f-stack/freebsd/contrib/dev/ath/ath_hal/ar9300/ar9300_gpio.c

641 lines
21 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#ifdef AH_DEBUG
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#endif
#include "ar9300/ar9300.h"
#include "ar9300/ar9300reg.h"
#include "ar9300/ar9300phy.h"
#define AR_GPIO_BIT(_gpio) (1 << (_gpio))
/*
* Configure GPIO Output Mux control
*/
#if UMAC_SUPPORT_SMARTANTENNA
static void ar9340_soc_gpio_cfg_output_mux(
struct ath_hal *ah,
u_int32_t gpio,
u_int32_t ah_signal_type)
{
#define ADDR_READ(addr) (*((volatile u_int32_t *)(addr)))
#define ADDR_WRITE(addr, b) (void)((*(volatile u_int32_t *) (addr)) = (b))
#define AR9340_SOC_GPIO_FUN0 0xB804002c
#define AR9340_SOC_GPIO_OE 0xB8040000
#if ATH_SMARTANTENNA_DISABLE_JTAG
#define AR9340_SOC_GPIO_FUNCTION (volatile u_int32_t*) 0xB804006c
#define WASP_DISABLE_JTAG 0x2
#define MAX_JTAG_GPIO_PIN 1
#endif
u_int8_t out_func, shift;
u_int32_t flags;
volatile u_int32_t* address;
if (!ah_signal_type){
return;
}
#if ATH_SMARTANTENNA_DISABLE_JTAG
/*
* To use GPIO pins 0 and 1 for controling antennas, JTAG needs to disabled.
*/
if (gpio <= MAX_JTAG_GPIO_PIN) {
flags = ADDR_READ(AR9340_SOC_GPIO_FUNCTION);
flags |= WASP_DISABLE_JTAG;
ADDR_WRITE(AR9340_SOC_GPIO_FUNCTION, flags);
}
#endif
out_func = gpio / 4;
shift = (gpio % 4);
address = (volatile u_int32_t *)(AR9340_SOC_GPIO_FUN0 + (out_func*4));
flags = ADDR_READ(address);
flags |= ah_signal_type << (8*shift);
ADDR_WRITE(address, flags);
flags = ADDR_READ(AR9340_SOC_GPIO_OE);
flags &= ~(1 << gpio);
ADDR_WRITE(AR9340_SOC_GPIO_OE, flags);
}
#endif
static void
ar9300_gpio_cfg_output_mux(struct ath_hal *ah, u_int32_t gpio, u_int32_t type)
{
int addr;
u_int32_t gpio_shift;
/* each MUX controls 6 GPIO pins */
if (gpio > 11) {
addr = AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX3);
} else if (gpio > 5) {
addr = AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX2);
} else {
addr = AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX1);
}
/*
* 5 bits per GPIO pin.
* Bits 0..4 for 1st pin in that mux,
* bits 5..9 for 2nd pin, etc.
