f-stack/freebsd/contrib/ncsw/Peripherals/FM/Rtc/fman_rtc.c

335 lines
9.5 KiB
C
Raw Normal View History

/*
* Copyright 2008-2013 Freescale Semiconductor Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_fman_rtc.h"
void fman_rtc_defconfig(struct rtc_cfg *cfg)
{
int i;
cfg->src_clk = DEFAULT_SRC_CLOCK;
cfg->invert_input_clk_phase = DEFAULT_INVERT_INPUT_CLK_PHASE;
cfg->invert_output_clk_phase = DEFAULT_INVERT_OUTPUT_CLK_PHASE;
cfg->pulse_realign = DEFAULT_PULSE_REALIGN;
for (i = 0; i < FMAN_RTC_MAX_NUM_OF_ALARMS; i++)
cfg->alarm_polarity[i] = DEFAULT_ALARM_POLARITY;
for (i = 0; i < FMAN_RTC_MAX_NUM_OF_EXT_TRIGGERS; i++)
cfg->trigger_polarity[i] = DEFAULT_TRIGGER_POLARITY;
}
uint32_t fman_rtc_get_events(struct rtc_regs *regs)
{
return ioread32be(&regs->tmr_tevent);
}
uint32_t fman_rtc_get_event(struct rtc_regs *regs, uint32_t ev_mask)
{
return ioread32be(&regs->tmr_tevent) & ev_mask;
}
uint32_t fman_rtc_get_interrupt_mask(struct rtc_regs *regs)
{
return ioread32be(&regs->tmr_temask);
}
void fman_rtc_set_interrupt_mask(struct rtc_regs *regs, uint32_t mask)
{
iowrite32be(mask, &regs->tmr_temask);
}
void fman_rtc_ack_event(struct rtc_regs *regs, uint32_t events)
{
iowrite32be(events, &regs->tmr_tevent);
}
uint32_t fman_rtc_check_and_clear_event(struct rtc_regs *regs)
{
uint32_t event;
event = ioread32be(&regs->tmr_tevent);
event &= ioread32be(&regs->tmr_temask);
if (event)
iowrite32be(event, &regs->tmr_tevent);
return event;
}
uint32_t fman_rtc_get_frequency_compensation(struct rtc_regs *regs)
{
return ioread32be(&regs->tmr_add);
}
void fman_rtc_set_frequency_compensation(struct rtc_regs *regs, uint32_t val)
{
iowrite32be(val, &regs->tmr_add);
}
void fman_rtc_enable_interupt(struct rtc_regs *regs, uint32_t events)
{
fman_rtc_set_interrupt_mask(regs, fman_rtc_get_interrupt_mask(regs) | events);
}
void fman_rtc_disable_interupt(struct rtc_regs *regs, uint32_t events)
{
fman_rtc_set_interrupt_mask(regs, fman_rtc_get_interrupt_mask(regs) & ~events);
}
void fman_rtc_set_timer_alarm_l(struct rtc_regs *regs, int index, uint32_t val)
{
iowrite32be(val, &regs->tmr_alarm[index].tmr_alarm_l);
}
void fman_rtc_set_timer_fiper(struct rtc_regs *regs, int index, uint32_t val)
{
iowrite32be(val, &regs->tmr_fiper[index]);
}
void fman_rtc_set_timer_alarm(struct rtc_regs *regs, int index, int64_t val)
{
iowrite32be((uint32_t)val, &regs->tmr_alarm[index].tmr_alarm_l);
iowrite32be((uint32_t)(val >> 32), &regs->tmr_alarm[index].tmr_alarm_h);
}
void fman_rtc_set_timer_offset(struct rtc_regs *regs, int64_t val)
{
iowrite32be((uint32_t)val, &regs->tmr_off_l);
