f-stack/freebsd/arm/xilinx/uart_dev_cdnc.c

715 lines
19 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2005 Olivier Houchard All rights reserved.
* Copyright (c) 2012 Thomas Skibo All rights reserved.
* Copyright (c) 2005 M. Warner Losh <imp@FreeBSD.org>
2017-04-21 10:43:26 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* A driver for the Cadence AMBA UART as used by the Xilinx Zynq-7000.
*
* Reference: Zynq-7000 All Programmable SoC Technical Reference Manual.
* (v1.4) November 16, 2012. Xilinx doc UG585. UART is covered in Ch. 19
* and register definitions are in appendix B.33.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/cons.h>
#include <machine/bus.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_cpu_fdt.h>
#include <dev/uart/uart_bus.h>
#include "uart_if.h"
#define UART_FIFO_SIZE 64
#define RD4(bas, reg) \
bus_space_read_4((bas)->bst, (bas)->bsh, uart_regofs((bas), (reg)))
#define WR4(bas, reg, value) \
bus_space_write_4((bas)->bst, (bas)->bsh, uart_regofs((bas), (reg)), \
(value))
/* Register definitions for Cadence UART Controller.
*/
#define CDNC_UART_CTRL_REG 0x00 /* Control Register. */
#define CDNC_UART_CTRL_REG_STOPBRK (1<<8)
#define CDNC_UART_CTRL_REG_STARTBRK (1<<7)
#define CDNC_UART_CTRL_REG_TORST (1<<6)
#define CDNC_UART_CTRL_REG_TX_DIS (1<<5)
#define CDNC_UART_CTRL_REG_TX_EN (1<<4)
#define CDNC_UART_CTRL_REG_RX_DIS (1<<3)
#define CDNC_UART_CTRL_REG_RX_EN (1<<2)
#define CDNC_UART_CTRL_REG_TXRST (1<<1)
#define CDNC_UART_CTRL_REG_RXRST (1<<0)
#define CDNC_UART_MODE_REG 0x04 /* Mode Register. */
#define CDNC_UART_MODE_REG_CHMOD_R_LOOP (3<<8) /* [9:8] - channel mode */
#define CDNC_UART_MODE_REG_CHMOD_L_LOOP (2<<8)
#define CDNC_UART_MODE_REG_CHMOD_AUTECHO (1<<8)
#define CDNC_UART_MODE_REG_STOP2 (2<<6) /* [7:6] - stop bits */
#define CDNC_UART_MODE_REG_PAR_NONE (4<<3) /* [5:3] - parity type */
#define CDNC_UART_MODE_REG_PAR_MARK (3<<3)
#define CDNC_UART_MODE_REG_PAR_SPACE (2<<3)
#define CDNC_UART_MODE_REG_PAR_ODD (1<<3)
#define CDNC_UART_MODE_REG_PAR_EVEN (0<<3)
#define CDNC_UART_MODE_REG_6BIT (3<<1) /* [2:1] - character len */
#define CDNC_UART_MODE_REG_7BIT (2<<1)
#define CDNC_UART_MODE_REG_8BIT (0<<1)
#define CDNC_UART_MODE_REG_CLKSEL (1<<0)
#define CDNC_UART_IEN_REG 0x08 /* Interrupt registers. */
