f-stack/dpdk/lib/librte_ring/rte_ring_elem.h

1092 lines
34 KiB
C
Raw Normal View History

2021-02-05 08:48:47 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2019 Arm Limited
* Copyright (c) 2010-2017 Intel Corporation
* Copyright (c) 2007-2009 Kip Macy kmacy@freebsd.org
* All rights reserved.
* Derived from FreeBSD's bufring.h
* Used as BSD-3 Licensed with permission from Kip Macy.
*/
#ifndef _RTE_RING_ELEM_H_
#define _RTE_RING_ELEM_H_
/**
* @file
* RTE Ring with user defined element size
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <rte_ring_core.h>
/**
* Calculate the memory size needed for a ring with given element size
*
* This function returns the number of bytes needed for a ring, given
* the number of elements in it and the size of the element. This value
* is the sum of the size of the structure rte_ring and the size of the
* memory needed for storing the elements. The value is aligned to a cache
* line size.
*
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* @param count
* The number of elements in the ring (must be a power of 2).
* @return
* - The memory size needed for the ring on success.
* - -EINVAL - esize is not a multiple of 4 or count provided is not a
* power of 2.
*/
ssize_t rte_ring_get_memsize_elem(unsigned int esize, unsigned int count);
/**
* Create a new ring named *name* that stores elements with given size.
*
* This function uses ``memzone_reserve()`` to allocate memory. Then it
* calls rte_ring_init() to initialize an empty ring.
*
* The new ring size is set to *count*, which must be a power of
* two. Water marking is disabled by default. The real usable ring size
* is *count-1* instead of *count* to differentiate a free ring from an
* empty ring.
*
* The ring is added in RTE_TAILQ_RING list.
*
* @param name
* The name of the ring.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* @param count
* The number of elements in the ring (must be a power of 2).
* @param socket_id
* The *socket_id* argument is the socket identifier in case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* An OR of the following:
* - One of mutually exclusive flags that define producer behavior:
* - RING_F_SP_ENQ: If this flag is set, the default behavior when
* using ``rte_ring_enqueue()`` or ``rte_ring_enqueue_bulk()``
* is "single-producer".
* - RING_F_MP_RTS_ENQ: If this flag is set, the default behavior when
* using ``rte_ring_enqueue()`` or ``rte_ring_enqueue_bulk()``
* is "multi-producer RTS mode".
* - RING_F_MP_HTS_ENQ: If this flag is set, the default behavior when
* using ``rte_ring_enqueue()`` or ``rte_ring_enqueue_bulk()``
* is "multi-producer HTS mode".
* If none of these flags is set, then default "multi-producer"
* behavior is selected.
* - One of mutually exclusive flags that define consumer behavior:
* - RING_F_SC_DEQ: If this flag is set, the default behavior when
* using ``rte_ring_dequeue()`` or ``rte_ring_dequeue_bulk()``
* is "single-consumer". Otherwise, it is "multi-consumers".
* - RING_F_MC_RTS_DEQ: If this flag is set, the default behavior when
* using ``rte_ring_dequeue()`` or ``rte_ring_dequeue_bulk()``
* is "multi-consumer RTS mode".
* - RING_F_MC_HTS_DEQ: If this flag is set, the default behavior when
* using ``rte_ring_dequeue()`` or ``rte_ring_dequeue_bulk()``
* is "multi-consumer HTS mode".
* If none of these flags is set, then default "multi-consumer"
* behavior is selected.