iowrite32be((uint32_t)(val >> 32), &regs->tmr_off_h);
}
uint64_t fman_rtc_get_trigger_stamp(struct rtc_regs *regs, int id)
{
uint64_t time;
/* TMR_CNT_L must be read first to get an accurate value */
time = (uint64_t)ioread32be(&regs->tmr_etts[id].tmr_etts_l);
time |= ((uint64_t)ioread32be(&regs->tmr_etts[id].tmr_etts_h)
<< 32);
return time;
}
uint32_t fman_rtc_get_timer_ctrl(struct rtc_regs *regs)
{
return ioread32be(&regs->tmr_ctrl);
}
void fman_rtc_set_timer_ctrl(struct rtc_regs *regs, uint32_t val)
{
iowrite32be(val, &regs->tmr_ctrl);
}
void fman_rtc_timers_soft_reset(struct rtc_regs *regs)
{
fman_rtc_set_timer_ctrl(regs, FMAN_RTC_TMR_CTRL_TMSR);
DELAY(10);
fman_rtc_set_timer_ctrl(regs, 0);
}
void fman_rtc_init(struct rtc_cfg *cfg, struct rtc_regs *regs, int num_alarms,
int num_fipers, int num_ext_triggers, bool init_freq_comp,
uint32_t freq_compensation, uint32_t output_clock_divisor)
{
uint32_t tmr_ctrl;
int i;
fman_rtc_timers_soft_reset(regs);
/* Set the source clock */
switch (cfg->src_clk) {
case E_FMAN_RTC_SOURCE_CLOCK_SYSTEM:
tmr_ctrl = FMAN_RTC_TMR_CTRL_CKSEL_MAC_CLK;
break;
case E_FMAN_RTC_SOURCE_CLOCK_OSCILATOR:
tmr_ctrl = FMAN_RTC_TMR_CTRL_CKSEL_OSC_CLK;
break;
default:
/* Use a clock from the External TMR reference clock.*/
tmr_ctrl = FMAN_RTC_TMR_CTRL_CKSEL_EXT_CLK;
break;
}
/* whatever period the user picked, the timestamp will advance in '1'
* every time the period passed. */
tmr_ctrl |= ((1 << FMAN_RTC_TMR_CTRL_TCLK_PERIOD_SHIFT) &
FMAN_RTC_TMR_CTRL_TCLK_PERIOD_MASK);
if (cfg->invert_input_clk_phase)
tmr_ctrl |= FMAN_RTC_TMR_CTRL_CIPH;
if (cfg->invert_output_clk_phase)
tmr_ctrl |= FMAN_RTC_TMR_CTRL_COPH;
for (i = 0; i < num_alarms; i++) {
if (cfg->alarm_polarity[i] ==
E_FMAN_RTC_ALARM_POLARITY_ACTIVE_LOW)
tmr_ctrl |= (FMAN_RTC_TMR_CTRL_ALMP1 >> i);
}
for (i = 0; i < num_ext_triggers; i++)
if (cfg->trigger_polarity[i] ==
E_FMAN_RTC_TRIGGER_ON_FALLING_EDGE)
tmr_ctrl |= (FMAN_RTC_TMR_CTRL_ETEP1 << i);
if (!cfg->timer_slave_mode && cfg->bypass)
tmr_ctrl |= FMAN_RTC_TMR_CTRL_BYP;
fman_rtc_set_timer_ctrl(regs, tmr_ctrl);
if (init_freq_comp)
fman_rtc_set_frequency_compensation(regs, freq_compensation);
/* Clear TMR_ALARM registers */
for (i = 0; i < num_alarms; i++)
fman_rtc_set_timer_alarm(regs, i, 0xFFFFFFFFFFFFFFFFLL);
/* Clear TMR_TEVENT */
fman_rtc_ack_event(regs, FMAN_RTC_TMR_TEVENT_ALL);
/* Initialize TMR_TEMASK */
fman_rtc_set_interrupt_mask(regs, 0);
/* Clear TMR_FIPER registers */
for (i = 0; i < num_fipers; i++)
fman_rtc_set_timer_fiper(regs, i, 0xFFFFFFFF);
/* Initialize TMR_PRSC */
iowrite32be(output_clock_divisor, &regs->tmr_prsc);