#define CDNC_UART_IDIS_REG 0x0C
#define CDNC_UART_IMASK_REG 0x10
#define CDNC_UART_ISTAT_REG 0x14
#define CDNC_UART_INT_TXOVR (1<<12)
#define CDNC_UART_INT_TXNRLYFUL (1<<11) /* tx "nearly" full */
#define CDNC_UART_INT_TXTRIG (1<<10)
#define CDNC_UART_INT_DMSI (1<<9) /* delta modem status */
#define CDNC_UART_INT_RXTMOUT (1<<8)
#define CDNC_UART_INT_PARITY (1<<7)
#define CDNC_UART_INT_FRAMING (1<<6)
#define CDNC_UART_INT_RXOVR (1<<5)
#define CDNC_UART_INT_TXFULL (1<<4)
#define CDNC_UART_INT_TXEMPTY (1<<3)
#define CDNC_UART_INT_RXFULL (1<<2)
#define CDNC_UART_INT_RXEMPTY (1<<1)
#define CDNC_UART_INT_RXTRIG (1<<0)
#define CDNC_UART_INT_ALL 0x1FFF
#define CDNC_UART_BAUDGEN_REG 0x18
#define CDNC_UART_RX_TIMEO_REG 0x1C
#define CDNC_UART_RX_WATER_REG 0x20
#define CDNC_UART_MODEM_CTRL_REG 0x24
#define CDNC_UART_MODEM_CTRL_REG_FCM (1<<5) /* automatic flow control */
#define CDNC_UART_MODEM_CTRL_REG_RTS (1<<1)
#define CDNC_UART_MODEM_CTRL_REG_DTR (1<<0)
#define CDNC_UART_MODEM_STAT_REG 0x28
#define CDNC_UART_MODEM_STAT_REG_FCMS (1<<8) /* flow control mode (rw) */
#define CDNC_UART_MODEM_STAT_REG_DCD (1<<7)
#define CDNC_UART_MODEM_STAT_REG_RI (1<<6)
#define CDNC_UART_MODEM_STAT_REG_DSR (1<<5)
#define CDNC_UART_MODEM_STAT_REG_CTS (1<<4)
#define CDNC_UART_MODEM_STAT_REG_DDCD (1<<3) /* change in DCD (w1tc) */
#define CDNC_UART_MODEM_STAT_REG_TERI (1<<2) /* trail edge ring (w1tc) */
#define CDNC_UART_MODEM_STAT_REG_DDSR (1<<1) /* change in DSR (w1tc) */
#define CDNC_UART_MODEM_STAT_REG_DCTS (1<<0) /* change in CTS (w1tc) */
#define CDNC_UART_CHAN_STAT_REG 0x2C /* Channel status register. */
#define CDNC_UART_CHAN_STAT_REG_TXNRLYFUL (1<<14) /* tx "nearly" full */
#define CDNC_UART_CHAN_STAT_REG_TXTRIG (1<<13)
#define CDNC_UART_CHAN_STAT_REG_FDELT (1<<12)
#define CDNC_UART_CHAN_STAT_REG_TXACTIVE (1<<11)
#define CDNC_UART_CHAN_STAT_REG_RXACTIVE (1<<10)
#define CDNC_UART_CHAN_STAT_REG_TXFULL (1<<4)
#define CDNC_UART_CHAN_STAT_REG_TXEMPTY (1<<3)
#define CDNC_UART_CHAN_STAT_REG_RXEMPTY (1<<1)
#define CDNC_UART_CHAN_STAT_REG_RXTRIG (1<<0)
#define CDNC_UART_FIFO 0x30 /* Data FIFO (tx and rx) */
#define CDNC_UART_BAUDDIV_REG 0x34
#define CDNC_UART_FLOWDEL_REG 0x38
#define CDNC_UART_TX_WATER_REG 0x44
/*
* Low-level UART interface.