* @return
* On success, the pointer to the new allocated ring. NULL on error with
* rte_errno set appropriately. Possible errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - esize is not a multiple of 4 or count provided is not a
* power of 2.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_ring *rte_ring_create_elem(const char *name, unsigned int esize,
unsigned int count, int socket_id, unsigned int flags);
static __rte_always_inline void
__rte_ring_enqueue_elems_32(struct rte_ring *r, const uint32_t size,
uint32_t idx, const void *obj_table, uint32_t n)
{
unsigned int i;
uint32_t *ring = (uint32_t *)&r[1];
const uint32_t *obj = (const uint32_t *)obj_table;
2022-09-02 04:40:05 +00:00
if (likely(idx + n <= size)) {
2021-02-05 08:48:47 +00:00
for (i = 0; i < (n & ~0x7); i += 8, idx += 8) {
ring[idx] = obj[i];
ring[idx + 1] = obj[i + 1];
ring[idx + 2] = obj[i + 2];
ring[idx + 3] = obj[i + 3];
ring[idx + 4] = obj[i + 4];
ring[idx + 5] = obj[i + 5];
ring[idx + 6] = obj[i + 6];
ring[idx + 7] = obj[i + 7];
}
switch (n & 0x7) {
case 7:
ring[idx++] = obj[i++]; /* fallthrough */
case 6:
ring[idx++] = obj[i++]; /* fallthrough */
case 5:
ring[idx++] = obj[i++]; /* fallthrough */
case 4:
ring[idx++] = obj[i++]; /* fallthrough */
case 3:
ring[idx++] = obj[i++]; /* fallthrough */
case 2:
ring[idx++] = obj[i++]; /* fallthrough */
case 1:
ring[idx++] = obj[i++]; /* fallthrough */
}
} else {
for (i = 0; idx < size; i++, idx++)
ring[idx] = obj[i];
/* Start at the beginning */
for (idx = 0; i < n; i++, idx++)
ring[idx] = obj[i];
}
}
static __rte_always_inline void
__rte_ring_enqueue_elems_64(struct rte_ring *r, uint32_t prod_head,
const void *obj_table, uint32_t n)
{
unsigned int i;
const uint32_t size = r->size;
uint32_t idx = prod_head & r->mask;
uint64_t *ring = (uint64_t *)&r[1];
const unaligned_uint64_t *obj = (const unaligned_uint64_t *)obj_table;
2022-09-02 04:40:05 +00:00
if (likely(idx + n <= size)) {
2021-02-05 08:48:47 +00:00
for (i = 0; i < (n & ~0x3); i += 4, idx += 4) {
ring[idx] = obj[i];
ring[idx + 1] = obj[i + 1];
ring[idx + 2] = obj[i + 2];
ring[idx + 3] = obj[i + 3];
}
switch (n & 0x3) {
case 3:
ring[idx++] = obj[i++]; /* fallthrough */
case 2:
ring[idx++] = obj[i++]; /* fallthrough */
case 1:
ring[idx++] = obj[i++];
}
} else {
for (i = 0; idx < size; i++, idx++)
ring[idx] = obj[i];
/* Start at the beginning */
for (idx = 0; i < n; i++, idx++)
ring[idx] = obj[i];
}
}
static __rte_always_inline void
__rte_ring_enqueue_elems_128(struct rte_ring *r, uint32_t prod_head,
const void *obj_table, uint32_t n)
{
unsigned int i;
const uint32_t size = r->size;
uint32_t idx = prod_head & r->mask;
rte_int128_t *ring = (rte_int128_t *)&r[1];
const rte_int128_t *obj = (const rte_int128_t *)obj_table;
2022-09-02 04:40:05 +00:00
if (likely(idx + n <= size)) {
2021-02-05 08:48:47 +00:00
for (i = 0; i < (n & ~0x1); i += 2, idx += 2)
memcpy((void *)(ring + idx),
(const void *)(obj + i), 32);
switch (n & 0x1) {
case 1:
memcpy((void *)(ring + idx),
(const void *)(obj + i), 16);
}
} else {
for (i = 0; idx < size; i++, idx++)
memcpy((void *)(ring + idx),
(const void *)(obj + i), 16);
/* Start at the beginning */
for (idx = 0; i < n; i++, idx++)
memcpy((void *)(ring + idx),
(const void *)(obj + i), 16);
}
}
/* the actual enqueue of elements on the ring.
* Placed here since identical code needed in both
* single and multi producer enqueue functions.
*/
static __rte_always_inline void
__rte_ring_enqueue_elems(struct rte_ring *r, uint32_t prod_head,
const void *obj_table, uint32_t esize, uint32_t num)
{
/* 8B and 16B copies implemented individually to retain
* the current performance.
