f-stack/dpdk/drivers/net/ice/ice_rxtx_vec_avx512.c

1144 lines
35 KiB
C
Raw Normal View History

2021-02-05 08:48:47 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include "ice_rxtx_vec_common.h"
2022-09-02 04:40:05 +00:00
#include "ice_rxtx_common_avx.h"
2021-02-05 08:48:47 +00:00
#include <x86intrin.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
#define ICE_DESCS_PER_LOOP_AVX 8
2022-09-02 04:40:05 +00:00
static __rte_always_inline void
2021-02-05 08:48:47 +00:00
ice_rxq_rearm(struct ice_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
rte_lcore_id());
rxdp = rxq->rx_ring + rxq->rxrearm_start;
2022-09-02 04:40:05 +00:00
if (unlikely(!cache))
return ice_rxq_rearm_common(rxq, true);
2021-02-05 08:48:47 +00:00
/* We need to pull 'n' more MBUFs into the software ring */
if (cache->len < ICE_RXQ_REARM_THRESH) {
uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
cache->len);
int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
&cache->objs[cache->len], req);
if (ret == 0) {
cache->len += req;
} else {
if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
_mm_store_si128
((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
ICE_RXQ_REARM_THRESH;
return;
}
}
const __m512i iova_offsets = _mm512_set1_epi64
(offsetof(struct rte_mbuf, buf_iova));
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
/* shuffle the iova into correct slots. Values 4-7 will contain
* zeros, so use 7 for a zero-value.
*/
const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
#else
const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
#endif
/* fill up the rxd in vector, process 8 mbufs in one loop */
for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
const __m512i mbuf_ptrs = _mm512_loadu_si512
(&cache->objs[cache->len - 8]);
_mm512_store_si512(rxep, mbuf_ptrs);
/* gather iova of mbuf0-7 into one zmm reg */
const __m512i iova_base_addrs = _mm512_i64gather_epi64
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
0, /* base */
1 /* scale */);
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
headroom);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
const __m512i iovas0 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 0));
const __m512i iovas1 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 1));
/* permute leaves iova 2-3 in hdr_addr of desc 0-1
* but these are ignored by driver since header split not
* enabled. Similarly for desc 4 & 5.
*/
const __m512i desc0_1 = _mm512_permutexvar_epi64
(permute_idx, iovas0);
const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
const __m512i desc4_5 = _mm512_permutexvar_epi64
(permute_idx, iovas1);
const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
_mm512_store_si512((void *)rxdp, desc0_1);
_mm512_store_si512((void *)(rxdp + 2), desc2_3);
_mm512_store_si512((void *)(rxdp + 4), desc4_5);
_mm512_store_si512((void *)(rxdp + 6), desc6_7);
#else
/* permute leaves iova 4-7 in hdr_addr of desc 0-3
* but these are ignored by driver since header split not
* enabled.
*/
const __m512i desc0_3 = _mm512_permutexvar_epi64
(permute_idx, iova_addrs);
const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
_mm512_store_si512((void *)rxdp, desc0_3);
_mm512_store_si512((void *)(rxdp + 4), desc4_7);
#endif
rxep += 8, rxdp += 8, cache->len -= 8;
}
rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
static inline __m256i
ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
{
#define FDID_MIS_MAGIC 0xFFFFFFFF
RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
PKT_RX_FDIR_ID);
/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
__m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
fdir_mis_mask);
/* this XOR op results to bit-reverse the fdir_mask */
fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
return fdir_flags;
}
static inline uint16_t
_ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
0, rxq->mbuf_initializer);
struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
ice_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.status_error0 &
rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/* constants used in processing loop */
const __m512i crc_adjust =
_mm512_set4_epi32
(0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0 /* ignore non-length fields */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
ICE_RX_DESC_STATUS_EOF_S);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set4_epi32
(/* rss hash parsed separately */
0xFFFFFFFF,
/* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
11 << 24 | 10 << 16 | 5 << 8 | 4,
/* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFF << 16 | 5 << 8 | 4,
/* pkt_type set as unknown */
0xFFFFFFFF
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* Status/Error flag masks */
/**
* mask everything except Checksum Reports, RSS indication
* and VLAN indication.