*/
static int cdnc_uart_probe(struct uart_bas *bas);
static void cdnc_uart_init(struct uart_bas *bas, int, int, int, int);
static void cdnc_uart_term(struct uart_bas *bas);
static void cdnc_uart_putc(struct uart_bas *bas, int);
static int cdnc_uart_rxready(struct uart_bas *bas);
static int cdnc_uart_getc(struct uart_bas *bas, struct mtx *mtx);
extern SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs;
static struct uart_ops cdnc_uart_ops = {
.probe = cdnc_uart_probe,
.init = cdnc_uart_init,
.term = cdnc_uart_term,
.putc = cdnc_uart_putc,
.rxready = cdnc_uart_rxready,
.getc = cdnc_uart_getc,
};
#define SIGCHG(c, i, s, d) \
if (c) { \
i |= (i & s) ? s : s | d; \
} else { \
i = (i & s) ? (i & ~s) | d : i; \
}
static int
cdnc_uart_probe(struct uart_bas *bas)
{
return (0);
}
static int
cdnc_uart_set_baud(struct uart_bas *bas, int baudrate)
{
uint32_t baudgen, bauddiv;
uint32_t best_bauddiv, best_baudgen, best_error;
uint32_t baud_out, err;
best_bauddiv = 0;
best_baudgen = 0;
best_error = ~0;
/* Try all possible bauddiv values and pick best match. */
for (bauddiv = 4; bauddiv <= 255; bauddiv++) {
baudgen = (bas->rclk + (baudrate * (bauddiv + 1)) / 2) /
(baudrate * (bauddiv + 1));
if (baudgen < 1 || baudgen > 0xffff)
continue;
baud_out = bas->rclk / (baudgen * (bauddiv + 1));
err = baud_out > baudrate ?
baud_out - baudrate : baudrate - baud_out;
if (err < best_error) {
best_error = err;
best_bauddiv = bauddiv;
best_baudgen = baudgen;
}
}
if (best_bauddiv > 0) {
WR4(bas, CDNC_UART_BAUDDIV_REG, best_bauddiv);
WR4(bas, CDNC_UART_BAUDGEN_REG, best_baudgen);
return (0);
} else
return (-1); /* out of range */
}
static int
cdnc_uart_set_params(struct uart_bas *bas, int baudrate, int databits,
int stopbits, int parity)
{
uint32_t mode_reg_value = 0;
switch (databits) {
case 6:
mode_reg_value |= CDNC_UART_MODE_REG_6BIT;
break;
case 7:
mode_reg_value |= CDNC_UART_MODE_REG_7BIT;
break;
case 8:
default:
mode_reg_value |= CDNC_UART_MODE_REG_8BIT;
break;
}
if (stopbits == 2)
mode_reg_value |= CDNC_UART_MODE_REG_STOP2;
switch (parity) {
case UART_PARITY_MARK:
mode_reg_value |= CDNC_UART_MODE_REG_PAR_MARK;
break;
case UART_PARITY_SPACE:
mode_reg_value |= CDNC_UART_MODE_REG_PAR_SPACE;
break;
case UART_PARITY_ODD:
mode_reg_value |= CDNC_UART_MODE_REG_PAR_ODD;
break;
case UART_PARITY_EVEN:
mode_reg_value |= CDNC_UART_MODE_REG_PAR_EVEN;
break;
case UART_PARITY_NONE:
default:
mode_reg_value |= CDNC_UART_MODE_REG_PAR_NONE;
break;
}
WR4(bas, CDNC_UART_MODE_REG, mode_reg_value);
if (baudrate > 0 && cdnc_uart_set_baud(bas, baudrate) < 0)
return (EINVAL);
return(0);
}
static void
cdnc_uart_hw_init(struct uart_bas *bas)
{
/* Reset RX and TX. */
WR4(bas, CDNC_UART_CTRL_REG,
CDNC_UART_CTRL_REG_RXRST | CDNC_UART_CTRL_REG_TXRST);
/* Interrupts all off. */
WR4(bas, CDNC_UART_IDIS_REG, CDNC_UART_INT_ALL);
WR4(bas, CDNC_UART_ISTAT_REG, CDNC_UART_INT_ALL);
/* Clear delta bits. */
WR4(bas, CDNC_UART_MODEM_STAT_REG,
CDNC_UART_MODEM_STAT_REG_DDCD | CDNC_UART_MODEM_STAT_REG_TERI |
CDNC_UART_MODEM_STAT_REG_DDSR | CDNC_UART_MODEM_STAT_REG_DCTS);
/* RX FIFO water level, stale timeout */
WR4(bas, CDNC_UART_RX_WATER_REG, UART_FIFO_SIZE/2);
WR4(bas, CDNC_UART_RX_TIMEO_REG, 10);
/* TX FIFO water level (not used.) */
WR4(bas, CDNC_UART_TX_WATER_REG, UART_FIFO_SIZE/2);
/* Bring RX and TX online. */
WR4(bas, CDNC_UART_CTRL_REG,
CDNC_UART_CTRL_REG_RX_EN | CDNC_UART_CTRL_REG_TX_EN |
CDNC_UART_CTRL_REG_TORST | CDNC_UART_CTRL_REG_STOPBRK);
/* Set DTR and RTS. */
WR4(bas, CDNC_UART_MODEM_CTRL_REG, CDNC_UART_MODEM_CTRL_REG_DTR |
CDNC_UART_MODEM_CTRL_REG_RTS);
}
/*
* Initialize this device for use as a console.