/* Clear TMR_OFF */
fman_rtc_set_timer_offset(regs, 0);
}
bool fman_rtc_is_enabled(struct rtc_regs *regs)
{
return (bool)(fman_rtc_get_timer_ctrl(regs) & FMAN_RTC_TMR_CTRL_TE);
}
void fman_rtc_enable(struct rtc_regs *regs, bool reset_clock)
{
uint32_t tmr_ctrl = fman_rtc_get_timer_ctrl(regs);
/* TODO check that no timestamping MACs are working in this stage. */
if (reset_clock) {
fman_rtc_set_timer_ctrl(regs, (tmr_ctrl | FMAN_RTC_TMR_CTRL_TMSR));
DELAY(10);
/* Clear TMR_OFF */
fman_rtc_set_timer_offset(regs, 0);
}
fman_rtc_set_timer_ctrl(regs, (tmr_ctrl | FMAN_RTC_TMR_CTRL_TE));
}
void fman_rtc_disable(struct rtc_regs *regs)
{
fman_rtc_set_timer_ctrl(regs, (fman_rtc_get_timer_ctrl(regs)
& ~(FMAN_RTC_TMR_CTRL_TE)));
}
void fman_rtc_clear_periodic_pulse(struct rtc_regs *regs, int id)
{
uint32_t tmp_reg;
if (id == 0)
tmp_reg = FMAN_RTC_TMR_TEVENT_PP1;
else
tmp_reg = FMAN_RTC_TMR_TEVENT_PP2;
fman_rtc_disable_interupt(regs, tmp_reg);
tmp_reg = fman_rtc_get_timer_ctrl(regs);
if (tmp_reg & FMAN_RTC_TMR_CTRL_FS)
fman_rtc_set_timer_ctrl(regs, tmp_reg & ~FMAN_RTC_TMR_CTRL_FS);
fman_rtc_set_timer_fiper(regs, id, 0xFFFFFFFF);
}
void fman_rtc_clear_external_trigger(struct rtc_regs *regs, int id)
{
uint32_t tmpReg, tmp_ctrl;
if (id == 0)
tmpReg = FMAN_RTC_TMR_TEVENT_ETS1;
else
tmpReg = FMAN_RTC_TMR_TEVENT_ETS2;
fman_rtc_disable_interupt(regs, tmpReg);
if (id == 0)
tmpReg = FMAN_RTC_TMR_CTRL_PP1L;
else
tmpReg = FMAN_RTC_TMR_CTRL_PP2L;
tmp_ctrl = fman_rtc_get_timer_ctrl(regs);
if (tmp_ctrl & tmpReg)
fman_rtc_set_timer_ctrl(regs, tmp_ctrl & ~tmpReg);
}
void fman_rtc_set_alarm(struct rtc_regs *regs, int id, uint32_t val, bool enable)
{
uint32_t tmpReg;
fman_rtc_set_timer_alarm(regs, id, val);
if (enable) {
if (id == 0)
tmpReg = FMAN_RTC_TMR_TEVENT_ALM1;
else
tmpReg = FMAN_RTC_TMR_TEVENT_ALM2;
fman_rtc_enable_interupt(regs, tmpReg);
}
}
void fman_rtc_set_periodic_pulse(struct rtc_regs *regs, int id, uint32_t val,
bool enable)
{
uint32_t tmpReg;
fman_rtc_set_timer_fiper(regs, id, val);
if (enable) {
if (id == 0)
tmpReg = FMAN_RTC_TMR_TEVENT_PP1;
else
tmpReg = FMAN_RTC_TMR_TEVENT_PP2;
fman_rtc_enable_interupt(regs, tmpReg);
}
}
void fman_rtc_set_ext_trigger(struct rtc_regs *regs, int id, bool enable,
bool use_pulse_as_input)
{
uint32_t tmpReg;
if (enable) {
if (id == 0)
tmpReg = FMAN_RTC_TMR_TEVENT_ETS1;
else
tmpReg = FMAN_RTC_TMR_TEVENT_ETS2;
fman_rtc_enable_interupt(regs, tmpReg);
}
if (use_pulse_as_input) {
if (id == 0)
tmpReg = FMAN_RTC_TMR_CTRL_PP1L;
else
tmpReg = FMAN_RTC_TMR_CTRL_PP2L;
fman_rtc_set_timer_ctrl(regs, fman_rtc_get_timer_ctrl(regs) | tmpReg);
}
}