2017-04-21 10:43:26 +00:00
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* Name: acmacros.h - C macros for the entire subsystem.
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
|
2021-08-31 11:00:09 +00:00
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* 1. Copyright Notice
|
|
|
|
*
|
|
|
|
* Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp.
|
2017-04-21 10:43:26 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
2021-08-31 11:00:09 +00:00
|
|
|
* 2. License
|
|
|
|
*
|
|
|
|
* 2.1. This is your license from Intel Corp. under its intellectual property
|
|
|
|
* rights. You may have additional license terms from the party that provided
|
|
|
|
* you this software, covering your right to use that party's intellectual
|
|
|
|
* property rights.
|
|
|
|
*
|
|
|
|
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
|
|
|
|
* copy of the source code appearing in this file ("Covered Code") an
|
|
|
|
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
|
|
|
|
* base code distributed originally by Intel ("Original Intel Code") to copy,
|
|
|
|
* make derivatives, distribute, use and display any portion of the Covered
|
|
|
|
* Code in any form, with the right to sublicense such rights; and
|
|
|
|
*
|
|
|
|
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
|
|
|
|
* license (with the right to sublicense), under only those claims of Intel
|
|
|
|
* patents that are infringed by the Original Intel Code, to make, use, sell,
|
|
|
|
* offer to sell, and import the Covered Code and derivative works thereof
|
|
|
|
* solely to the minimum extent necessary to exercise the above copyright
|
|
|
|
* license, and in no event shall the patent license extend to any additions
|
|
|
|
* to or modifications of the Original Intel Code. No other license or right
|
|
|
|
* is granted directly or by implication, estoppel or otherwise;
|
|
|
|
*
|
|
|
|
* The above copyright and patent license is granted only if the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* 3. Conditions
|
|
|
|
*
|
|
|
|
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
|
|
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
|
|
* Code or modification with rights to further distribute source must include
|
|
|
|
* the above Copyright Notice, the above License, this list of Conditions,
|
|
|
|
* and the following Disclaimer and Export Compliance provision. In addition,
|
|
|
|
* Licensee must cause all Covered Code to which Licensee contributes to
|
|
|
|
* contain a file documenting the changes Licensee made to create that Covered
|
|
|
|
* Code and the date of any change. Licensee must include in that file the
|
|
|
|
* documentation of any changes made by any predecessor Licensee. Licensee
|
|
|
|
* must include a prominent statement that the modification is derived,
|
|
|
|
* directly or indirectly, from Original Intel Code.
|
|
|
|
*
|
|
|
|
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
|
|
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
|
|
* Code or modification without rights to further distribute source must
|
|
|
|
* include the following Disclaimer and Export Compliance provision in the
|
|
|
|
* documentation and/or other materials provided with distribution. In
|
|
|
|
* addition, Licensee may not authorize further sublicense of source of any
|
|
|
|
* portion of the Covered Code, and must include terms to the effect that the
|
|
|
|
* license from Licensee to its licensee is limited to the intellectual
|
|
|
|
* property embodied in the software Licensee provides to its licensee, and
|
|
|
|
* not to intellectual property embodied in modifications its licensee may
|
|
|
|
* make.
|
|
|
|
*
|
|
|
|
* 3.3. Redistribution of Executable. Redistribution in executable form of any
|
|
|
|
* substantial portion of the Covered Code or modification must reproduce the
|
|
|
|
* above Copyright Notice, and the following Disclaimer and Export Compliance
|
|
|
|
* provision in the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3.4. Intel retains all right, title, and interest in and to the Original
|
|
|
|
* Intel Code.
|
|
|
|
*
|
|
|
|
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
|
|
|
|
* Intel shall be used in advertising or otherwise to promote the sale, use or
|
|
|
|
* other dealings in products derived from or relating to the Covered Code
|
|
|
|
* without prior written authorization from Intel.
|
|
|
|
*
|
|
|
|
* 4. Disclaimer and Export Compliance
|
|
|
|
*
|
|
|
|
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
|
|
|
|
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
|
|
|
|
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
|
|
|
|
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
|
|
|
|
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
|
|
|
|
* PARTICULAR PURPOSE.
|
|
|
|
*
|
|
|
|
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
|
|
|
|
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
|
|
|
|
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
|
|
|
|
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
|
|
|
|
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
|
|
|
|
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
|
|
|
|
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
|
|
|
|
* LIMITED REMEDY.
|
|
|
|
*
|
|
|
|
* 4.3. Licensee shall not export, either directly or indirectly, any of this
|
|
|
|
* software or system incorporating such software without first obtaining any
|
|
|
|
* required license or other approval from the U. S. Department of Commerce or
|
|
|
|
* any other agency or department of the United States Government. In the
|
|
|
|
* event Licensee exports any such software from the United States or
|
|
|
|
* re-exports any such software from a foreign destination, Licensee shall
|
|
|
|
* ensure that the distribution and export/re-export of the software is in
|
|
|
|
* compliance with all laws, regulations, orders, or other restrictions of the
|
|
|
|
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
|
|
|
|
* any of its subsidiaries will export/re-export any technical data, process,
|
|
|
|
* software, or service, directly or indirectly, to any country for which the
|
|
|
|
* United States government or any agency thereof requires an export license,
|
|
|
|
* other governmental approval, or letter of assurance, without first obtaining
|
|
|
|
* such license, approval or letter.