*/
static void
cdnc_uart_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
/* Initialize hardware. */
cdnc_uart_hw_init(bas);
/* Set baudrate, parameters. */
(void)cdnc_uart_set_params(bas, baudrate, databits, stopbits, parity);
}
/*
* Free resources now that we're no longer the console. This appears to
* be never called, and I'm unsure quite what to do if I am called.
*/
static void
cdnc_uart_term(struct uart_bas *bas)
{
/* XXX */
}
/*
* Put a character of console output (so we do it here polling rather than
* interrutp driven).
*/
static void
cdnc_uart_putc(struct uart_bas *bas, int c)
{
/* Wait for room. */
while ((RD4(bas,CDNC_UART_CHAN_STAT_REG) &
CDNC_UART_CHAN_STAT_REG_TXFULL) != 0)
;
WR4(bas, CDNC_UART_FIFO, c);
while ((RD4(bas,CDNC_UART_CHAN_STAT_REG) &
CDNC_UART_CHAN_STAT_REG_TXEMPTY) == 0)
;
}
/*
* Check for a character available.
*/
static int
cdnc_uart_rxready(struct uart_bas *bas)
{
return ((RD4(bas, CDNC_UART_CHAN_STAT_REG) &
CDNC_UART_CHAN_STAT_REG_RXEMPTY) == 0);
}
/*
* Block waiting for a character.
*/
static int
cdnc_uart_getc(struct uart_bas *bas, struct mtx *mtx)
{
int c;
uart_lock(mtx);
while ((RD4(bas, CDNC_UART_CHAN_STAT_REG) &
CDNC_UART_CHAN_STAT_REG_RXEMPTY) != 0) {
uart_unlock(mtx);
DELAY(4);
uart_lock(mtx);
}
2017-04-21 10:43:26 +00:00
c = RD4(bas, CDNC_UART_FIFO);
2017-04-21 10:43:26 +00:00
uart_unlock(mtx);
c &= 0xff;
return (c);
}
/*****************************************************************************/
/*
* High-level UART interface.
