f-stack/dpdk/drivers/net/sfc/sfc_ef100_tx.c

966 lines
26 KiB
C
Raw Normal View History

2021-02-05 08:48:47 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2020 Xilinx, Inc.
* Copyright(c) 2018-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <stdbool.h>
#include <rte_mbuf.h>
#include <rte_io.h>
#include <rte_net.h>
#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef100.h"
#include "sfc_debug.h"
#include "sfc_dp_tx.h"
#include "sfc_tweak.h"
#include "sfc_kvargs.h"
#include "sfc_ef100.h"
#define sfc_ef100_tx_err(_txq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_txq)->dp.dpq, __VA_ARGS__)
#define sfc_ef100_tx_debug(_txq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_txq)->dp.dpq, \
__VA_ARGS__)
/** Maximum length of the send descriptor data */
#define SFC_EF100_TX_SEND_DESC_LEN_MAX \
((1u << ESF_GZ_TX_SEND_LEN_WIDTH) - 1)
/** Maximum length of the segment descriptor data */
#define SFC_EF100_TX_SEG_DESC_LEN_MAX \
((1u << ESF_GZ_TX_SEG_LEN_WIDTH) - 1)
/**
* Maximum number of descriptors/buffers in the Tx ring.
* It should guarantee that corresponding event queue never overfill.
* EF100 native datapath uses event queue of the same size as Tx queue.
* Maximum number of events on datapath can be estimated as number of
* Tx queue entries (one event per Tx buffer in the worst case) plus
* Tx error and flush events.
*/
#define SFC_EF100_TXQ_LIMIT(_ndesc) \
((_ndesc) - 1 /* head must not step on tail */ - \
1 /* Rx error */ - 1 /* flush */)
struct sfc_ef100_tx_sw_desc {
struct rte_mbuf *mbuf;
};
struct sfc_ef100_txq {
unsigned int flags;
#define SFC_EF100_TXQ_STARTED 0x1
#define SFC_EF100_TXQ_NOT_RUNNING 0x2
#define SFC_EF100_TXQ_EXCEPTION 0x4
unsigned int ptr_mask;
unsigned int added;
unsigned int completed;
unsigned int max_fill_level;
unsigned int free_thresh;
struct sfc_ef100_tx_sw_desc *sw_ring;
efx_oword_t *txq_hw_ring;
volatile void *doorbell;
/* Completion/reap */
unsigned int evq_read_ptr;
unsigned int evq_phase_bit_shift;
volatile efx_qword_t *evq_hw_ring;
uint16_t tso_tcp_header_offset_limit;
uint16_t tso_max_nb_header_descs;
uint16_t tso_max_header_len;
uint16_t tso_max_nb_payload_descs;
uint32_t tso_max_payload_len;
uint32_t tso_max_nb_outgoing_frames;
/* Datapath transmit queue anchor */
struct sfc_dp_txq dp;
};
static inline struct sfc_ef100_txq *
sfc_ef100_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
{
return container_of(dp_txq, struct sfc_ef100_txq, dp);
}
static int
sfc_ef100_tx_prepare_pkt_tso(struct sfc_ef100_txq * const txq,
struct rte_mbuf *m)
{
size_t header_len = ((m->ol_flags & PKT_TX_TUNNEL_MASK) ?
m->outer_l2_len + m->outer_l3_len : 0) +
m->l2_len + m->l3_len + m->l4_len;
size_t payload_len = m->pkt_len - header_len;
unsigned long mss_conformant_max_payload_len;
unsigned int nb_payload_descs;
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
switch (m->ol_flags & PKT_TX_TUNNEL_MASK) {
case 0:
/* FALLTHROUGH */
case PKT_TX_TUNNEL_VXLAN:
/* FALLTHROUGH */
case PKT_TX_TUNNEL_GENEVE:
break;
default:
return ENOTSUP;
}
#endif
mss_conformant_max_payload_len =
m->tso_segsz * txq->tso_max_nb_outgoing_frames;
/*
* Don't really want to know exact number of payload segments.
* Just use total number of segments as upper limit. Practically
* maximum number of payload segments is significantly bigger
* than maximum number header segments, so we can neglect header
* segments excluded total number of segments to estimate number
* of payload segments required.
*/
nb_payload_descs = m->nb_segs;
/*
* Carry out multiple independent checks using bitwise OR
* to avoid unnecessary conditional branching.
