
# Copyright(c) 2010-2014 Intel Corporation
# binary name
APP = dpdk_icmp
# all source are stored in SRCS-y
SRCS-y := icmp.c
# Build using pkg-config variables if possible
ifeq ($(shell pkg-config --exists libdpdk && echo 0),0)
all: shared
.PHONY: shared static
shared: build/$(APP)-shared
ln -sf $(APP)-shared build/$(APP)
static: build/$(APP)-static
ln -sf $(APP)-static build/$(APP)
PKGCONF=pkg-config --define-prefix
PC_FILE := $(shell $(PKGCONF) --path libdpdk)
CFLAGS += -O3 $(shell $(PKGCONF) --cflags libdpdk)
CFLAGS += -DALLOW_EXPERIMENTAL_API
LDFLAGS_SHARED = $(shell $(PKGCONF) --libs libdpdk)
LDFLAGS_STATIC = -Wl,-Bstatic $(shell $(PKGCONF) --static --libs libdpdk)
build/$(APP)-shared: $(SRCS-y) Makefile $(PC_FILE) | build
$(CC) $(CFLAGS) $(SRCS-y) -o $@ $(LDFLAGS) $(LDFLAGS_SHARED)
build/$(APP)-static: $(SRCS-y) Makefile $(PC_FILE) | build
$(CC) $(CFLAGS) $(SRCS-y) -o $@ $(LDFLAGS) $(LDFLAGS_STATIC)
build:
@mkdir -p $@
.PHONY: clean
clean:
rm -f build/$(APP) build/$(APP)-static build/$(APP)-shared
test -d build && rmdir -p build || true
else # Build using legacy build system
ifeq ($(RTE_SDK),)
$(error "Please define RTE_SDK environment variable")
endif
# Default target, detect a build directory, by looking for a path with a .config
RTE_TARGET ?= $(notdir $(abspath $(dir $(firstword $(wildcard $(RTE_SDK)/*/.config)))))
include $(RTE_SDK)/mk/rte.vars.mk
ifneq ($(CONFIG_RTE_EXEC_ENV_LINUX),y)
$(error This application can only operate in a linux environment, \
please change the definition of the RTE_TARGET environment variable)
endif
CFLAGS += -O3
CFLAGS += -DALLOW_EXPERIMENTAL_API
CFLAGS += $(WERROR_FLAGS)
include $(RTE_SDK)/mk/rte.extapp.mk
endif

410
user_stack/icmp/icmp.c Normal file
View File

@ -0,0 +1,410 @@
#include<rte_eal.h>
#include<rte_ethdev.h>
#include<rte_mbuf.h>
#include<stdio.h>
#include<arpa/inet.h>
#define ENABLE_SEND 1
#define ENABLE_ARP 1
#define ENABLE_ICMP 1
#define NUM_MBUFS (4096 - 1)
#define BURST_SIZE 32
int gDpdkPortId = 0; //网络适配器 网卡
#if ENABLE_SEND
#define MAKE_IPV4_ADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))
static uint32_t gLocalIp = MAKE_IPV4_ADDR(192, 168, 156, 127);
// IP
static uint32_t gSrcIp;
static uint32_t gDstIp;
// ETH
static uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
static uint8_t gDstMac[RTE_ETHER_ADDR_LEN];
// TCP/UDP
static uint16_t gSrcPort;
static uint16_t gDstPort;
#endif
static const struct rte_eth_conf port_conf_default = {
.rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN}
};
static void z_init_port(struct rte_mempool *mbuf_pool) {
uint16_t nb_sys_ports = rte_eth_dev_count_avail();
if(nb_sys_ports == 0) {
rte_exit(EXIT_FAILURE, "No Support eth found\n");
}
//在没有配置DPDK前获取eth0的信息
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(gDpdkPortId, &dev_info);
const int num_rx_queues = 1;
#if ENABLE_SEND
const int num_tx_queues = 1;
#else
const int num_tx_queues = 0;
#endif
struct rte_eth_conf port_conf = port_conf_default;
rte_eth_dev_configure(gDpdkPortId, num_rx_queues, num_tx_queues, &port_conf);
//启动一个读rx队列
if(rte_eth_rx_queue_setup(gDpdkPortId, 0, 1024, rte_eth_dev_socket_id(gDpdkPortId),
NULL, mbuf_pool) < 0 ){
rte_exit(EXIT_FAILURE, "Could not setup RX queue\n");
}
#if ENABLE_SEND
//启动一个写tx队列
struct rte_eth_txconf txq_conf = dev_info.default_txconf;
txq_conf.offloads = port_conf.rxmode.offloads;
if(rte_eth_tx_queue_setup(gDpdkPortId, 0, 1024, rte_eth_dev_socket_id(gDpdkPortId),
&txq_conf) < 0 ){
rte_exit(EXIT_FAILURE, "Could not setup TX queue\n");
}
#endif
//启动网卡
if(rte_eth_dev_start(gDpdkPortId) < 0 ){
rte_exit(EXIT_FAILURE, "Could not start\n");
}
rte_eth_promiscuous_enable(gDpdkPortId);
}
#if ENABLE_SEND
static int z_encode_udp_pkt(uint8_t *msg, unsigned char *data, uint16_t length) {
//1 ether
struct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;
rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes, gDstMac, RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
//2 iphdr
struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr*)(msg + sizeof(struct rte_ether_hdr));
ip->version_ihl = 0x45;
ip->type_of_service = 0;
ip->total_length = htons(length - sizeof(struct rte_ether_hdr));
ip->packet_id = 0;
ip->fragment_offset = 0;
ip->time_to_live = 64; //TTL
ip->next_proto_id = IPPROTO_UDP;
ip->src_addr = gSrcIp;
ip->dst_addr = gDstIp;
ip->hdr_checksum = 0;
ip->hdr_checksum = rte_ipv4_cksum(ip);
//3 udp
struct rte_udp_hdr *udp = (struct rte_udp_hdr*)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
udp->src_port = gSrcPort;
udp->dst_port = gDstPort;
uint16_t udplen = length - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
udp->dgram_len = htons(udplen);
rte_memcpy((uint8_t*)(udp + 1), data, udplen);
udp->dgram_cksum = 0;
udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);
return 0;
}
static struct rte_mbuf * z_send_udp(struct rte_mempool *mbuf_pool, uint8_t *data, uint16_t length ) {
//从内存池中申请内存
const unsigned total_len = length + 42;
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if(!mbuf) {
rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc failed\n");
}
mbuf->pkt_len = total_len;
mbuf->data_len = total_len;
uint8_t *pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
z_encode_udp_pkt(pktdata, data, total_len);
return mbuf;
}
#endif
#if ENABLE_ARP
static int z_encode_arp_pkt(uint8_t *msg, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
//1 ether
struct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;
rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_ARP);
//2 arp
struct rte_arp_hdr *arp = (struct rte_arp_hdr *)(eth + 1);
arp->arp_hardware = htons(1);
arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
arp->arp_hlen = RTE_ETHER_ADDR_LEN;
arp->arp_plen = sizeof(uint32_t);
arp->arp_opcode = htons(2);
rte_memcpy(arp->arp_data.arp_sha.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(arp->arp_data.arp_tha.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
arp->arp_data.arp_sip = sip;
arp->arp_data.arp_tip = dip;
return 0;
}
static struct rte_mbuf * z_send_arp(struct rte_mempool *mbuf_pool, uint8_t *dst_mac, uint32_t sip, uint32_t dip ){
const unsigned total_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if(!mbuf) {
rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc failed\n");
}
mbuf->data_len = total_len;
mbuf->pkt_len = total_len;
uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
z_encode_arp_pkt(pkt_data,dst_mac,sip,dip);
return mbuf;
}
#endif
#if ENABLE_ICMP
// 计算checksum
static uint16_t z_checksum(uint16_t *addr, int count) {
register long sum = 0;
while(count > 1) {
sum += *(unsigned short *)addr++;
count -= 2;
}
if(count > 0){
sum += *(unsigned char *)addr;
}
while(sum >> 16){
sum = (sum & 0xffff) + (sum >> 16);
}
return ~sum;
}
//icmp组包
static int z_encode_icmp_pkt(uint8_t *msg, uint8_t *dst_mac, uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
//1 ether
struct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;
rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
//2 iphdr
struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr*)(msg + sizeof(struct rte_ether_hdr));
ip->version_ihl = 0x45;
ip->type_of_service = 0;
ip->total_length = htons(sizeof(struct rte_icmp_hdr) + sizeof(struct rte_ipv4_hdr));
ip->packet_id = 0;
ip->fragment_offset = 0;
ip->time_to_live = 64; //TTL
ip->next_proto_id = IPPROTO_ICMP;//ICMP协议
ip->src_addr = sip;
ip->dst_addr = dip;
ip->hdr_checksum = 0;
ip->hdr_checksum = rte_ipv4_cksum(ip);
//3 icmp
struct rte_icmp_hdr *icmp = (struct rte_icmp_hdr*)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
icmp->icmp_code = 0;
icmp->icmp_ident = id;
icmp->icmp_seq_nb = seqnb;
icmp->icmp_cksum = 0;