*/
if (esize == 8)
__rte_ring_enqueue_elems_64(r, prod_head, obj_table, num);
else if (esize == 16)
__rte_ring_enqueue_elems_128(r, prod_head, obj_table, num);
else {
uint32_t idx, scale, nr_idx, nr_num, nr_size;
/* Normalize to uint32_t */
scale = esize / sizeof(uint32_t);
nr_num = num * scale;
idx = prod_head & r->mask;
nr_idx = idx * scale;
nr_size = r->size * scale;
__rte_ring_enqueue_elems_32(r, nr_size, nr_idx,
obj_table, nr_num);
}
}
static __rte_always_inline void
__rte_ring_dequeue_elems_32(struct rte_ring *r, const uint32_t size,
uint32_t idx, void *obj_table, uint32_t n)
{
unsigned int i;
uint32_t *ring = (uint32_t *)&r[1];
uint32_t *obj = (uint32_t *)obj_table;
2022-09-02 04:40:05 +00:00
if (likely(idx + n <= size)) {
2021-02-05 08:48:47 +00:00
for (i = 0; i < (n & ~0x7); i += 8, idx += 8) {
obj[i] = ring[idx];
obj[i + 1] = ring[idx + 1];
obj[i + 2] = ring[idx + 2];
obj[i + 3] = ring[idx + 3];
obj[i + 4] = ring[idx + 4];
obj[i + 5] = ring[idx + 5];
obj[i + 6] = ring[idx + 6];
obj[i + 7] = ring[idx + 7];
}
switch (n & 0x7) {
case 7:
obj[i++] = ring[idx++]; /* fallthrough */
case 6:
obj[i++] = ring[idx++]; /* fallthrough */
case 5:
obj[i++] = ring[idx++]; /* fallthrough */
case 4:
obj[i++] = ring[idx++]; /* fallthrough */
case 3:
obj[i++] = ring[idx++]; /* fallthrough */
case 2:
obj[i++] = ring[idx++]; /* fallthrough */
case 1:
obj[i++] = ring[idx++]; /* fallthrough */
}
} else {
for (i = 0; idx < size; i++, idx++)
obj[i] = ring[idx];
/* Start at the beginning */
for (idx = 0; i < n; i++, idx++)
obj[i] = ring[idx];
}
}
static __rte_always_inline void
__rte_ring_dequeue_elems_64(struct rte_ring *r, uint32_t prod_head,
void *obj_table, uint32_t n)
{
unsigned int i;
const uint32_t size = r->size;
uint32_t idx = prod_head & r->mask;
uint64_t *ring = (uint64_t *)&r[1];
unaligned_uint64_t *obj = (unaligned_uint64_t *)obj_table;
2022-09-02 04:40:05 +00:00
if (likely(idx + n <= size)) {
2021-02-05 08:48:47 +00:00
for (i = 0; i < (n & ~0x3); i += 4, idx += 4) {
obj[i] = ring[idx];
obj[i + 1] = ring[idx + 1];
obj[i + 2] = ring[idx + 2];
obj[i + 3] = ring[idx + 3];
}
switch (n & 0x3) {
case 3:
obj[i++] = ring[idx++]; /* fallthrough */
case 2:
obj[i++] = ring[idx++]; /* fallthrough */
case 1:
obj[i++] = ring[idx++]; /* fallthrough */
}
} else {
for (i = 0; idx < size; i++, idx++)
obj[i] = ring[idx];
/* Start at the beginning */
for (idx = 0; i < n; i++, idx++)
obj[i] = ring[idx];
}
}
static __rte_always_inline void
__rte_ring_dequeue_elems_128(struct rte_ring *r, uint32_t prod_head,
void *obj_table, uint32_t n)
{
unsigned int i;
const uint32_t size = r->size;
uint32_t idx = prod_head & r->mask;
rte_int128_t *ring = (rte_int128_t *)&r[1];
rte_int128_t *obj = (rte_int128_t *)obj_table;
2022-09-02 04:40:05 +00:00
if (likely(idx + n <= size)) {
2021-02-05 08:48:47 +00:00
for (i = 0; i < (n & ~0x1); i += 2, idx += 2)
memcpy((void *)(obj + i), (void *)(ring + idx), 32);
switch (n & 0x1) {
case 1:
memcpy((void *)(obj + i), (void *)(ring + idx), 16);
}
} else {
for (i = 0; idx < size; i++, idx++)
memcpy((void *)(obj + i), (void *)(ring + idx), 16);
/* Start at the beginning */
for (idx = 0; i < n; i++, idx++)
memcpy((void *)(obj + i), (void *)(ring + idx), 16);
}
}
/* the actual dequeue of elements from the ring.