*/
if (unlikely((header_len > txq->tso_max_header_len) |
(nb_payload_descs > txq->tso_max_nb_payload_descs) |
(payload_len > txq->tso_max_payload_len) |
(payload_len > mss_conformant_max_payload_len) |
(m->pkt_len == header_len)))
return EINVAL;
return 0;
}
static uint16_t
sfc_ef100_tx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
uint16_t i;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *m = tx_pkts[i];
unsigned int max_nb_header_segs = 0;
bool calc_phdr_cksum = false;
int ret;
/*
* Partial checksum offload is used in the case of
* inner TCP/UDP checksum offload. It requires
* pseudo-header checksum which is calculated below,
* but requires contiguous packet headers.
*/
if ((m->ol_flags & PKT_TX_TUNNEL_MASK) &&
(m->ol_flags & PKT_TX_L4_MASK)) {
calc_phdr_cksum = true;
max_nb_header_segs = 1;
} else if (m->ol_flags & PKT_TX_TCP_SEG) {
max_nb_header_segs = txq->tso_max_nb_header_descs;
}
ret = sfc_dp_tx_prepare_pkt(m, max_nb_header_segs, 0,
txq->tso_tcp_header_offset_limit,
txq->max_fill_level, 1, 0);
if (unlikely(ret != 0)) {
rte_errno = ret;
break;
}
if (m->ol_flags & PKT_TX_TCP_SEG) {
ret = sfc_ef100_tx_prepare_pkt_tso(txq, m);
if (unlikely(ret != 0)) {
rte_errno = ret;
break;
}
} else if (m->nb_segs > EFX_MASK32(ESF_GZ_TX_SEND_NUM_SEGS)) {
rte_errno = EINVAL;
break;
}
if (calc_phdr_cksum) {
/*
* Full checksum offload does IPv4 header checksum
* and does not require any assistance.
*/
ret = rte_net_intel_cksum_flags_prepare(m,
m->ol_flags & ~PKT_TX_IP_CKSUM);
if (unlikely(ret != 0)) {
rte_errno = -ret;
break;
}
}
}
return i;
}
static bool
sfc_ef100_tx_get_event(struct sfc_ef100_txq *txq, efx_qword_t *ev)
{
volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;
/*
* Exception flag is set when reap is done.
* It is never done twice per packet burst get, and absence of
* the flag is checked on burst get entry.
*/
SFC_ASSERT((txq->flags & SFC_EF100_TXQ_EXCEPTION) == 0);
*ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];
if (!sfc_ef100_ev_present(ev,
(txq->evq_read_ptr >> txq->evq_phase_bit_shift) & 1))
return false;
if (unlikely(!sfc_ef100_ev_type_is(ev,
ESE_GZ_EF100_EV_TX_COMPLETION))) {
/*
* Do not move read_ptr to keep the event for exception
* handling by the control path.
*/
txq->flags |= SFC_EF100_TXQ_EXCEPTION;
sfc_ef100_tx_err(txq,
"TxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
txq->evq_read_ptr, txq->evq_read_ptr & txq->ptr_mask,
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
return false;
}
sfc_ef100_tx_debug(txq, "TxQ got event %08x:%08x at %u (%#x)",
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
txq->evq_read_ptr,
txq->evq_read_ptr & txq->ptr_mask);
txq->evq_read_ptr++;
return true;
}
static unsigned int
sfc_ef100_tx_process_events(struct sfc_ef100_txq *txq)
{
unsigned int num_descs = 0;
efx_qword_t tx_ev;
while (sfc_ef100_tx_get_event(txq, &tx_ev))
num_descs += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);
return num_descs;
}
static void
sfc_ef100_tx_reap_num_descs(struct sfc_ef100_txq *txq, unsigned int num_descs)
{
if (num_descs > 0) {
unsigned int completed = txq->completed;
unsigned int pending = completed + num_descs;
struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
unsigned int nb = 0;
do {
struct sfc_ef100_tx_sw_desc *txd;
struct rte_mbuf *m;
txd = &txq->sw_ring[completed & txq->ptr_mask];
if (txd->mbuf == NULL)
continue;
m = rte_pktmbuf_prefree_seg(txd->mbuf);
if (m == NULL)
continue;