|
|
|
|
*
|
|
|
|
*****************************************************************************
|
|
|
|
*
|
|
|
|
* Alternatively, you may choose to be licensed under the terms of the
|
|
|
|
* following license:
|
|
|
|
*
|
2017-04-21 10:43:26 +00:00
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
|
|
* without modification.
|
|
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
|
|
* including a substantially similar Disclaimer requirement for further
|
|
|
|
* binary redistribution.
|
|
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
|
|
* of any contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
2021-08-31 11:00:09 +00:00
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
2017-04-21 10:43:26 +00:00
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
2021-08-31 11:00:09 +00:00
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* Alternatively, you may choose to be licensed under the terms of the
|
|
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
|
|
* Software Foundation.
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
2017-04-21 10:43:26 +00:00
|
|
|
|
|
|
|
#ifndef __ACMACROS_H__
|
|
|
|
#define __ACMACROS_H__
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extract data using a pointer. Any more than a byte and we
|
2021-08-31 11:00:09 +00:00
|
|
|
* get into potential alignment issues -- see the STORE macros below.
|
2017-04-21 10:43:26 +00:00
|
|
|
* Use with care.
|
|
|
|
*/
|
|
|
|
#define ACPI_CAST8(ptr) ACPI_CAST_PTR (UINT8, (ptr))
|
|
|
|
#define ACPI_CAST16(ptr) ACPI_CAST_PTR (UINT16, (ptr))
|
|
|
|
#define ACPI_CAST32(ptr) ACPI_CAST_PTR (UINT32, (ptr))
|
|
|
|
#define ACPI_CAST64(ptr) ACPI_CAST_PTR (UINT64, (ptr))
|
|
|
|
#define ACPI_GET8(ptr) (*ACPI_CAST8 (ptr))
|
|
|
|
#define ACPI_GET16(ptr) (*ACPI_CAST16 (ptr))
|
|
|
|
#define ACPI_GET32(ptr) (*ACPI_CAST32 (ptr))
|
|
|
|
#define ACPI_GET64(ptr) (*ACPI_CAST64 (ptr))
|
|
|
|
#define ACPI_SET8(ptr, val) (*ACPI_CAST8 (ptr) = (UINT8) (val))
|
|
|
|
#define ACPI_SET16(ptr, val) (*ACPI_CAST16 (ptr) = (UINT16) (val))
|
|
|
|
#define ACPI_SET32(ptr, val) (*ACPI_CAST32 (ptr) = (UINT32) (val))
|
|
|
|
#define ACPI_SET64(ptr, val) (*ACPI_CAST64 (ptr) = (UINT64) (val))
|
|
|
|
|
|
|
|
/*
|
2021-08-31 11:00:09 +00:00
|
|
|
* printf() format helper. This macro is a workaround for the difficulties
|
2017-04-21 10:43:26 +00:00
|
|
|
* with emitting 64-bit integers and 64-bit pointers with the same code
|
|
|
|
* for both 32-bit and 64-bit hosts.
|
|
|
|
*/
|
|
|
|
#define ACPI_FORMAT_UINT64(i) ACPI_HIDWORD(i), ACPI_LODWORD(i)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macros for moving data around to/from buffers that are possibly unaligned.
|
|
|
|
* If the hardware supports the transfer of unaligned data, just do the store.
|
|
|
|
* Otherwise, we have to move one byte at a time.