* bit6:4 for IP/L4 checksum errors.
* bit12 is for RSS indication.
* bit13 is for VLAN indication.
*/
const __m256i flags_mask =
2022-09-02 04:40:05 +00:00
_mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
2021-02-05 08:48:47 +00:00
/**
* data to be shuffled by the result of the flags mask shifted by 4
* bits. This gives use the l3_l4 flags.
*/
2022-09-02 04:40:05 +00:00
const __m256i l3_l4_flags_shuf =
_mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
/**
* second 128-bits
* shift right 20 bits to use the low two bits to indicate
* outer checksum status
* shift right 1 bit to make sure it not exceed 255
*/
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1);
2021-02-05 08:48:47 +00:00
const __m256i cksum_mask =
2022-09-02 04:40:05 +00:00
_mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_EIP_CKSUM_BAD |
PKT_RX_OUTER_L4_CKSUM_MASK);
2021-02-05 08:48:47 +00:00
/**
* data to be shuffled by result of flag mask, shifted down 12.
* If RSS(bit12)/VLAN(bit13) are set,
* shuffle moves appropriate flags in place.
*/
const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_RSS_HASH, 0,
/* 2nd 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_RSS_HASH, 0);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += ICE_DESCS_PER_LOOP_AVX,
rxdp += ICE_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
/* load in descriptors, in reverse order */
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc6_7 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc6),
raw_desc7, 1);
raw_desc4_5 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc4),
raw_desc5, 1);
raw_desc2_3 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc2),
raw_desc3, 1);
raw_desc0_1 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc0),
raw_desc1, 1);
raw_desc4_7 =
_mm512_inserti64x4
(_mm512_castsi256_si512(raw_desc4_5),
raw_desc6_7, 1);
raw_desc0_3 =
_mm512_inserti64x4
(_mm512_castsi256_si512(raw_desc0_1),
raw_desc2_3, 1);
if (split_packet) {
int j;
for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/**
* convert descriptors 0-7 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
__m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptype_mask =
_mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptypes4_7 =
_mm512_and_si512(raw_desc4_7, ptype_mask);
const __m512i ptypes0_3 =
_mm512_and_si512(raw_desc0_3, ptype_mask);
const __m256i ptypes6_7 =
_mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 =
_mm512_extracti64x4_epi64(ptypes4_7, 0);
const __m256i ptypes2_3 =
_mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 =
_mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, ptype_tbl[ptype7],
0, 0, 0, ptype_tbl[ptype6],
0, 0, 0, ptype_tbl[ptype5],
0, 0, 0, ptype_tbl[ptype4]);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, ptype_tbl[ptype3],
0, 0, 0, ptype_tbl[ptype2],
0, 0, 0, ptype_tbl[ptype1],
0, 0, 0, ptype_tbl[ptype0]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
__m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
__m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
__m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
__m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
/**
* use permute/extract to get status content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
/* merge the status bits into one register */
const __m512i status_permute_msk = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
22, 30, 6, 14,
18, 26, 2, 10);
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
(raw_desc4_7, status_permute_msk, raw_desc0_3);
__m256i status0_7 = _mm512_extracti64x4_epi64
(raw_status0_7, 0);
/* now do flag manipulation */
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 4));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
2022-09-02 04:40:05 +00:00
__m256i l4_outer_mask = _mm256_set1_epi32(0x6);
__m256i l4_outer_flags =
_mm256_and_si256(l3_l4_flags, l4_outer_mask);
l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
__m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
2021-02-05 08:48:47 +00:00
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
/* set rss and vlan flags */
const __m256i rss_vlan_flag_bits =
_mm256_srli_epi32(flag_bits, 12);
const __m256i rss_vlan_flags =
_mm256_shuffle_epi8(rss_vlan_flags_shuf,
rss_vlan_flag_bits);
/* merge flags */
__m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
rss_vlan_flags);
if (rxq->fdir_enabled) {
const __m256i fdir_id4_7 =
_mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
const __m256i fdir_id0_3 =
_mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
const __m256i fdir_id0_7 =
_mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
const __m256i fdir_flags =
ice_flex_rxd_to_fdir_flags_vec_avx512
(fdir_id0_7);
/* merge with fdir_flags */
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
/* write to mbuf: have to use scalar store here */
rx_pkts[i + 0]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 3);
rx_pkts[i + 1]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 7);
rx_pkts[i + 2]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 2);
rx_pkts[i + 3]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 6);
rx_pkts[i + 4]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 1);
rx_pkts[i + 5]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 5);
rx_pkts[i + 6]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 0);
rx_pkts[i + 7]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 4);
} /* if() on fdir_enabled */
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
/**
* needs to load 2nd 16B of each desc for RSS hash parsing,
* will cause performance drop to get into this context.