txd->mbuf = NULL;
if (nb == RTE_DIM(bulk) ||
(nb != 0 && m->pool != bulk[0]->pool)) {
rte_mempool_put_bulk(bulk[0]->pool,
(void *)bulk, nb);
nb = 0;
}
bulk[nb++] = m;
} while (++completed != pending);
if (nb != 0)
rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
txq->completed = completed;
}
}
static void
sfc_ef100_tx_reap(struct sfc_ef100_txq *txq)
{
sfc_ef100_tx_reap_num_descs(txq, sfc_ef100_tx_process_events(txq));
}
static uint8_t
sfc_ef100_tx_qdesc_cso_inner_l3(uint64_t tx_tunnel)
{
uint8_t inner_l3;
switch (tx_tunnel) {
case PKT_TX_TUNNEL_VXLAN:
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_VXLAN;
break;
case PKT_TX_TUNNEL_GENEVE:
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_GENEVE;
break;
default:
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
break;
}
return inner_l3;
}
static void
sfc_ef100_tx_qdesc_send_create(const struct rte_mbuf *m, efx_oword_t *tx_desc)
{
bool outer_l3;
bool outer_l4;
uint8_t inner_l3;
uint8_t partial_en;
uint16_t part_cksum_w;
uint16_t l4_offset_w;
if ((m->ol_flags & PKT_TX_TUNNEL_MASK) == 0) {
outer_l3 = (m->ol_flags & PKT_TX_IP_CKSUM);
outer_l4 = (m->ol_flags & PKT_TX_L4_MASK);
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
part_cksum_w = 0;
l4_offset_w = 0;
} else {
outer_l3 = (m->ol_flags & PKT_TX_OUTER_IP_CKSUM);
outer_l4 = (m->ol_flags & PKT_TX_OUTER_UDP_CKSUM);
inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(m->ol_flags &
PKT_TX_TUNNEL_MASK);
switch (m->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_TCP;
part_cksum_w = offsetof(struct rte_tcp_hdr, cksum) >> 1;
break;
case PKT_TX_UDP_CKSUM:
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_UDP;
part_cksum_w = offsetof(struct rte_udp_hdr,
dgram_cksum) >> 1;
break;
default:
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
part_cksum_w = 0;
break;
}
l4_offset_w = (m->outer_l2_len + m->outer_l3_len +
m->l2_len + m->l3_len) >> 1;
}
EFX_POPULATE_OWORD_10(*tx_desc,
ESF_GZ_TX_SEND_ADDR, rte_mbuf_data_iova(m),
ESF_GZ_TX_SEND_LEN, rte_pktmbuf_data_len(m),
ESF_GZ_TX_SEND_NUM_SEGS, m->nb_segs,
ESF_GZ_TX_SEND_CSO_PARTIAL_START_W, l4_offset_w,
ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W, part_cksum_w,
ESF_GZ_TX_SEND_CSO_PARTIAL_EN, partial_en,
ESF_GZ_TX_SEND_CSO_INNER_L3, inner_l3,
ESF_GZ_TX_SEND_CSO_OUTER_L3, outer_l3,
ESF_GZ_TX_SEND_CSO_OUTER_L4, outer_l4,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEND);
if (m->ol_flags & PKT_TX_VLAN_PKT) {
efx_oword_t tx_desc_extra_fields;
EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
ESF_GZ_TX_SEND_VLAN_INSERT_TCI, m->vlan_tci);
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
}
}
static void
sfc_ef100_tx_qdesc_seg_create(rte_iova_t addr, uint16_t len,
efx_oword_t *tx_desc)
{
EFX_POPULATE_OWORD_3(*tx_desc,
ESF_GZ_TX_SEG_ADDR, addr,
ESF_GZ_TX_SEG_LEN, len,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG);
}
static void
sfc_ef100_tx_qdesc_tso_create(const struct rte_mbuf *m,
uint16_t nb_header_descs,
uint16_t nb_payload_descs,
size_t header_len, size_t payload_len,
size_t outer_iph_off, size_t outer_udph_off,
size_t iph_off, size_t tcph_off,
efx_oword_t *tx_desc)
{
efx_oword_t tx_desc_extra_fields;
int ed_outer_udp_len = (outer_udph_off != 0) ? 1 : 0;
int ed_outer_ip_len = (outer_iph_off != 0) ? 1 : 0;
int ed_outer_ip_id = (outer_iph_off != 0) ?
ESE_GZ_TX_DESC_IP4_ID_INC_MOD16 : 0;
/*
* If no tunnel encapsulation is present, then the ED_INNER
* fields should be used.