|
|
|
|
*/
|
|
|
|
#ifdef ACPI_BIG_ENDIAN
|
|
|
|
/*
|
|
|
|
* Macros for big-endian machines
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* These macros reverse the bytes during the move, converting little-endian to big endian */
|
|
|
|
|
|
|
|
/* Big Endian <== Little Endian */
|
|
|
|
/* Hi...Lo Lo...Hi */
|
|
|
|
/* 16-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_16_TO_16(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[0];}
|
|
|
|
|
|
|
|
#define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d))=0;\
|
|
|
|
((UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
((UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[0];}
|
|
|
|
|
|
|
|
#define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\
|
|
|
|
((UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
((UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];}
|
|
|
|
|
|
|
|
/* 32-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_32_TO_32(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[3];\
|
|
|
|
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[2];\
|
|
|
|
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[0];}
|
|
|
|
|
|
|
|
#define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\
|
|
|
|
((UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[3];\
|
|
|
|
((UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[2];\
|
|
|
|
((UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
((UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];}
|
|
|
|
|
|
|
|
/* 64-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_64_TO_64(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[7];\
|
|
|
|
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[6];\
|
|
|
|
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[5];\
|
|
|
|
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[4];\
|
|
|
|
(( UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[3];\
|
|
|
|
(( UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[2];\
|
|
|
|
(( UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
(( UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];}
|
|
|
|
#else
|
|
|
|
/*
|
|
|
|
* Macros for little-endian machines
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED
|
|
|
|
|
|
|
|
/* The hardware supports unaligned transfers, just do the little-endian move */
|
|
|
|
|
|
|
|
/* 16-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_16_TO_16(d, s) *(UINT16 *)(void *)(d) = *(UINT16 *)(void *)(s)
|
|
|
|
#define ACPI_MOVE_16_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT16 *)(void *)(s)
|
|
|
|
#define ACPI_MOVE_16_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT16 *)(void *)(s)
|
|
|
|
|
|
|
|
/* 32-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
|
|
|
|
#define ACPI_MOVE_32_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT32 *)(void *)(s)
|
|
|
|
#define ACPI_MOVE_32_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT32 *)(void *)(s)
|
|
|
|
|
|
|
|
/* 64-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
|
|
|
|
#define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */
|
|
|
|
#define ACPI_MOVE_64_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT64 *)(void *)(s)
|
|
|
|
|
|
|
|
#else
|
|
|
|
/*
|
|
|
|
* The hardware does not support unaligned transfers. We must move the
|
|
|
|
* data one byte at a time. These macros work whether the source or
|
|
|
|
* the destination (or both) is/are unaligned. (Little-endian move)
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* 16-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_16_TO_16(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\
|
|
|
|
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];}
|
|
|
|
|
|
|
|
#define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);}
|
|
|
|
#define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);}
|