*/
static int cdnc_uart_bus_probe(struct uart_softc *sc);
static int cdnc_uart_bus_attach(struct uart_softc *sc);
static int cdnc_uart_bus_flush(struct uart_softc *, int);
static int cdnc_uart_bus_getsig(struct uart_softc *);
static int cdnc_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
static int cdnc_uart_bus_ipend(struct uart_softc *);
static int cdnc_uart_bus_param(struct uart_softc *, int, int, int, int);
static int cdnc_uart_bus_receive(struct uart_softc *);
static int cdnc_uart_bus_setsig(struct uart_softc *, int);
static int cdnc_uart_bus_transmit(struct uart_softc *);
static void cdnc_uart_bus_grab(struct uart_softc *);
static void cdnc_uart_bus_ungrab(struct uart_softc *);
static kobj_method_t cdnc_uart_bus_methods[] = {
KOBJMETHOD(uart_probe, cdnc_uart_bus_probe),
KOBJMETHOD(uart_attach, cdnc_uart_bus_attach),
KOBJMETHOD(uart_flush, cdnc_uart_bus_flush),
KOBJMETHOD(uart_getsig, cdnc_uart_bus_getsig),
KOBJMETHOD(uart_ioctl, cdnc_uart_bus_ioctl),
KOBJMETHOD(uart_ipend, cdnc_uart_bus_ipend),
KOBJMETHOD(uart_param, cdnc_uart_bus_param),
KOBJMETHOD(uart_receive, cdnc_uart_bus_receive),
KOBJMETHOD(uart_setsig, cdnc_uart_bus_setsig),
KOBJMETHOD(uart_transmit, cdnc_uart_bus_transmit),
KOBJMETHOD(uart_grab, cdnc_uart_bus_grab),
KOBJMETHOD(uart_ungrab, cdnc_uart_bus_ungrab),
2017-04-21 10:43:26 +00:00
KOBJMETHOD_END
};
int
cdnc_uart_bus_probe(struct uart_softc *sc)
{
sc->sc_txfifosz = UART_FIFO_SIZE;
sc->sc_rxfifosz = UART_FIFO_SIZE;
sc->sc_hwiflow = 0;
sc->sc_hwoflow = 0;
device_set_desc(sc->sc_dev, "Cadence UART");
return (0);
}
static int
cdnc_uart_bus_attach(struct uart_softc *sc)
{
struct uart_bas *bas = &sc->sc_bas;
struct uart_devinfo *di;
if (sc->sc_sysdev != NULL) {
di = sc->sc_sysdev;
(void)cdnc_uart_set_params(bas, di->baudrate, di->databits,
di->stopbits, di->parity);
} else
cdnc_uart_hw_init(bas);
(void)cdnc_uart_bus_getsig(sc);
/* Enable interrupts. */
WR4(bas, CDNC_UART_IEN_REG,
CDNC_UART_INT_RXTRIG | CDNC_UART_INT_RXTMOUT |
CDNC_UART_INT_TXOVR | CDNC_UART_INT_RXOVR |
CDNC_UART_INT_DMSI);
return (0);
}
static int
cdnc_uart_bus_transmit(struct uart_softc *sc)
{
int i;
struct uart_bas *bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
/* Clear sticky TXEMPTY status bit. */
WR4(bas, CDNC_UART_ISTAT_REG, CDNC_UART_INT_TXEMPTY);
for (i = 0; i < sc->sc_txdatasz; i++)
WR4(bas, CDNC_UART_FIFO, sc->sc_txbuf[i]);
/* Enable TX empty interrupt. */
WR4(bas, CDNC_UART_IEN_REG, CDNC_UART_INT_TXEMPTY);
sc->sc_txbusy = 1;
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
cdnc_uart_bus_setsig(struct uart_softc *sc, int sig)
{
struct uart_bas *bas = &sc->sc_bas;
uint32_t new, old, modem_ctrl;
do {
old = sc->sc_hwsig;
new = old;