* Placed here since identical code needed in both
* single and multi producer enqueue functions.
*/
static __rte_always_inline void
__rte_ring_dequeue_elems(struct rte_ring *r, uint32_t cons_head,
void *obj_table, uint32_t esize, uint32_t num)
{
/* 8B and 16B copies implemented individually to retain
* the current performance.
*/
if (esize == 8)
__rte_ring_dequeue_elems_64(r, cons_head, obj_table, num);
else if (esize == 16)
__rte_ring_dequeue_elems_128(r, cons_head, obj_table, num);
else {
uint32_t idx, scale, nr_idx, nr_num, nr_size;
/* Normalize to uint32_t */
scale = esize / sizeof(uint32_t);
nr_num = num * scale;
idx = cons_head & r->mask;
nr_idx = idx * scale;
nr_size = r->size * scale;
__rte_ring_dequeue_elems_32(r, nr_size, nr_idx,
obj_table, nr_num);
}
}
/* Between load and load. there might be cpu reorder in weak model
* (powerpc/arm).
* There are 2 choices for the users
* 1.use rmb() memory barrier
* 2.use one-direction load_acquire/store_release barrier
* It depends on performance test results.
* By default, move common functions to rte_ring_generic.h
*/
#ifdef RTE_USE_C11_MEM_MODEL
#include "rte_ring_c11_mem.h"
#else
#include "rte_ring_generic.h"
#endif
/**
* @internal Enqueue several objects on the ring
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to add in the ring from the obj_table.
* @param behavior
* RTE_RING_QUEUE_FIXED: Enqueue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Enqueue as many items as possible from ring
* @param is_sp
* Indicates whether to use single producer or multi-producer head update
* @param free_space
* returns the amount of space after the enqueue operation has finished
* @return
* Actual number of objects enqueued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static __rte_always_inline unsigned int
__rte_ring_do_enqueue_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n,
enum rte_ring_queue_behavior behavior, unsigned int is_sp,
unsigned int *free_space)
{
uint32_t prod_head, prod_next;
uint32_t free_entries;
n = __rte_ring_move_prod_head(r, is_sp, n, behavior,
&prod_head, &prod_next, &free_entries);
if (n == 0)
goto end;
__rte_ring_enqueue_elems(r, prod_head, obj_table, esize, n);
update_tail(&r->prod, prod_head, prod_next, is_sp, 1);
end:
if (free_space != NULL)
*free_space = free_entries - n;
return n;
}
/**
* @internal Dequeue several objects from the ring
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to pull from the ring.
* @param behavior
* RTE_RING_QUEUE_FIXED: Dequeue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Dequeue as many items as possible from ring
* @param is_sc
* Indicates whether to use single consumer or multi-consumer head update
* @param available
* returns the number of remaining ring entries after the dequeue has finished
* @return
* - Actual number of objects dequeued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static __rte_always_inline unsigned int
__rte_ring_do_dequeue_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n,
enum rte_ring_queue_behavior behavior, unsigned int is_sc,
unsigned int *available)
{
uint32_t cons_head, cons_next;
uint32_t entries;
n = __rte_ring_move_cons_head(r, (int)is_sc, n, behavior,
&cons_head, &cons_next, &entries);
if (n == 0)
goto end;
__rte_ring_dequeue_elems(r, cons_head, obj_table, esize, n);
update_tail(&r->cons, cons_head, cons_next, is_sc, 0);
end:
if (available != NULL)
*available = entries - n;
return n;
}
/**
* Enqueue several objects on the ring (multi-producers safe).
*
* This function uses a "compare and set" instruction to move the
* producer index atomically.
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to add in the ring from the obj_table.