|
|
|
|
|
|
|
/* 32-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_32_TO_32(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\
|
|
|
|
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[2];\
|
|
|
|
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[3];}
|
|
|
|
|
|
|
|
#define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE_32_TO_32(d, s);}
|
|
|
|
|
|
|
|
/* 64-bit source, 16/32/64 destination */
|
|
|
|
|
|
|
|
#define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
|
|
|
|
#define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */
|
|
|
|
#define ACPI_MOVE_64_TO_64(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\
|
|
|
|
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];\
|
|
|
|
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[2];\
|
|
|
|
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[3];\
|
|
|
|
(( UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[4];\
|
|
|
|
(( UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[5];\
|
|
|
|
(( UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[6];\
|
|
|
|
(( UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[7];}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fast power-of-two math macros for non-optimized compilers
|
|
|
|
*/
|
|
|
|
#define _ACPI_DIV(value, PowerOf2) ((UINT32) ((value) >> (PowerOf2)))
|
|
|
|
#define _ACPI_MUL(value, PowerOf2) ((UINT32) ((value) << (PowerOf2)))
|
|
|
|
#define _ACPI_MOD(value, Divisor) ((UINT32) ((value) & ((Divisor) -1)))
|
|
|
|
|
|
|
|
#define ACPI_DIV_2(a) _ACPI_DIV(a, 1)
|
|
|
|
#define ACPI_MUL_2(a) _ACPI_MUL(a, 1)
|
|
|
|
#define ACPI_MOD_2(a) _ACPI_MOD(a, 2)
|
|
|
|
|
|
|
|
#define ACPI_DIV_4(a) _ACPI_DIV(a, 2)
|
|
|
|
#define ACPI_MUL_4(a) _ACPI_MUL(a, 2)
|
|
|
|
#define ACPI_MOD_4(a) _ACPI_MOD(a, 4)
|
|
|
|
|
|
|
|
#define ACPI_DIV_8(a) _ACPI_DIV(a, 3)
|
|
|
|
#define ACPI_MUL_8(a) _ACPI_MUL(a, 3)
|
|
|
|
#define ACPI_MOD_8(a) _ACPI_MOD(a, 8)
|
|
|
|
|
|
|
|
#define ACPI_DIV_16(a) _ACPI_DIV(a, 4)
|
|
|
|
#define ACPI_MUL_16(a) _ACPI_MUL(a, 4)
|
|
|
|
#define ACPI_MOD_16(a) _ACPI_MOD(a, 16)
|
|
|
|
|
|
|
|
#define ACPI_DIV_32(a) _ACPI_DIV(a, 5)
|
|
|
|
#define ACPI_MUL_32(a) _ACPI_MUL(a, 5)
|
|
|
|
#define ACPI_MOD_32(a) _ACPI_MOD(a, 32)
|
|
|
|
|
|
|
|
/* Test for ASCII character */
|
|
|
|
|
|
|
|
#define ACPI_IS_ASCII(c) ((c) < 0x80)
|
|
|
|
|
|
|
|
/* Signed integers */
|
|
|
|
|
|
|
|
#define ACPI_SIGN_POSITIVE 0
|
|
|
|
#define ACPI_SIGN_NEGATIVE 1
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rounding macros (Power of two boundaries only)
|
|
|
|
*/
|
|
|
|
#define ACPI_ROUND_DOWN(value, boundary) (((ACPI_SIZE)(value)) & \
|
|
|
|
(~(((ACPI_SIZE) boundary)-1)))
|
|
|
|
|
|
|
|
#define ACPI_ROUND_UP(value, boundary) ((((ACPI_SIZE)(value)) + \
|
|
|
|
(((ACPI_SIZE) boundary)-1)) & \
|
|
|
|
(~(((ACPI_SIZE) boundary)-1)))
|
|
|
|
|
|
|
|
/* Note: sizeof(ACPI_SIZE) evaluates to either 4 or 8 (32- vs 64-bit mode) */
|
|
|
|
|
|
|
|
#define ACPI_ROUND_DOWN_TO_32BIT(a) ACPI_ROUND_DOWN(a, 4)
|
|
|
|
#define ACPI_ROUND_DOWN_TO_64BIT(a) ACPI_ROUND_DOWN(a, 8)
|
|
|
|
#define ACPI_ROUND_DOWN_TO_NATIVE_WORD(a) ACPI_ROUND_DOWN(a, sizeof(ACPI_SIZE))
|
|
|
|
|
|
|
|
#define ACPI_ROUND_UP_TO_32BIT(a) ACPI_ROUND_UP(a, 4)
|
|
|
|
#define ACPI_ROUND_UP_TO_64BIT(a) ACPI_ROUND_UP(a, 8)
|
|
|
|
#define ACPI_ROUND_UP_TO_NATIVE_WORD(a) ACPI_ROUND_UP(a, sizeof(ACPI_SIZE))
|
|
|
|
|
|
|
|
#define ACPI_ROUND_BITS_UP_TO_BYTES(a) ACPI_DIV_8((a) + 7)
|
|
|
|
#define ACPI_ROUND_BITS_DOWN_TO_BYTES(a) ACPI_DIV_8((a))
|
|
|
|
|
|
|
|
#define ACPI_ROUND_UP_TO_1K(a) (((a) + 1023) >> 10)
|
|
|
|
|
|
|
|
/* Generic (non-power-of-two) rounding */
|
|
|
|
|
|
|
|
#define ACPI_ROUND_UP_TO(value, boundary) (((value) + ((boundary)-1)) / (boundary))
|
|
|
|
|
|
|
|
#define ACPI_IS_MISALIGNED(value) (((ACPI_SIZE) value) & (sizeof(ACPI_SIZE)-1))