*/
int ed_inner_ip_id = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
uint8_t inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(
m->ol_flags & PKT_TX_TUNNEL_MASK);
EFX_POPULATE_OWORD_10(*tx_desc,
ESF_GZ_TX_TSO_MSS, m->tso_segsz,
ESF_GZ_TX_TSO_HDR_NUM_SEGS, nb_header_descs,
ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, nb_payload_descs,
ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, ed_outer_ip_id,
ESF_GZ_TX_TSO_ED_INNER_IP4_ID, ed_inner_ip_id,
ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, ed_outer_ip_len,
ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, ed_outer_udp_len,
ESF_GZ_TX_TSO_HDR_LEN_W, header_len >> 1,
ESF_GZ_TX_TSO_PAYLOAD_LEN, payload_len);
EFX_POPULATE_OWORD_9(tx_desc_extra_fields,
/*
* Outer offsets are required for outer IPv4 ID
* and length edits in the case of tunnel TSO.
*/
ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_iph_off >> 1,
ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_udph_off >> 1,
/*
* Inner offsets are required for inner IPv4 ID
* and IP length edits and partial checksum
* offload in the case of tunnel TSO.
*/
ESF_GZ_TX_TSO_INNER_L3_OFF_W, iph_off >> 1,
ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcph_off >> 1,
ESF_GZ_TX_TSO_CSO_INNER_L4,
inner_l3 != ESE_GZ_TX_DESC_CS_INNER_L3_OFF,
ESF_GZ_TX_TSO_CSO_INNER_L3, inner_l3,
/*
* Use outer full checksum offloads which do
* not require any extra information.
*/
ESF_GZ_TX_TSO_CSO_OUTER_L3, 1,
ESF_GZ_TX_TSO_CSO_OUTER_L4, 1,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO);
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
if (m->ol_flags & PKT_TX_VLAN_PKT) {
EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
ESF_GZ_TX_TSO_VLAN_INSERT_EN, 1,
ESF_GZ_TX_TSO_VLAN_INSERT_TCI, m->vlan_tci);
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
}
}
static inline void
sfc_ef100_tx_qpush(struct sfc_ef100_txq *txq, unsigned int added)
{
efx_dword_t dword;
EFX_POPULATE_DWORD_1(dword, ERF_GZ_TX_RING_PIDX, added & txq->ptr_mask);
/* DMA sync to device is not required */
/*
* rte_write32() has rte_io_wmb() which guarantees that the STORE
* operations (i.e. Rx and event descriptor updates) that precede
* the rte_io_wmb() call are visible to NIC before the STORE
* operations that follow it (i.e. doorbell write).
*/
rte_write32(dword.ed_u32[0], txq->doorbell);
sfc_ef100_tx_debug(txq, "TxQ pushed doorbell at pidx %u (added=%u)",
EFX_DWORD_FIELD(dword, ERF_GZ_TX_RING_PIDX),
added);
}
static unsigned int
sfc_ef100_tx_pkt_descs_max(const struct rte_mbuf *m)
{
unsigned int extra_descs = 0;
/** Maximum length of an mbuf segment data */
#define SFC_MBUF_SEG_LEN_MAX UINT16_MAX
RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);
if (m->ol_flags & PKT_TX_TCP_SEG) {
/* Tx TSO descriptor */
extra_descs++;
/*
* Extra Tx segment descriptor may be required if header
* ends in the middle of segment.
*/
extra_descs++;
} else {
/*
* mbuf segment cannot be bigger than maximum segment length
* and maximum packet length since TSO is not supported yet.
* Make sure that the first segment does not need fragmentation
* (split into many Tx descriptors).
*/
RTE_BUILD_BUG_ON(SFC_EF100_TX_SEND_DESC_LEN_MAX <
RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
SFC_MBUF_SEG_LEN_MAX));
}
/*
* Any segment of scattered packet cannot be bigger than maximum
* segment length. Make sure that subsequent segments do not need
* fragmentation (split into many Tx descriptors).