icmp->icmp_cksum = z_checksum((uint16_t *)icmp, sizeof(struct rte_icmp_hdr));
return 0;
}
static struct rte_mbuf *z_send_icmp(struct rte_mempool *mbuf_pool, uint8_t *dst_mac,
uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
const unsigned total_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if(!mbuf) {
rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc failed\n");
}
mbuf->pkt_len = total_len;
mbuf->data_len = total_len;
uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
z_encode_icmp_pkt(pkt_data,dst_mac,sip,dip,id,seqnb);
return mbuf;
}
#endif
int main(int argc, char *argv[]) {
//检测DPDK的环境是否正确
if(rte_eal_init(argc,argv) < 0) {
rte_exit(EXIT_FAILURE, "Error with EAL init\n");
}
//创建内存池
struct rte_mempool *mbuf_pool = rte_pktmbuf_pool_create("mbuf pool", NUM_MBUFS,
0, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if(mbuf_pool == NULL) {
rte_exit(EXIT_FAILURE, "Could not create mbuf pool\n");
}
z_init_port(mbuf_pool);
#if ENABLE_SEND
rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr *)gSrcMac);
#endif
while(1) {
struct rte_mbuf *mbufs[BURST_SIZE];// 内存池
unsigned num_recvd = rte_eth_rx_burst(gDpdkPortId, 0, mbufs, BURST_SIZE);
if(num_recvd > BURST_SIZE) {
rte_exit(EXIT_FAILURE, "Error receiving from eth\n");
}
unsigned i = 0;
for(;i < num_recvd; i++) {
struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i],struct rte_ether_hdr*);
#if ENABLE_ARP
//判断类型是否为Arp
if(ehdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i],struct rte_arp_hdr *,
sizeof(struct rte_ether_hdr));
if(ahdr->arp_data.arp_tip == gLocalIp) {
struct rte_mbuf *arpbuf = z_send_arp(mbuf_pool,ahdr->arp_data.arp_sha.addr_bytes,
ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
struct in_addr addr;
addr.s_addr = ahdr->arp_data.arp_sip;
printf("arp---> src: %s ",inet_ntoa(addr));
addr.s_addr = gLocalIp;
printf("local: %s\n",inet_ntoa(addr));
rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
rte_pktmbuf_free(arpbuf);
}
continue;
}
#endif
//判断类型是否为IPV4
if(ehdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
continue;
}
struct rte_ipv4_hdr *iphdr = rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
//判断协议是否为UDP
if(iphdr->next_proto_id == IPPROTO_UDP){
struct rte_udp_hdr *udphdr =
(struct rte_udp_hdr *)(iphdr + 1);
#if ENABLE_SEND
rte_memcpy(gDstMac, ehdr->s_addr.addr_bytes, RTE_ETHER_ADDR_LEN);
rte_memcpy(&gSrcIp, &iphdr->dst_addr, sizeof(uint32_t));
rte_memcpy(&gDstIp, &iphdr->src_addr, sizeof(uint32_t));
rte_memcpy(&gSrcPort, &udphdr->dst_port, sizeof(uint16_t));
rte_memcpy(&gDstPort, &udphdr->src_port, sizeof(uint16_t));
#endif
if(ntohs(udphdr->src_port) == 9000) { //端口过滤
uint16_t length = ntohs(udphdr->dgram_len);
*((char*)udphdr + length) = '\0';
struct in_addr addr;
addr.s_addr = iphdr->src_addr;
printf("src: %s:%d, ",inet_ntoa(addr), ntohs(udphdr->src_port));
addr.s_addr = iphdr->dst_addr;
printf("dst: %s:%d,length:%d---> %s\n",inet_ntoa(addr), ntohs(udphdr->dst_port),
length, (char*)(udphdr + 1));
#if ENABLE_SEND
struct rte_mbuf *txbuf = z_send_udp(mbuf_pool, (uint8_t *)(udphdr + 1), length);
rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
rte_pktmbuf_free(txbuf);
#endif
}
rte_pktmbuf_free(mbufs[i]);
}
#if ENABLE_ICMP
if(iphdr->next_proto_id == IPPROTO_ICMP) {
struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);
// request请求
if(icmphdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) {
struct rte_mbuf *txbuf = z_send_icmp(mbuf_pool,ehdr->s_addr.addr_bytes,
iphdr->dst_addr, iphdr->src_addr, icmphdr->icmp_ident, icmphdr->icmp_seq_nb);
struct in_addr addr;
addr.s_addr = iphdr->src_addr;
printf("icmp--->src: %s ",inet_ntoa(addr));
addr.s_addr = iphdr->dst_addr;
printf("dst: %s\n",inet_ntoa(addr));
rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
rte_pktmbuf_free(txbuf);
rte_pktmbuf_free(mbufs[i]);
}
}
#endif
}
}
}
/*
1 ether
2 ip / arp
3 tcp / udp / icmp
*/