|
|
|
|
|
2021-08-31 11:00:09 +00:00
|
|
|
/* Generic bit manipulation */
|
|
|
|
|
|
|
|
#ifndef ACPI_USE_NATIVE_BIT_FINDER
|
|
|
|
|
|
|
|
#define __ACPI_FIND_LAST_BIT_2(a, r) ((((UINT8) (a)) & 0x02) ? (r)+1 : (r))
|
|
|
|
#define __ACPI_FIND_LAST_BIT_4(a, r) ((((UINT8) (a)) & 0x0C) ? \
|
|
|
|
__ACPI_FIND_LAST_BIT_2 ((a)>>2, (r)+2) : \
|
|
|
|
__ACPI_FIND_LAST_BIT_2 ((a), (r)))
|
|
|
|
#define __ACPI_FIND_LAST_BIT_8(a, r) ((((UINT8) (a)) & 0xF0) ? \
|
|
|
|
__ACPI_FIND_LAST_BIT_4 ((a)>>4, (r)+4) : \
|
|
|
|
__ACPI_FIND_LAST_BIT_4 ((a), (r)))
|
|
|
|
#define __ACPI_FIND_LAST_BIT_16(a, r) ((((UINT16) (a)) & 0xFF00) ? \
|
|
|
|
__ACPI_FIND_LAST_BIT_8 ((a)>>8, (r)+8) : \
|
|
|
|
__ACPI_FIND_LAST_BIT_8 ((a), (r)))
|
|
|
|
#define __ACPI_FIND_LAST_BIT_32(a, r) ((((UINT32) (a)) & 0xFFFF0000) ? \
|
|
|
|
__ACPI_FIND_LAST_BIT_16 ((a)>>16, (r)+16) : \
|
|
|
|
__ACPI_FIND_LAST_BIT_16 ((a), (r)))
|
|
|
|
#define __ACPI_FIND_LAST_BIT_64(a, r) ((((UINT64) (a)) & 0xFFFFFFFF00000000) ? \
|
|
|
|
__ACPI_FIND_LAST_BIT_32 ((a)>>32, (r)+32) : \
|
|
|
|
__ACPI_FIND_LAST_BIT_32 ((a), (r)))
|
|
|
|
|
|
|
|
#define ACPI_FIND_LAST_BIT_8(a) ((a) ? __ACPI_FIND_LAST_BIT_8 (a, 1) : 0)
|
|
|
|
#define ACPI_FIND_LAST_BIT_16(a) ((a) ? __ACPI_FIND_LAST_BIT_16 (a, 1) : 0)
|
|
|
|
#define ACPI_FIND_LAST_BIT_32(a) ((a) ? __ACPI_FIND_LAST_BIT_32 (a, 1) : 0)
|
|
|
|
#define ACPI_FIND_LAST_BIT_64(a) ((a) ? __ACPI_FIND_LAST_BIT_64 (a, 1) : 0)
|
|
|
|
|
|
|
|
#define __ACPI_FIND_FIRST_BIT_2(a, r) ((((UINT8) (a)) & 0x01) ? (r) : (r)+1)
|
|
|
|
#define __ACPI_FIND_FIRST_BIT_4(a, r) ((((UINT8) (a)) & 0x03) ? \
|
|
|
|
__ACPI_FIND_FIRST_BIT_2 ((a), (r)) : \
|
|
|
|
__ACPI_FIND_FIRST_BIT_2 ((a)>>2, (r)+2))
|
|
|
|
#define __ACPI_FIND_FIRST_BIT_8(a, r) ((((UINT8) (a)) & 0x0F) ? \
|
|
|
|
__ACPI_FIND_FIRST_BIT_4 ((a), (r)) : \
|
|
|
|
__ACPI_FIND_FIRST_BIT_4 ((a)>>4, (r)+4))
|
|
|
|
#define __ACPI_FIND_FIRST_BIT_16(a, r) ((((UINT16) (a)) & 0x00FF) ? \
|
|
|
|
__ACPI_FIND_FIRST_BIT_8 ((a), (r)) : \
|
|
|
|
__ACPI_FIND_FIRST_BIT_8 ((a)>>8, (r)+8))
|
|
|
|
#define __ACPI_FIND_FIRST_BIT_32(a, r) ((((UINT32) (a)) & 0x0000FFFF) ? \
|
|
|
|
__ACPI_FIND_FIRST_BIT_16 ((a), (r)) : \
|
|
|
|
__ACPI_FIND_FIRST_BIT_16 ((a)>>16, (r)+16))
|
|
|
|
#define __ACPI_FIND_FIRST_BIT_64(a, r) ((((UINT64) (a)) & 0x00000000FFFFFFFF) ? \
|
|
|
|
__ACPI_FIND_FIRST_BIT_32 ((a), (r)) : \
|
|
|
|
__ACPI_FIND_FIRST_BIT_32 ((a)>>32, (r)+32))
|
|
|
|
|
|
|
|
#define ACPI_FIND_FIRST_BIT_8(a) ((a) ? __ACPI_FIND_FIRST_BIT_8 (a, 1) : 0)
|
|
|
|
#define ACPI_FIND_FIRST_BIT_16(a) ((a) ? __ACPI_FIND_FIRST_BIT_16 (a, 1) : 0)
|
|
|
|
#define ACPI_FIND_FIRST_BIT_32(a) ((a) ? __ACPI_FIND_FIRST_BIT_32 (a, 1) : 0)
|
|
|
|
#define ACPI_FIND_FIRST_BIT_64(a) ((a) ? __ACPI_FIND_FIRST_BIT_64 (a, 1) : 0)
|
|
|
|
|
|
|
|
#endif /* ACPI_USE_NATIVE_BIT_FINDER */
|
|
|
|
|
|
|
|
/* Generic (power-of-two) rounding */
|
|
|
|
|
|
|
|
#define ACPI_ROUND_UP_POWER_OF_TWO_8(a) ((UINT8) \
|
|
|
|
(((UINT16) 1) << ACPI_FIND_LAST_BIT_8 ((a) - 1)))
|
|
|
|
#define ACPI_ROUND_DOWN_POWER_OF_TWO_8(a) ((UINT8) \
|
|
|
|
(((UINT16) 1) << (ACPI_FIND_LAST_BIT_8 ((a)) - 1)))
|
|
|
|
#define ACPI_ROUND_UP_POWER_OF_TWO_16(a) ((UINT16) \
|
|
|
|
(((UINT32) 1) << ACPI_FIND_LAST_BIT_16 ((a) - 1)))
|
|
|
|
#define ACPI_ROUND_DOWN_POWER_OF_TWO_16(a) ((UINT16) \
|
|
|
|
(((UINT32) 1) << (ACPI_FIND_LAST_BIT_16 ((a)) - 1)))
|
|
|
|
#define ACPI_ROUND_UP_POWER_OF_TWO_32(a) ((UINT32) \
|
|
|
|
(((UINT64) 1) << ACPI_FIND_LAST_BIT_32 ((a) - 1)))
|
|
|
|
#define ACPI_ROUND_DOWN_POWER_OF_TWO_32(a) ((UINT32) \
|
|
|
|
(((UINT64) 1) << (ACPI_FIND_LAST_BIT_32 ((a)) - 1)))
|
|
|
|
#define ACPI_IS_ALIGNED(a, s) (((a) & ((s) - 1)) == 0)
|
|
|
|
#define ACPI_IS_POWER_OF_TWO(a) ACPI_IS_ALIGNED(a, a)
|
|
|
|
|
2017-04-21 10:43:26 +00:00
|
|
|
/*
|
|
|
|
* Bitmask creation
|
|
|
|
* Bit positions start at zero.