*/
RTE_BUILD_BUG_ON(SFC_EF100_TX_SEG_DESC_LEN_MAX < SFC_MBUF_SEG_LEN_MAX);
return m->nb_segs + extra_descs;
}
static struct rte_mbuf *
sfc_ef100_xmit_tso_pkt(struct sfc_ef100_txq * const txq,
struct rte_mbuf *m, unsigned int *added)
{
struct rte_mbuf *m_seg = m;
unsigned int nb_hdr_descs;
unsigned int nb_pld_descs;
unsigned int seg_split = 0;
unsigned int tso_desc_id;
unsigned int id;
size_t outer_iph_off;
size_t outer_udph_off;
size_t iph_off;
size_t tcph_off;
size_t header_len;
size_t remaining_hdr_len;
if (m->ol_flags & PKT_TX_TUNNEL_MASK) {
outer_iph_off = m->outer_l2_len;
outer_udph_off = outer_iph_off + m->outer_l3_len;
} else {
outer_iph_off = 0;
outer_udph_off = 0;
}
iph_off = outer_udph_off + m->l2_len;
tcph_off = iph_off + m->l3_len;
header_len = tcph_off + m->l4_len;
/*
* Remember ID of the TX_TSO descriptor to be filled in.
* We can't fill it in right now since we need to calculate
* number of header and payload segments first and don't want
* to traverse it twice here.
*/
tso_desc_id = (*added)++ & txq->ptr_mask;
remaining_hdr_len = header_len;
do {
id = (*added)++ & txq->ptr_mask;
if (rte_pktmbuf_data_len(m_seg) <= remaining_hdr_len) {
/* The segment is fully header segment */
sfc_ef100_tx_qdesc_seg_create(
rte_mbuf_data_iova(m_seg),
rte_pktmbuf_data_len(m_seg),
&txq->txq_hw_ring[id]);
remaining_hdr_len -= rte_pktmbuf_data_len(m_seg);
} else {
/*
* The segment must be split into header and
* payload segments
*/
sfc_ef100_tx_qdesc_seg_create(
rte_mbuf_data_iova(m_seg),
remaining_hdr_len,
&txq->txq_hw_ring[id]);
SFC_ASSERT(txq->sw_ring[id].mbuf == NULL);
id = (*added)++ & txq->ptr_mask;
sfc_ef100_tx_qdesc_seg_create(
rte_mbuf_data_iova(m_seg) + remaining_hdr_len,
rte_pktmbuf_data_len(m_seg) - remaining_hdr_len,
&txq->txq_hw_ring[id]);
remaining_hdr_len = 0;
seg_split = 1;
}
txq->sw_ring[id].mbuf = m_seg;
m_seg = m_seg->next;
} while (remaining_hdr_len > 0);
/*
* If a segment is split into header and payload segments, added
* pointer counts it twice and we should correct it.
*/
nb_hdr_descs = ((id - tso_desc_id) & txq->ptr_mask) - seg_split;
nb_pld_descs = m->nb_segs - nb_hdr_descs + seg_split;
sfc_ef100_tx_qdesc_tso_create(m, nb_hdr_descs, nb_pld_descs, header_len,
rte_pktmbuf_pkt_len(m) - header_len,
outer_iph_off, outer_udph_off,
iph_off, tcph_off,
&txq->txq_hw_ring[tso_desc_id]);
return m_seg;
}
static uint16_t
sfc_ef100_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
unsigned int added;
unsigned int dma_desc_space;
bool reap_done;
struct rte_mbuf **pktp;
struct rte_mbuf **pktp_end;
if (unlikely(txq->flags &
(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
return 0;
added = txq->added;
dma_desc_space = txq->max_fill_level - (added - txq->completed);
reap_done = (dma_desc_space < txq->free_thresh);
if (reap_done) {
sfc_ef100_tx_reap(txq);
dma_desc_space = txq->max_fill_level - (added - txq->completed);
}
for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
pktp != pktp_end;
++pktp) {
struct rte_mbuf *m_seg = *pktp;
unsigned int pkt_start = added;
unsigned int id;
if (likely(pktp + 1 != pktp_end))
rte_mbuf_prefetch_part1(pktp[1]);
if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space) {
if (reap_done)
break;
/* Push already prepared descriptors before polling */
if (added != txq->added) {
sfc_ef100_tx_qpush(txq, added);
txq->added = added;
}
sfc_ef100_tx_reap(txq);
reap_done = true;
dma_desc_space = txq->max_fill_level -
(added - txq->completed);
if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space)
break;
}
if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