* @param free_space
* if non-NULL, returns the amount of space in the ring after the
* enqueue operation has finished.
* @return
* The number of objects enqueued, either 0 or n
*/
static __rte_always_inline unsigned int
rte_ring_mp_enqueue_bulk_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
return __rte_ring_do_enqueue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_FIXED, RTE_RING_SYNC_MT, free_space);
}
/**
* Enqueue several objects on a ring
*
* @warning This API is NOT multi-producers safe
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to add in the ring from the obj_table.
* @param free_space
* if non-NULL, returns the amount of space in the ring after the
* enqueue operation has finished.
* @return
* The number of objects enqueued, either 0 or n
*/
static __rte_always_inline unsigned int
rte_ring_sp_enqueue_bulk_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
return __rte_ring_do_enqueue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_FIXED, RTE_RING_SYNC_ST, free_space);
}
#ifdef ALLOW_EXPERIMENTAL_API
#include <rte_ring_hts.h>
#include <rte_ring_rts.h>
#endif
/**
* Enqueue several objects on a ring.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* ring creation time (see flags).
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to add in the ring from the obj_table.
* @param free_space
* if non-NULL, returns the amount of space in the ring after the
* enqueue operation has finished.
* @return
* The number of objects enqueued, either 0 or n
*/
static __rte_always_inline unsigned int
rte_ring_enqueue_bulk_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
switch (r->prod.sync_type) {
case RTE_RING_SYNC_MT:
return rte_ring_mp_enqueue_bulk_elem(r, obj_table, esize, n,
free_space);
case RTE_RING_SYNC_ST:
return rte_ring_sp_enqueue_bulk_elem(r, obj_table, esize, n,
free_space);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mp_rts_enqueue_bulk_elem(r, obj_table, esize, n,
free_space);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mp_hts_enqueue_bulk_elem(r, obj_table, esize, n,
free_space);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
if (free_space != NULL)
*free_space = 0;
return 0;
}
/**
* Enqueue one object on a ring (multi-producers safe).
*
* This function uses a "compare and set" instruction to move the
* producer index atomically.
*
* @param r
* A pointer to the ring structure.
* @param obj
* A pointer to the object to be added.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @return
* - 0: Success; objects enqueued.
* - -ENOBUFS: Not enough room in the ring to enqueue; no object is enqueued.
*/
static __rte_always_inline int
rte_ring_mp_enqueue_elem(struct rte_ring *r, void *obj, unsigned int esize)
{
return rte_ring_mp_enqueue_bulk_elem(r, obj, esize, 1, NULL) ? 0 :
-ENOBUFS;
}
/**
* Enqueue one object on a ring
*
* @warning This API is NOT multi-producers safe
*
* @param r
* A pointer to the ring structure.
* @param obj
* A pointer to the object to be added.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @return
* - 0: Success; objects enqueued.
* - -ENOBUFS: Not enough room in the ring to enqueue; no object is enqueued.
*/
static __rte_always_inline int
rte_ring_sp_enqueue_elem(struct rte_ring *r, void *obj, unsigned int esize)
{
return rte_ring_sp_enqueue_bulk_elem(r, obj, esize, 1, NULL) ? 0 :
-ENOBUFS;
}
/**
* Enqueue one object on a ring.
*
* This function calls the multi-producer or the single-producer
* version, depending on the default behaviour that was specified at
* ring creation time (see flags).
*
* @param r
* A pointer to the ring structure.
* @param obj
* A pointer to the object to be added.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @return
* - 0: Success; objects enqueued.
* - -ENOBUFS: Not enough room in the ring to enqueue; no object is enqueued.
*/
static __rte_always_inline int
rte_ring_enqueue_elem(struct rte_ring *r, void *obj, unsigned int esize)
{
return rte_ring_enqueue_bulk_elem(r, obj, esize, 1, NULL) ? 0 :
-ENOBUFS;
}
/**
* Dequeue several objects from a ring (multi-consumers safe).
*
* This function uses a "compare and set" instruction to move the
* consumer index atomically.
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to dequeue from the ring to the obj_table.
* @param available
* If non-NULL, returns the number of remaining ring entries after the
* dequeue has finished.