|
|
|
|
* MASK_BITS_ABOVE creates a mask starting AT the position and above
|
|
|
|
* MASK_BITS_BELOW creates a mask starting one bit BELOW the position
|
2021-08-31 11:00:09 +00:00
|
|
|
* MASK_BITS_ABOVE/BELOW accepts a bit offset to create a mask
|
|
|
|
* MASK_BITS_ABOVE/BELOW_32/64 accepts a bit width to create a mask
|
|
|
|
* Note: The ACPI_INTEGER_BIT_SIZE check is used to bypass compiler
|
|
|
|
* differences with the shift operator
|
2017-04-21 10:43:26 +00:00
|
|
|
*/
|
|
|
|
#define ACPI_MASK_BITS_ABOVE(position) (~((ACPI_UINT64_MAX) << ((UINT32) (position))))
|
|
|
|
#define ACPI_MASK_BITS_BELOW(position) ((ACPI_UINT64_MAX) << ((UINT32) (position)))
|
2021-08-31 11:00:09 +00:00
|
|
|
#define ACPI_MASK_BITS_ABOVE_32(width) ((UINT32) ACPI_MASK_BITS_ABOVE(width))
|
|
|
|
#define ACPI_MASK_BITS_BELOW_32(width) ((UINT32) ACPI_MASK_BITS_BELOW(width))
|
|
|
|
#define ACPI_MASK_BITS_ABOVE_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \
|
|
|
|
ACPI_UINT64_MAX : \
|
|
|
|
ACPI_MASK_BITS_ABOVE(width))
|
|
|
|
#define ACPI_MASK_BITS_BELOW_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \
|
|
|
|
(UINT64) 0 : \
|
|
|
|
ACPI_MASK_BITS_BELOW(width))
|
2017-04-21 10:43:26 +00:00
|
|
|
|
|
|
|
/* Bitfields within ACPI registers */
|
|
|
|
|
|
|
|
#define ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask) \
|
|
|
|
((Val << Pos) & Mask)
|
|
|
|
|
|
|
|
#define ACPI_REGISTER_INSERT_VALUE(Reg, Pos, Mask, Val) \
|
|
|
|
Reg = (Reg & (~(Mask))) | ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask)
|
|
|
|
|
|
|
|
#define ACPI_INSERT_BITS(Target, Mask, Source) \
|
|
|
|
Target = ((Target & (~(Mask))) | (Source & Mask))
|
|
|
|
|
|
|
|
/* Generic bitfield macros and masks */
|
|
|
|
|
|
|
|
#define ACPI_GET_BITS(SourcePtr, Position, Mask) \
|
|
|
|
((*(SourcePtr) >> (Position)) & (Mask))
|
|
|
|
|
|
|
|
#define ACPI_SET_BITS(TargetPtr, Position, Mask, Value) \
|
|
|
|
(*(TargetPtr) |= (((Value) & (Mask)) << (Position)))
|
|
|
|
|
|
|
|
#define ACPI_1BIT_MASK 0x00000001
|
|
|
|
#define ACPI_2BIT_MASK 0x00000003
|
|
|
|
#define ACPI_3BIT_MASK 0x00000007
|
|
|
|
#define ACPI_4BIT_MASK 0x0000000F
|
|
|
|
#define ACPI_5BIT_MASK 0x0000001F
|
|
|
|
#define ACPI_6BIT_MASK 0x0000003F
|
|
|
|
#define ACPI_7BIT_MASK 0x0000007F
|
|
|
|
#define ACPI_8BIT_MASK 0x000000FF
|
|
|
|
#define ACPI_16BIT_MASK 0x0000FFFF
|
|
|
|
#define ACPI_24BIT_MASK 0x00FFFFFF
|
|
|
|
|
|
|
|
/* Macros to extract flag bits from position zero */
|
|
|
|
|
|
|
|
#define ACPI_GET_1BIT_FLAG(Value) ((Value) & ACPI_1BIT_MASK)
|
|
|
|
#define ACPI_GET_2BIT_FLAG(Value) ((Value) & ACPI_2BIT_MASK)
|
|
|
|
#define ACPI_GET_3BIT_FLAG(Value) ((Value) & ACPI_3BIT_MASK)
|
|
|
|
#define ACPI_GET_4BIT_FLAG(Value) ((Value) & ACPI_4BIT_MASK)
|
|
|
|
|
|
|
|
/* Macros to extract flag bits from position one and above */
|
|
|
|
|
|
|
|
#define ACPI_EXTRACT_1BIT_FLAG(Field, Position) (ACPI_GET_1BIT_FLAG ((Field) >> Position))
|
|
|
|
#define ACPI_EXTRACT_2BIT_FLAG(Field, Position) (ACPI_GET_2BIT_FLAG ((Field) >> Position))
|
|
|
|
#define ACPI_EXTRACT_3BIT_FLAG(Field, Position) (ACPI_GET_3BIT_FLAG ((Field) >> Position))
|
|
|
|
#define ACPI_EXTRACT_4BIT_FLAG(Field, Position) (ACPI_GET_4BIT_FLAG ((Field) >> Position))
|
|
|
|
|
|
|
|
/* ACPI Pathname helpers */
|
|
|
|
|
|
|
|
#define ACPI_IS_ROOT_PREFIX(c) ((c) == (UINT8) 0x5C) /* Backslash */
|
|
|
|
#define ACPI_IS_PARENT_PREFIX(c) ((c) == (UINT8) 0x5E) /* Carat */
|
|
|
|
#define ACPI_IS_PATH_SEPARATOR(c) ((c) == (UINT8) 0x2E) /* Period (dot) */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An object of type ACPI_NAMESPACE_NODE can appear in some contexts
|
|
|
|
* where a pointer to an object of type ACPI_OPERAND_OBJECT can also
|
|
|
|
* appear. This macro is used to distinguish them.