m_seg = sfc_ef100_xmit_tso_pkt(txq, m_seg, &added);
} else {
id = added++ & txq->ptr_mask;
sfc_ef100_tx_qdesc_send_create(m_seg,
&txq->txq_hw_ring[id]);
/*
* rte_pktmbuf_free() is commonly used in DPDK for
* recycling packets - the function checks every
* segment's reference counter and returns the
* buffer to its pool whenever possible;
* nevertheless, freeing mbuf segments one by one
* may entail some performance decline;
* from this point, sfc_efx_tx_reap() does the same job
* on its own and frees buffers in bulks (all mbufs
* within a bulk belong to the same pool);
* from this perspective, individual segment pointers
* must be associated with the corresponding SW
* descriptors independently so that only one loop
* is sufficient on reap to inspect all the buffers
*/
txq->sw_ring[id].mbuf = m_seg;
m_seg = m_seg->next;
}
while (m_seg != NULL) {
RTE_BUILD_BUG_ON(SFC_MBUF_SEG_LEN_MAX >
SFC_EF100_TX_SEG_DESC_LEN_MAX);
id = added++ & txq->ptr_mask;
sfc_ef100_tx_qdesc_seg_create(rte_mbuf_data_iova(m_seg),
rte_pktmbuf_data_len(m_seg),
&txq->txq_hw_ring[id]);
txq->sw_ring[id].mbuf = m_seg;
m_seg = m_seg->next;
}
dma_desc_space -= (added - pkt_start);
}
if (likely(added != txq->added)) {
sfc_ef100_tx_qpush(txq, added);
txq->added = added;
}
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
if (!reap_done)
sfc_ef100_tx_reap(txq);
#endif
return pktp - &tx_pkts[0];
}
static sfc_dp_tx_get_dev_info_t sfc_ef100_get_dev_info;
static void
sfc_ef100_get_dev_info(struct rte_eth_dev_info *dev_info)
{
/*
* Number of descriptors just defines maximum number of pushed
* descriptors (fill level).
*/
dev_info->tx_desc_lim.nb_min = 1;
dev_info->tx_desc_lim.nb_align = 1;
}
static sfc_dp_tx_qsize_up_rings_t sfc_ef100_tx_qsize_up_rings;
static int
sfc_ef100_tx_qsize_up_rings(uint16_t nb_tx_desc,
struct sfc_dp_tx_hw_limits *limits,
unsigned int *txq_entries,
unsigned int *evq_entries,
unsigned int *txq_max_fill_level)
{
/*
* rte_ethdev API guarantees that the number meets min, max and
* alignment requirements.
*/
if (nb_tx_desc <= limits->txq_min_entries)
*txq_entries = limits->txq_min_entries;
else
*txq_entries = rte_align32pow2(nb_tx_desc);
*evq_entries = *txq_entries;
*txq_max_fill_level = RTE_MIN(nb_tx_desc,
SFC_EF100_TXQ_LIMIT(*evq_entries));
return 0;
}
static sfc_dp_tx_qcreate_t sfc_ef100_tx_qcreate;
static int
sfc_ef100_tx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_tx_qcreate_info *info,
struct sfc_dp_txq **dp_txqp)
{
struct sfc_ef100_txq *txq;
int rc;
rc = EINVAL;
if (info->txq_entries != info->evq_entries)
goto fail_bad_args;
rc = ENOMEM;
txq = rte_zmalloc_socket("sfc-ef100-txq", sizeof(*txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL)
goto fail_txq_alloc;
sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
txq->sw_ring = rte_calloc_socket("sfc-ef100-txq-sw_ring",
info->txq_entries,
sizeof(*txq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL)
goto fail_sw_ring_alloc;
txq->flags = SFC_EF100_TXQ_NOT_RUNNING;
txq->ptr_mask = info->txq_entries - 1;
txq->max_fill_level = info->max_fill_level;
txq->free_thresh = info->free_thresh;
txq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
txq->txq_hw_ring = info->txq_hw_ring;
txq->doorbell = (volatile uint8_t *)info->mem_bar +
ER_GZ_TX_RING_DOORBELL_OFST +
(info->hw_index << info->vi_window_shift);
txq->evq_hw_ring = info->evq_hw_ring;
txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;
txq->tso_max_nb_header_descs = info->tso_max_nb_header_descs;
txq->tso_max_header_len = info->tso_max_header_len;
txq->tso_max_nb_payload_descs = info->tso_max_nb_payload_descs;