if (sig & SER_DDTR) {
SIGCHG(sig & SER_DTR, new, SER_DTR, SER_DDTR);
}
if (sig & SER_DRTS) {
SIGCHG(sig & SER_RTS, new, SER_RTS, SER_DRTS);
}
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
uart_lock(sc->sc_hwmtx);
modem_ctrl = RD4(bas, CDNC_UART_MODEM_CTRL_REG) &
~(CDNC_UART_MODEM_CTRL_REG_DTR | CDNC_UART_MODEM_CTRL_REG_RTS);
if ((new & SER_DTR) != 0)
modem_ctrl |= CDNC_UART_MODEM_CTRL_REG_DTR;
if ((new & SER_RTS) != 0)
modem_ctrl |= CDNC_UART_MODEM_CTRL_REG_RTS;
WR4(bas, CDNC_UART_MODEM_CTRL_REG, modem_ctrl);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
cdnc_uart_bus_receive(struct uart_softc *sc)
{
struct uart_bas *bas = &sc->sc_bas;
uint32_t status;
int c, c_status = 0;
uart_lock(sc->sc_hwmtx);
/* Check for parity or framing errors and clear the status bits. */
status = RD4(bas, CDNC_UART_ISTAT_REG);
if ((status & (CDNC_UART_INT_FRAMING | CDNC_UART_INT_PARITY)) != 0) {
WR4(bas, CDNC_UART_ISTAT_REG,
status & (CDNC_UART_INT_FRAMING | CDNC_UART_INT_PARITY));
if ((status & CDNC_UART_INT_PARITY) != 0)
c_status |= UART_STAT_PARERR;
if ((status & CDNC_UART_INT_FRAMING) != 0)
c_status |= UART_STAT_FRAMERR;
}
while ((RD4(bas, CDNC_UART_CHAN_STAT_REG) &
CDNC_UART_CHAN_STAT_REG_RXEMPTY) == 0) {
c = RD4(bas, CDNC_UART_FIFO) & 0xff;
#ifdef KDB
/* Detect break and drop into debugger. */
if (c == 0 && (c_status & UART_STAT_FRAMERR) != 0 &&
sc->sc_sysdev != NULL &&
sc->sc_sysdev->type == UART_DEV_CONSOLE) {
kdb_break();
WR4(bas, CDNC_UART_ISTAT_REG, CDNC_UART_INT_FRAMING);
}
#endif
uart_rx_put(sc, c | c_status);
}
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
cdnc_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
int stopbits, int parity)
{
return (cdnc_uart_set_params(&sc->sc_bas, baudrate,
databits, stopbits, parity));
}
static int
cdnc_uart_bus_ipend(struct uart_softc *sc)
{
int ipend = 0;
struct uart_bas *bas = &sc->sc_bas;
uint32_t istatus;
uart_lock(sc->sc_hwmtx);
istatus = RD4(bas, CDNC_UART_ISTAT_REG);
/* Clear interrupt bits. */
WR4(bas, CDNC_UART_ISTAT_REG, istatus &
(CDNC_UART_INT_RXTRIG | CDNC_UART_INT_RXTMOUT |
CDNC_UART_INT_TXOVR | CDNC_UART_INT_RXOVR |
CDNC_UART_INT_TXEMPTY | CDNC_UART_INT_DMSI));
/* Receive data. */
if ((istatus & (CDNC_UART_INT_RXTRIG | CDNC_UART_INT_RXTMOUT)) != 0)
ipend |= SER_INT_RXREADY;
/* Transmit fifo empty. */
if (sc->sc_txbusy && (istatus & CDNC_UART_INT_TXEMPTY) != 0) {
/* disable txempty interrupt. */
WR4(bas, CDNC_UART_IDIS_REG, CDNC_UART_INT_TXEMPTY);
ipend |= SER_INT_TXIDLE;
}
/* TX Overflow. */
if ((istatus & CDNC_UART_INT_TXOVR) != 0)
ipend |= SER_INT_OVERRUN;
/* RX Overflow. */
if ((istatus & CDNC_UART_INT_RXOVR) != 0)
ipend |= SER_INT_OVERRUN;
/* Modem signal change. */