|
|
|
|
*
|
|
|
|
* The "DescriptorType" field is the second field in both structures.
|
|
|
|
*/
|
|
|
|
#define ACPI_GET_DESCRIPTOR_PTR(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.CommonPointer)
|
|
|
|
#define ACPI_SET_DESCRIPTOR_PTR(d, p) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.CommonPointer = (p))
|
|
|
|
#define ACPI_GET_DESCRIPTOR_TYPE(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.DescriptorType)
|
|
|
|
#define ACPI_SET_DESCRIPTOR_TYPE(d, t) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.DescriptorType = (t))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macros for the master AML opcode table
|
|
|
|
*/
|
|
|
|
#if defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT)
|
|
|
|
#define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \
|
|
|
|
{Name, (UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Type}
|
|
|
|
#else
|
|
|
|
#define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \
|
|
|
|
{(UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Type}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define ARG_TYPE_WIDTH 5
|
|
|
|
#define ARG_1(x) ((UINT32)(x))
|
|
|
|
#define ARG_2(x) ((UINT32)(x) << (1 * ARG_TYPE_WIDTH))
|
|
|
|
#define ARG_3(x) ((UINT32)(x) << (2 * ARG_TYPE_WIDTH))
|
|
|
|
#define ARG_4(x) ((UINT32)(x) << (3 * ARG_TYPE_WIDTH))
|
|
|
|
#define ARG_5(x) ((UINT32)(x) << (4 * ARG_TYPE_WIDTH))
|
|
|
|
#define ARG_6(x) ((UINT32)(x) << (5 * ARG_TYPE_WIDTH))
|
|
|
|
|
|
|
|
#define ARGI_LIST1(a) (ARG_1(a))
|
|
|
|
#define ARGI_LIST2(a, b) (ARG_1(b)|ARG_2(a))
|
|
|
|
#define ARGI_LIST3(a, b, c) (ARG_1(c)|ARG_2(b)|ARG_3(a))
|
|
|
|
#define ARGI_LIST4(a, b, c, d) (ARG_1(d)|ARG_2(c)|ARG_3(b)|ARG_4(a))
|
|
|
|
#define ARGI_LIST5(a, b, c, d, e) (ARG_1(e)|ARG_2(d)|ARG_3(c)|ARG_4(b)|ARG_5(a))
|
|
|
|
#define ARGI_LIST6(a, b, c, d, e, f) (ARG_1(f)|ARG_2(e)|ARG_3(d)|ARG_4(c)|ARG_5(b)|ARG_6(a))
|
|
|
|
|
|
|
|
#define ARGP_LIST1(a) (ARG_1(a))
|
|
|
|
#define ARGP_LIST2(a, b) (ARG_1(a)|ARG_2(b))
|
|
|
|
#define ARGP_LIST3(a, b, c) (ARG_1(a)|ARG_2(b)|ARG_3(c))
|
|
|
|
#define ARGP_LIST4(a, b, c, d) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d))
|
|
|
|
#define ARGP_LIST5(a, b, c, d, e) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e))
|
|
|
|
#define ARGP_LIST6(a, b, c, d, e, f) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)|ARG_6(f))
|
|
|
|
|
|
|
|
#define GET_CURRENT_ARG_TYPE(List) (List & ((UINT32) 0x1F))
|
|
|
|
#define INCREMENT_ARG_LIST(List) (List >>= ((UINT32) ARG_TYPE_WIDTH))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ascii error messages can be configured out
|
|
|
|
*/
|
|
|
|
#ifndef ACPI_NO_ERROR_MESSAGES
|
|
|
|
/*
|
2021-08-31 11:00:09 +00:00
|
|
|
* Error reporting. The callers module and line number are inserted by AE_INFO,
|
2017-04-21 10:43:26 +00:00
|
|
|
* the plist contains a set of parens to allow variable-length lists.
|
|
|
|
* These macros are used for both the debug and non-debug versions of the code.