* @return
* The number of objects dequeued, either 0 or n
*/
static __rte_always_inline unsigned int
rte_ring_mc_dequeue_bulk_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
return __rte_ring_do_dequeue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_FIXED, RTE_RING_SYNC_MT, available);
}
/**
* Dequeue several objects from a ring (NOT multi-consumers safe).
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to dequeue from the ring to the obj_table,
* must be strictly positive.
* @param available
* If non-NULL, returns the number of remaining ring entries after the
* dequeue has finished.
* @return
* The number of objects dequeued, either 0 or n
*/
static __rte_always_inline unsigned int
rte_ring_sc_dequeue_bulk_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
return __rte_ring_do_dequeue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_FIXED, RTE_RING_SYNC_ST, available);
}
/**
* Dequeue several objects from a ring.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behaviour that was specified at
* ring creation time (see flags).
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to dequeue from the ring to the obj_table.
* @param available
* If non-NULL, returns the number of remaining ring entries after the
* dequeue has finished.
* @return
* The number of objects dequeued, either 0 or n
*/
static __rte_always_inline unsigned int
rte_ring_dequeue_bulk_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
switch (r->cons.sync_type) {
case RTE_RING_SYNC_MT:
return rte_ring_mc_dequeue_bulk_elem(r, obj_table, esize, n,
available);
case RTE_RING_SYNC_ST:
return rte_ring_sc_dequeue_bulk_elem(r, obj_table, esize, n,
available);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mc_rts_dequeue_bulk_elem(r, obj_table, esize,
n, available);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mc_hts_dequeue_bulk_elem(r, obj_table, esize,
n, available);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
if (available != NULL)
*available = 0;
return 0;
}
/**
* Dequeue one object from a ring (multi-consumers safe).
*
* This function uses a "compare and set" instruction to move the
* consumer index atomically.
*
* @param r
* A pointer to the ring structure.
* @param obj_p
* A pointer to the object that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @return
* - 0: Success; objects dequeued.
* - -ENOENT: Not enough entries in the ring to dequeue; no object is
* dequeued.
*/
static __rte_always_inline int
rte_ring_mc_dequeue_elem(struct rte_ring *r, void *obj_p,
unsigned int esize)
{
return rte_ring_mc_dequeue_bulk_elem(r, obj_p, esize, 1, NULL) ? 0 :
-ENOENT;
}
/**
* Dequeue one object from a ring (NOT multi-consumers safe).
*
* @param r
* A pointer to the ring structure.
* @param obj_p
* A pointer to the object that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @return
* - 0: Success; objects dequeued.
* - -ENOENT: Not enough entries in the ring to dequeue, no object is
* dequeued.
*/
static __rte_always_inline int
rte_ring_sc_dequeue_elem(struct rte_ring *r, void *obj_p,
unsigned int esize)
{
return rte_ring_sc_dequeue_bulk_elem(r, obj_p, esize, 1, NULL) ? 0 :
-ENOENT;
}
/**
* Dequeue one object from a ring.
*
* This function calls the multi-consumers or the single-consumer
* version depending on the default behaviour that was specified at
* ring creation time (see flags).
*
* @param r
* A pointer to the ring structure.
* @param obj_p
* A pointer to the object that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @return
* - 0: Success, objects dequeued.
* - -ENOENT: Not enough entries in the ring to dequeue, no object is
* dequeued.
*/
static __rte_always_inline int
rte_ring_dequeue_elem(struct rte_ring *r, void *obj_p, unsigned int esize)
{
return rte_ring_dequeue_bulk_elem(r, obj_p, esize, 1, NULL) ? 0 :
-ENOENT;
}
/**
* Enqueue several objects on the ring (multi-producers safe).
*
* This function uses a "compare and set" instruction to move the
* producer index atomically.
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to add in the ring from the obj_table.
* @param free_space
* if non-NULL, returns the amount of space in the ring after the
* enqueue operation has finished.
* @return
* - n: Actual number of objects enqueued.
*/
static __rte_always_inline unsigned int
rte_ring_mp_enqueue_burst_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
return __rte_ring_do_enqueue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_MT, free_space);
}
/**
* Enqueue several objects on a ring
*
* @warning This API is NOT multi-producers safe
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to add in the ring from the obj_table.