if ((istatus & CDNC_UART_INT_DMSI) != 0) {
WR4(bas, CDNC_UART_MODEM_STAT_REG,
CDNC_UART_MODEM_STAT_REG_DDCD |
CDNC_UART_MODEM_STAT_REG_TERI |
CDNC_UART_MODEM_STAT_REG_DDSR |
CDNC_UART_MODEM_STAT_REG_DCTS);
ipend |= SER_INT_SIGCHG;
}
uart_unlock(sc->sc_hwmtx);
return (ipend);
}
static int
cdnc_uart_bus_flush(struct uart_softc *sc, int what)
{
return (0);
}
static int
cdnc_uart_bus_getsig(struct uart_softc *sc)
{
struct uart_bas *bas = &sc->sc_bas;
uint32_t new, old, sig;
uint8_t modem_status;
do {
old = sc->sc_hwsig;
sig = old;
uart_lock(sc->sc_hwmtx);
modem_status = RD4(bas, CDNC_UART_MODEM_STAT_REG);
uart_unlock(sc->sc_hwmtx);
SIGCHG(modem_status & CDNC_UART_MODEM_STAT_REG_DSR,
sig, SER_DSR, SER_DDSR);
SIGCHG(modem_status & CDNC_UART_MODEM_STAT_REG_CTS,
sig, SER_CTS, SER_DCTS);
SIGCHG(modem_status & CDNC_UART_MODEM_STAT_REG_DCD,
sig, SER_DCD, SER_DDCD);
SIGCHG(modem_status & CDNC_UART_MODEM_STAT_REG_RI,
sig, SER_RI, SER_DRI);
new = sig & ~SER_MASK_DELTA;
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
return (sig);
}
static int
cdnc_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
struct uart_bas *bas = &sc->sc_bas;
uint32_t uart_ctrl, modem_ctrl;
int error = 0;
uart_lock(sc->sc_hwmtx);
switch (request) {
case UART_IOCTL_BREAK:
uart_ctrl = RD4(bas, CDNC_UART_CTRL_REG);
if (data) {
uart_ctrl |= CDNC_UART_CTRL_REG_STARTBRK;
uart_ctrl &= ~CDNC_UART_CTRL_REG_STOPBRK;
} else {
uart_ctrl |= CDNC_UART_CTRL_REG_STOPBRK;
uart_ctrl &= ~CDNC_UART_CTRL_REG_STARTBRK;
}
WR4(bas, CDNC_UART_CTRL_REG, uart_ctrl);
break;
case UART_IOCTL_IFLOW:
modem_ctrl = RD4(bas, CDNC_UART_MODEM_CTRL_REG);
if (data)
modem_ctrl |= CDNC_UART_MODEM_CTRL_REG_RTS;
else
modem_ctrl &= ~CDNC_UART_MODEM_CTRL_REG_RTS;
WR4(bas, CDNC_UART_MODEM_CTRL_REG, modem_ctrl);
break;
default:
error = EINVAL;
break;
}
uart_unlock(sc->sc_hwmtx);
return (error);
}
static void
cdnc_uart_bus_grab(struct uart_softc *sc)
{
/* Enable interrupts. */
WR4(&sc->sc_bas, CDNC_UART_IEN_REG,
CDNC_UART_INT_TXOVR | CDNC_UART_INT_RXOVR |
CDNC_UART_INT_DMSI);
}
static void
cdnc_uart_bus_ungrab(struct uart_softc *sc)
{
/* Enable interrupts. */
WR4(&sc->sc_bas, CDNC_UART_IEN_REG,
CDNC_UART_INT_RXTRIG | CDNC_UART_INT_RXTMOUT |
CDNC_UART_INT_TXOVR | CDNC_UART_INT_RXOVR |
CDNC_UART_INT_DMSI);
}
static struct uart_class uart_cdnc_class = {
"cdnc_uart",
cdnc_uart_bus_methods,
sizeof(struct uart_softc),
.uc_ops = &cdnc_uart_ops,
.uc_range = 8
};
static struct ofw_compat_data compat_data[] = {
{"cadence,uart", (uintptr_t)&uart_cdnc_class},
{"cdns,uart-r1p12", (uintptr_t)&uart_cdnc_class},
{"xlnx,xuartps", (uintptr_t)&uart_cdnc_class},
2017-04-21 10:43:26 +00:00
{NULL, (uintptr_t)NULL},
};
UART_FDT_CLASS_AND_DEVICE(compat_data);