|
|
|
|
*/
|
2021-08-31 11:00:09 +00:00
|
|
|
#define ACPI_ERROR_NAMESPACE(s, p, e) AcpiUtPrefixedNamespaceError (AE_INFO, s, p, e);
|
2017-04-21 10:43:26 +00:00
|
|
|
#define ACPI_ERROR_METHOD(s, n, p, e) AcpiUtMethodError (AE_INFO, s, n, p, e);
|
|
|
|
#define ACPI_WARN_PREDEFINED(plist) AcpiUtPredefinedWarning plist
|
|
|
|
#define ACPI_INFO_PREDEFINED(plist) AcpiUtPredefinedInfo plist
|
|
|
|
#define ACPI_BIOS_ERROR_PREDEFINED(plist) AcpiUtPredefinedBiosError plist
|
2021-08-31 11:00:09 +00:00
|
|
|
#define ACPI_ERROR_ONLY(s) s
|
2017-04-21 10:43:26 +00:00
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
/* No error messages */
|
|
|
|
|
2021-08-31 11:00:09 +00:00
|
|
|
#define ACPI_ERROR_NAMESPACE(s, p, e)
|
2017-04-21 10:43:26 +00:00
|
|
|
#define ACPI_ERROR_METHOD(s, n, p, e)
|
|
|
|
#define ACPI_WARN_PREDEFINED(plist)
|
|
|
|
#define ACPI_INFO_PREDEFINED(plist)
|
|
|
|
#define ACPI_BIOS_ERROR_PREDEFINED(plist)
|
2021-08-31 11:00:09 +00:00
|
|
|
#define ACPI_ERROR_ONLY(s)
|
2017-04-21 10:43:26 +00:00
|
|
|
|
|
|
|
#endif /* ACPI_NO_ERROR_MESSAGES */
|
|
|
|
|
|
|
|
#if (!ACPI_REDUCED_HARDWARE)
|
|
|
|
#define ACPI_HW_OPTIONAL_FUNCTION(addr) addr
|
|
|
|
#else
|
|
|
|
#define ACPI_HW_OPTIONAL_FUNCTION(addr) NULL
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macros used for ACPICA utilities only
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Generate a UUID */
|
|
|
|
|
|
|
|
#define ACPI_INIT_UUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
|
|
|
|
(a) & 0xFF, ((a) >> 8) & 0xFF, ((a) >> 16) & 0xFF, ((a) >> 24) & 0xFF, \
|
|
|
|
(b) & 0xFF, ((b) >> 8) & 0xFF, \
|
|
|
|
(c) & 0xFF, ((c) >> 8) & 0xFF, \
|
|
|
|
(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)
|
|
|
|
|
|
|
|
#define ACPI_IS_OCTAL_DIGIT(d) (((char)(d) >= '0') && ((char)(d) <= '7'))
|
|
|
|
|
|
|
|
|
2021-08-31 11:00:09 +00:00
|
|
|
/*
|
|
|
|
* Macros used for the ASL-/ASL+ converter utility
|
|
|
|
*/
|
|
|
|
#ifdef ACPI_ASL_COMPILER
|
|
|
|
|
|
|
|
#define ASL_CV_LABEL_FILENODE(a) CvLabelFileNode(a);
|
|
|
|
#define ASL_CV_CAPTURE_COMMENTS_ONLY(a) CvCaptureCommentsOnly (a);
|
|
|
|
#define ASL_CV_CAPTURE_COMMENTS(a) CvCaptureComments (a);
|
|
|
|
#define ASL_CV_TRANSFER_COMMENTS(a) CvTransferComments (a);
|
|
|
|
#define ASL_CV_CLOSE_PAREN(a,b) CvCloseParenWriteComment(a,b);
|
|
|
|
#define ASL_CV_CLOSE_BRACE(a,b) CvCloseBraceWriteComment(a,b);
|
|
|
|
#define ASL_CV_SWITCH_FILES(a,b) CvSwitchFiles(a,b);
|
|
|
|
#define ASL_CV_CLEAR_OP_COMMENTS(a) CvClearOpComments(a);
|
|
|
|
#define ASL_CV_PRINT_ONE_COMMENT(a,b,c,d) CvPrintOneCommentType (a,b,c,d);
|
|
|
|
#define ASL_CV_PRINT_ONE_COMMENT_LIST(a,b) CvPrintOneCommentList (a,b);
|
|
|
|
#define ASL_CV_FILE_HAS_SWITCHED(a) CvFileHasSwitched(a)
|
|
|
|
#define ASL_CV_INIT_FILETREE(a,b) CvInitFileTree(a,b);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define ASL_CV_LABEL_FILENODE(a)
|
|
|
|
#define ASL_CV_CAPTURE_COMMENTS_ONLY(a)
|
|
|
|
#define ASL_CV_CAPTURE_COMMENTS(a)
|
|
|
|
#define ASL_CV_TRANSFER_COMMENTS(a)
|
|
|
|
#define ASL_CV_CLOSE_PAREN(a,b) AcpiOsPrintf (")");
|
|
|
|
#define ASL_CV_CLOSE_BRACE(a,b) AcpiOsPrintf ("}");
|
|
|
|
#define ASL_CV_SWITCH_FILES(a,b)
|
|
|
|
#define ASL_CV_CLEAR_OP_COMMENTS(a)
|
|
|
|
#define ASL_CV_PRINT_ONE_COMMENT(a,b,c,d)
|
|
|
|
#define ASL_CV_PRINT_ONE_COMMENT_LIST(a,b)
|
|
|
|
#define ASL_CV_FILE_HAS_SWITCHED(a) 0
|
|
|
|
#define ASL_CV_INIT_FILETREE(a,b)
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2017-04-21 10:43:26 +00:00
|
|
|
#endif /* ACMACROS_H */
|