* @param free_space
* if non-NULL, returns the amount of space in the ring after the
* enqueue operation has finished.
* @return
* - n: Actual number of objects enqueued.
*/
static __rte_always_inline unsigned int
rte_ring_sp_enqueue_burst_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
return __rte_ring_do_enqueue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_ST, free_space);
}
/**
* Enqueue several objects on a ring.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* ring creation time (see flags).
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to add in the ring from the obj_table.
* @param free_space
* if non-NULL, returns the amount of space in the ring after the
* enqueue operation has finished.
* @return
* - n: Actual number of objects enqueued.
*/
static __rte_always_inline unsigned int
rte_ring_enqueue_burst_elem(struct rte_ring *r, const void *obj_table,
unsigned int esize, unsigned int n, unsigned int *free_space)
{
switch (r->prod.sync_type) {
case RTE_RING_SYNC_MT:
return rte_ring_mp_enqueue_burst_elem(r, obj_table, esize, n,
free_space);
case RTE_RING_SYNC_ST:
return rte_ring_sp_enqueue_burst_elem(r, obj_table, esize, n,
free_space);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mp_rts_enqueue_burst_elem(r, obj_table, esize,
n, free_space);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mp_hts_enqueue_burst_elem(r, obj_table, esize,
n, free_space);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
if (free_space != NULL)
*free_space = 0;
return 0;
}
/**
* Dequeue several objects from a ring (multi-consumers safe). When the request
* objects are more than the available objects, only dequeue the actual number
* of objects
*
* This function uses a "compare and set" instruction to move the
* consumer index atomically.
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to dequeue from the ring to the obj_table.
* @param available
* If non-NULL, returns the number of remaining ring entries after the
* dequeue has finished.
* @return
* - n: Actual number of objects dequeued, 0 if ring is empty
*/
static __rte_always_inline unsigned int
rte_ring_mc_dequeue_burst_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
return __rte_ring_do_dequeue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_MT, available);
}
/**
* Dequeue several objects from a ring (NOT multi-consumers safe).When the
* request objects are more than the available objects, only dequeue the
* actual number of objects
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to dequeue from the ring to the obj_table.
* @param available
* If non-NULL, returns the number of remaining ring entries after the
* dequeue has finished.
* @return
* - n: Actual number of objects dequeued, 0 if ring is empty
*/
static __rte_always_inline unsigned int
rte_ring_sc_dequeue_burst_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
return __rte_ring_do_dequeue_elem(r, obj_table, esize, n,
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_ST, available);
}
/**
* Dequeue multiple objects from a ring up to a maximum number.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behaviour that was specified at
* ring creation time (see flags).
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of objects that will be filled.
* @param esize
* The size of ring element, in bytes. It must be a multiple of 4.
* This must be the same value used while creating the ring. Otherwise
* the results are undefined.
* @param n
* The number of objects to dequeue from the ring to the obj_table.
* @param available
* If non-NULL, returns the number of remaining ring entries after the
* dequeue has finished.
* @return
* - Number of objects dequeued
*/
static __rte_always_inline unsigned int
rte_ring_dequeue_burst_elem(struct rte_ring *r, void *obj_table,
unsigned int esize, unsigned int n, unsigned int *available)
{
switch (r->cons.sync_type) {
case RTE_RING_SYNC_MT:
return rte_ring_mc_dequeue_burst_elem(r, obj_table, esize, n,
available);
case RTE_RING_SYNC_ST:
return rte_ring_sc_dequeue_burst_elem(r, obj_table, esize, n,
available);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mc_rts_dequeue_burst_elem(r, obj_table, esize,
n, available);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mc_hts_dequeue_burst_elem(r, obj_table, esize,
n, available);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
if (available != NULL)
*available = 0;
return 0;
}
#ifdef ALLOW_EXPERIMENTAL_API
#include <rte_ring_peek.h>
#include <rte_ring_peek_zc.h>
#endif
#include <rte_ring.h>
#ifdef __cplusplus
}
#endif
#endif /* _RTE_RING_ELEM_H_ */