*/
2022-09-02 04:40:05 +00:00
if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
2021-02-05 08:48:47 +00:00
DEV_RX_OFFLOAD_RSS_HASH) {
/* load bottom half of every 32B desc */
const __m128i raw_desc_bh7 =
_mm_load_si128
((void *)(&rxdp[7].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh6 =
_mm_load_si128
((void *)(&rxdp[6].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh5 =
_mm_load_si128
((void *)(&rxdp[5].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh4 =
_mm_load_si128
((void *)(&rxdp[4].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh3 =
_mm_load_si128
((void *)(&rxdp[3].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh2 =
_mm_load_si128
((void *)(&rxdp[2].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh1 =
_mm_load_si128
((void *)(&rxdp[1].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh0 =
_mm_load_si128
((void *)(&rxdp[0].wb.status_error1));
__m256i raw_desc_bh6_7 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh6),
raw_desc_bh7, 1);
__m256i raw_desc_bh4_5 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh4),
raw_desc_bh5, 1);
__m256i raw_desc_bh2_3 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh2),
raw_desc_bh3, 1);
__m256i raw_desc_bh0_1 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh0),
raw_desc_bh1, 1);
/**
* to shift the 32b RSS hash value to the
* highest 32b of each 128b before mask
*/
__m256i rss_hash6_7 =
_mm256_slli_epi64(raw_desc_bh6_7, 32);
__m256i rss_hash4_5 =
_mm256_slli_epi64(raw_desc_bh4_5, 32);
__m256i rss_hash2_3 =
_mm256_slli_epi64(raw_desc_bh2_3, 32);
__m256i rss_hash0_1 =
_mm256_slli_epi64(raw_desc_bh0_1, 32);
__m256i rss_hash_msk =
_mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
0xFFFFFFFF, 0, 0, 0);
rss_hash6_7 = _mm256_and_si256
(rss_hash6_7, rss_hash_msk);
rss_hash4_5 = _mm256_and_si256
(rss_hash4_5, rss_hash_msk);
rss_hash2_3 = _mm256_and_si256
(rss_hash2_3, rss_hash_msk);
rss_hash0_1 = _mm256_and_si256
(rss_hash0_1, rss_hash_msk);
mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
} /* if() on RSS hash parsing */
#endif
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
/* repeat for the odd mbufs */
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask =
_mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits =
_mm_packus_epi32
(_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256,
1));
/**
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/**
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle =
_mm_set_epi8(/* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
/* move values to lo 64b */
8, 0, 10, 2,
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet =
_mm_cvtsi128_si64(split_bits);
split_packet += ICE_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != ICE_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
/**
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
uint16_t
ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ice_rx_queue *rxq = rx_queue;
uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly */
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then */
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
uint16_t
ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > ICE_VPMD_RX_BURST) {
uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, ICE_VPMD_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < ICE_VPMD_RX_BURST)
return retval;
}
return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, nb_pkts);
}
static __rte_always_inline int
ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
{
struct ice_vec_tx_entry *txep;
uint32_t n;
uint32_t i;
int nb_free = 0;
struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
/* check DD bits on threshold descriptor */
if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
return 0;
n = txq->tx_rs_thresh;
/* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_rs_thresh - 1)
*/
txep = (void *)txq->sw_ring;
txep += txq->tx_next_dd - (n - 1);
if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
struct rte_mempool *mp = txep[0].mbuf->pool;
void **cache_objs;
struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
rte_lcore_id());
if (!cache || cache->len == 0)
goto normal;
cache_objs = &cache->objs[cache->len];
if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
goto done;
}
/* The cache follows the following algorithm
* 1. Add the objects to the cache
* 2. Anything greater than the cache min value (if it
* crosses the cache flush threshold) is flushed to the ring.
