f-stack/dpdk/lib/librte_gro/gro_udp4.h

283 lines
7.1 KiB
C
Raw Normal View History

2021-02-05 08:48:47 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Inspur Corporation
*/
#ifndef _GRO_UDP4_H_
#define _GRO_UDP4_H_
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_vxlan.h>
#define INVALID_ARRAY_INDEX 0xffffffffUL
#define GRO_UDP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
/*
* The max length of a IPv4 packet, which includes the length of the L3
* header, the L4 header and the data payload.
*/
#define MAX_IPV4_PKT_LENGTH UINT16_MAX
/* Header fields representing a UDP/IPv4 flow */
struct udp4_flow_key {
struct rte_ether_addr eth_saddr;
struct rte_ether_addr eth_daddr;
uint32_t ip_src_addr;
uint32_t ip_dst_addr;
/* IP fragment for UDP does not contain UDP header
* except the first one. But IP ID must be same.
*/
uint16_t ip_id;
};
struct gro_udp4_flow {
struct udp4_flow_key key;
/*
* The index of the first packet in the flow.
* INVALID_ARRAY_INDEX indicates an empty flow.
*/
uint32_t start_index;
};
struct gro_udp4_item {
/*
* The first MBUF segment of the packet. If the value
* is NULL, it means the item is empty.
*/
struct rte_mbuf *firstseg;
/* The last MBUF segment of the packet */
struct rte_mbuf *lastseg;
/*
* The time when the first packet is inserted into the table.
* This value won't be updated, even if the packet is merged
* with other packets.
*/
uint64_t start_time;
/*
* next_pkt_idx is used to chain the packets that
* are in the same flow but can't be merged together
* (e.g. caused by packet reordering).
*/
uint32_t next_pkt_idx;
/* offset of IP fragment packet */
uint16_t frag_offset;
/* is last IP fragment? */
uint8_t is_last_frag;
/* the number of merged packets */
uint16_t nb_merged;
};
/*
* UDP/IPv4 reassembly table structure.
*/
struct gro_udp4_tbl {
/* item array */
struct gro_udp4_item *items;
/* flow array */
struct gro_udp4_flow *flows;
/* current item number */
uint32_t item_num;
/* current flow num */
uint32_t flow_num;
/* item array size */
uint32_t max_item_num;
/* flow array size */
uint32_t max_flow_num;
};
/**
* This function creates a UDP/IPv4 reassembly table.
*
* @param socket_id
* Socket index for allocating the UDP/IPv4 reassemble table
* @param max_flow_num
* The maximum number of flows in the UDP/IPv4 GRO table
* @param max_item_per_flow
* The maximum number of packets per flow
*
* @return
* - Return the table pointer on success.
* - Return NULL on failure.
*/
void *gro_udp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow);
/**
* This function destroys a UDP/IPv4 reassembly table.
*
* @param tbl
* Pointer pointing to the UDP/IPv4 reassembly table.
*/
void gro_udp4_tbl_destroy(void *tbl);
/**
* This function merges a UDP/IPv4 packet.
*
* This function does not check if the packet has correct checksums and
* does not re-calculate checksums for the merged packet. It returns the
* packet if it isn't UDP fragment or there is no available space in
* the table.
*
* @param pkt
* Packet to reassemble
* @param tbl
* Pointer pointing to the UDP/IPv4 reassembly table
* @start_time
* The time when the packet is inserted into the table
*
* @return
* - Return a positive value if the packet is merged.
* - Return zero if the packet isn't merged but stored in the table.
* - Return a negative value for invalid parameters or no available
* space in the table.
*/
int32_t gro_udp4_reassemble(struct rte_mbuf *pkt,
struct gro_udp4_tbl *tbl,
uint64_t start_time);
/**
* This function flushes timeout packets in a UDP/IPv4 reassembly table,
* and without updating checksums.