txq->tso_max_payload_len = info->tso_max_payload_len;
txq->tso_max_nb_outgoing_frames = info->tso_max_nb_outgoing_frames;
sfc_ef100_tx_debug(txq, "TxQ doorbell is %p", txq->doorbell);
*dp_txqp = &txq->dp;
return 0;
fail_sw_ring_alloc:
rte_free(txq);
fail_txq_alloc:
fail_bad_args:
return rc;
}
static sfc_dp_tx_qdestroy_t sfc_ef100_tx_qdestroy;
static void
sfc_ef100_tx_qdestroy(struct sfc_dp_txq *dp_txq)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
static sfc_dp_tx_qstart_t sfc_ef100_tx_qstart;
static int
sfc_ef100_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
unsigned int txq_desc_index)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
txq->evq_read_ptr = evq_read_ptr;
txq->added = txq->completed = txq_desc_index;
txq->flags |= SFC_EF100_TXQ_STARTED;
txq->flags &= ~(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION);
return 0;
}
static sfc_dp_tx_qstop_t sfc_ef100_tx_qstop;
static void
sfc_ef100_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
txq->flags |= SFC_EF100_TXQ_NOT_RUNNING;
*evq_read_ptr = txq->evq_read_ptr;
}
static sfc_dp_tx_qtx_ev_t sfc_ef100_tx_qtx_ev;
static bool
sfc_ef100_tx_qtx_ev(struct sfc_dp_txq *dp_txq, unsigned int num_descs)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
SFC_ASSERT(txq->flags & SFC_EF100_TXQ_NOT_RUNNING);
sfc_ef100_tx_reap_num_descs(txq, num_descs);
return false;
}
static sfc_dp_tx_qreap_t sfc_ef100_tx_qreap;
static void
sfc_ef100_tx_qreap(struct sfc_dp_txq *dp_txq)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
unsigned int completed;
for (completed = txq->completed; completed != txq->added; ++completed) {
struct sfc_ef100_tx_sw_desc *txd;
txd = &txq->sw_ring[completed & txq->ptr_mask];
if (txd->mbuf != NULL) {
rte_pktmbuf_free_seg(txd->mbuf);
txd->mbuf = NULL;
}
}
txq->flags &= ~SFC_EF100_TXQ_STARTED;
}
static unsigned int
sfc_ef100_tx_qdesc_npending(struct sfc_ef100_txq *txq)
{
const unsigned int evq_old_read_ptr = txq->evq_read_ptr;
unsigned int npending = 0;
efx_qword_t tx_ev;
if (unlikely(txq->flags &
(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
return 0;
while (sfc_ef100_tx_get_event(txq, &tx_ev))
npending += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);
/*
* The function does not process events, so return event queue read
* pointer to the original position to allow the events that were
* read to be processed later
*/
txq->evq_read_ptr = evq_old_read_ptr;
return npending;
}
static sfc_dp_tx_qdesc_status_t sfc_ef100_tx_qdesc_status;
static int
sfc_ef100_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
unsigned int pushed = txq->added - txq->completed;
if (unlikely(offset > txq->ptr_mask))
return -EINVAL;
if (unlikely(offset >= txq->max_fill_level))
return RTE_ETH_TX_DESC_UNAVAIL;
return (offset >= pushed ||
offset < sfc_ef100_tx_qdesc_npending(txq)) ?
RTE_ETH_TX_DESC_DONE : RTE_ETH_TX_DESC_FULL;
}
struct sfc_dp_tx sfc_ef100_tx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF100,
.type = SFC_DP_TX,
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF100,
},
.features = SFC_DP_TX_FEAT_MULTI_PROCESS,
.dev_offload_capa = 0,
.queue_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_OUTER_UDP_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO,
.get_dev_info = sfc_ef100_get_dev_info,
.qsize_up_rings = sfc_ef100_tx_qsize_up_rings,
.qcreate = sfc_ef100_tx_qcreate,
.qdestroy = sfc_ef100_tx_qdestroy,
.qstart = sfc_ef100_tx_qstart,
.qtx_ev = sfc_ef100_tx_qtx_ev,
.qstop = sfc_ef100_tx_qstop,
.qreap = sfc_ef100_tx_qreap,
.qdesc_status = sfc_ef100_tx_qdesc_status,
.pkt_prepare = sfc_ef100_tx_prepare_pkts,
.pkt_burst = sfc_ef100_xmit_pkts,
};