*/
/* Add elements back into the cache */
uint32_t copied = 0;
/* n is multiple of 32 */
while (copied < n) {
const __m512i a = _mm512_loadu_si512(&txep[copied]);
const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
_mm512_storeu_si512(&cache_objs[copied], a);
_mm512_storeu_si512(&cache_objs[copied + 8], b);
_mm512_storeu_si512(&cache_objs[copied + 16], c);
_mm512_storeu_si512(&cache_objs[copied + 24], d);
copied += 32;
}
cache->len += n;
if (cache->len >= cache->flushthresh) {
rte_mempool_ops_enqueue_bulk
(mp, &cache->objs[cache->size],
cache->len - cache->size);
cache->len = cache->size;
}
goto done;
}
normal:
m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
if (likely(m)) {
free[0] = m;
nb_free = 1;
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (likely(m)) {
if (likely(m->pool == free[0]->pool)) {
free[nb_free++] = m;
} else {
rte_mempool_put_bulk(free[0]->pool,
(void *)free,
nb_free);
free[0] = m;
nb_free = 1;
}
}
}
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
} else {
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (m)
rte_mempool_put(m->pool, m);
}
}
done:
/* buffers were freed, update counters */
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
if (txq->tx_next_dd >= txq->nb_tx_desc)
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
return txq->tx_rs_thresh;
}
static inline void
ice_vtx1(volatile struct ice_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw =
(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_store_si128((__m128i *)txdp, descriptor);
}
static inline void
ice_vtx(volatile struct ice_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S));
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 =
hi_qw_tmpl |
((uint64_t)pkt[3]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw2 =
hi_qw_tmpl |
((uint64_t)pkt[2]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw1 =
hi_qw_tmpl |
((uint64_t)pkt[1]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw0 =
hi_qw_tmpl |
((uint64_t)pkt[0]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
__m512i desc0_3 =
_mm512_set_epi64
(hi_qw3,
pkt[3]->buf_iova + pkt[3]->data_off,
hi_qw2,
pkt[2]->buf_iova + pkt[2]->data_off,
hi_qw1,
pkt[1]->buf_iova + pkt[1]->data_off,
hi_qw0,
pkt[0]->buf_iova + pkt[0]->data_off);
_mm512_storeu_si512((void *)txdp, desc0_3);
}
/* do any last ones */
while (nb_pkts) {
ice_vtx1(txdp, *pkt, flags);
txdp++, pkt++, nb_pkts--;
}
}
static __rte_always_inline void
ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
int i;
for (i = 0; i < (int)nb_pkts; ++i)
txep[i].mbuf = tx_pkts[i];
}
static inline uint16_t
ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
volatile struct ice_tx_desc *txdp;
struct ice_vec_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = ICE_TD_CMD;
uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
ice_tx_free_bufs_avx512(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
ice_vtx(txdp, tx_pkts, n - 1, flags);
tx_pkts += (n - 1);
txdp += (n - 1);
ice_vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = txq->tx_ring;
txep = (void *)txq->sw_ring;
}
ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
ice_vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
ICE_TXD_QW1_CMD_S);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
uint16_t
ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
&tx_pkts[nb_tx], num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}