*
* @param tbl
* UDP/IPv4 reassembly table pointer
* @param flush_timestamp
* Flush packets which are inserted into the table before or at the
* flush_timestamp.
* @param out
* Pointer array used to keep flushed packets
* @param nb_out
* The element number in 'out'. It also determines the maximum number of
* packets that can be flushed finally.
*
* @return
* The number of flushed packets
*/
uint16_t gro_udp4_tbl_timeout_flush(struct gro_udp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out);
/**
* This function returns the number of the packets in a UDP/IPv4
* reassembly table.
*
* @param tbl
* UDP/IPv4 reassembly table pointer
*
* @return
* The number of packets in the table
*/
uint32_t gro_udp4_tbl_pkt_count(void *tbl);
/*
* Check if two UDP/IPv4 packets belong to the same flow.
*/
static inline int
is_same_udp4_flow(struct udp4_flow_key k1, struct udp4_flow_key k2)
{
return (rte_is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
rte_is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
(k1.ip_src_addr == k2.ip_src_addr) &&
(k1.ip_dst_addr == k2.ip_dst_addr) &&
(k1.ip_id == k2.ip_id));
}
/*
* Merge two UDP/IPv4 packets without updating checksums.
* If cmp is larger than 0, append the new packet to the
* original packet. Otherwise, pre-pend the new packet to
* the original packet.
*/
static inline int
merge_two_udp4_packets(struct gro_udp4_item *item,
struct rte_mbuf *pkt,
int cmp,
uint16_t frag_offset,
uint8_t is_last_frag,
uint16_t l2_offset)
{
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
uint16_t hdr_len, l2_len;
uint32_t ip_len;
if (cmp > 0) {
pkt_head = item->firstseg;
pkt_tail = pkt;
} else {
pkt_head = pkt;
pkt_tail = item->firstseg;
}
/* check if the IPv4 packet length is greater than the max value */
hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len;
l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
ip_len = pkt_head->pkt_len - l2_len
+ pkt_tail->pkt_len - hdr_len;
if (unlikely(ip_len > MAX_IPV4_PKT_LENGTH))
return 0;
/* remove the packet header for the tail packet */
rte_pktmbuf_adj(pkt_tail, hdr_len);
/* chain two packets together */
if (cmp > 0) {
item->lastseg->next = pkt;
item->lastseg = rte_pktmbuf_lastseg(pkt);
} else {
lastseg = rte_pktmbuf_lastseg(pkt);
lastseg->next = item->firstseg;
item->firstseg = pkt;
item->frag_offset = frag_offset;
}
item->nb_merged++;
if (is_last_frag)
item->is_last_frag = is_last_frag;
/* update MBUF metadata for the merged packet */
pkt_head->nb_segs += pkt_tail->nb_segs;
pkt_head->pkt_len += pkt_tail->pkt_len;
return 1;
}
/*
* Check if two UDP/IPv4 packets are neighbors.
*/
static inline int
udp4_check_neighbor(struct gro_udp4_item *item,
uint16_t frag_offset,
uint16_t ip_dl,
uint16_t l2_offset)
{
struct rte_mbuf *pkt_orig = item->firstseg;
uint16_t len;
/* check if the two packets are neighbors */
len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
pkt_orig->l3_len;
if (frag_offset == item->frag_offset + len)
/* append the new packet */
return 1;
else if (frag_offset + ip_dl == item->frag_offset)
/* pre-pend the new packet */
return -1;
return 0;
}
static inline int
is_ipv4_fragment(const struct rte_ipv4_hdr *hdr)
{
uint16_t flag_offset, ip_flag, ip_ofs;
flag_offset = rte_be_to_cpu_16(hdr->fragment_offset);
ip_ofs = (uint16_t)(flag_offset & RTE_IPV4_HDR_OFFSET_MASK);
ip_flag = (uint16_t)(flag_offset & RTE_IPV4_HDR_MF_FLAG);
return ip_flag != 0 || ip_ofs != 0;
}
#endif