*/
gpio_shift = (gpio % 6) * 5;
OS_REG_RMW(ah, addr, (type << gpio_shift), (0x1f << gpio_shift));
}
/*
* Configure GPIO Output lines
*/
HAL_BOOL
ar9300_gpio_cfg_output(
struct ath_hal *ah,
u_int32_t gpio,
HAL_GPIO_MUX_TYPE hal_signal_type)
{
u_int32_t ah_signal_type;
u_int32_t gpio_shift;
u_int8_t smart_ant = 0;
static const u_int32_t mux_signal_conversion_table[] = {
/* HAL_GPIO_OUTPUT_MUX_AS_OUTPUT */
AR_GPIO_OUTPUT_MUX_AS_OUTPUT,
/* HAL_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED */
AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_PCIE_POWER_LED */
AR_GPIO_OUTPUT_MUX_AS_PCIE_POWER_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_MAC_NETWORK_LED */
AR_GPIO_OUTPUT_MUX_AS_MAC_NETWORK_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_MAC_POWER_LED */
AR_GPIO_OUTPUT_MUX_AS_MAC_POWER_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE */
AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL,
/* HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME */
AR_GPIO_OUTPUT_MUX_AS_TX_FRAME,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA */
AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK */
AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA */
AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK */
AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK,
/* HAL_GPIO_OUTPUT_MUX_AS_WL_IN_TX */
AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX,
/* HAL_GPIO_OUTPUT_MUX_AS_WL_IN_RX */
AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX,
/* HAL_GPIO_OUTPUT_MUX_AS_BT_IN_TX */
AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX,
/* HAL_GPIO_OUTPUT_MUX_AS_BT_IN_RX */
AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX,
/* HAL_GPIO_OUTPUT_MUX_AS_RUCKUS_STROBE */
AR_GPIO_OUTPUT_MUX_AS_RUCKUS_STROBE,
/* HAL_GPIO_OUTPUT_MUX_AS_RUCKUS_DATA */
AR_GPIO_OUTPUT_MUX_AS_RUCKUS_DATA,
/* HAL_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL0 */
AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL0,
/* HAL_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL1 */
AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL1,
/* HAL_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL2 */
AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL2,
/* HAL_GPIO_OUTPUT_MUX_AS_SMARTANT_SWCOM3 */
AR_GPIO_OUTPUT_MUX_AS_SWCOM3,
};
HALASSERT(gpio < AH_PRIVATE(ah)->ah_caps.halNumGpioPins);
if ((gpio == AR9382_GPIO_PIN_8_RESERVED) ||
(gpio == AR9382_GPIO_9_INPUT_ONLY))
{
return AH_FALSE;
}
/* Convert HAL signal type definitions to hardware-specific values. */
if ((int) hal_signal_type < ARRAY_LENGTH(mux_signal_conversion_table))
{
ah_signal_type = mux_signal_conversion_table[hal_signal_type];
} else {
return AH_FALSE;
}
if (gpio <= AR9382_MAX_JTAG_GPIO_PIN_NUM) {
OS_REG_SET_BIT(ah,
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), AR_GPIO_JTAG_DISABLE);
}
#if UMAC_SUPPORT_SMARTANTENNA
/* Get the pin and func values for smart antenna */
switch (ah_signal_type)
{
case AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL0:
gpio = ATH_GPIOPIN_ANTCHAIN0;
ah_signal_type = ATH_GPIOFUNC_ANTCHAIN0;
smart_ant = 1;
break;
case AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL1:
gpio = ATH_GPIOPIN_ANTCHAIN1;
ah_signal_type = ATH_GPIOFUNC_ANTCHAIN1;
smart_ant = 1;
break;
case AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL2:
gpio = ATH_GPIOPIN_ANTCHAIN2;
ah_signal_type = ATH_GPIOFUNC_ANTCHAIN2;
smart_ant = 1;
break;
#if ATH_SMARTANTENNA_ROUTE_SWCOM_TO_GPIO
case AR_GPIO_OUTPUT_MUX_AS_SWCOM3:
gpio = ATH_GPIOPIN_ROUTE_SWCOM3;
ah_signal_type = ATH_GPIOFUNC_ROUTE_SWCOM3;
smart_ant = 1;
break;
#endif
default:
break;
}
#endif
if (smart_ant && (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)))
{
#if UMAC_SUPPORT_SMARTANTENNA
ar9340_soc_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
#endif
return AH_TRUE;
} else
{
/* Configure the MUX */
ar9300_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
}
/* 2 bits per output mode */
gpio_shift = 2 * gpio;
OS_REG_RMW(ah,
AR_HOSTIF_REG(ah, AR_GPIO_OE_OUT),
(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
return AH_TRUE;
}
/*
* Configure GPIO Output lines -LED off
*/
HAL_BOOL
ar9300_gpio_cfg_output_led_off(
struct ath_hal *ah,
u_int32_t gpio,
HAL_GPIO_MUX_TYPE halSignalType)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
u_int32_t ah_signal_type;
u_int32_t gpio_shift;
u_int8_t smart_ant = 0;
static const u_int32_t mux_signal_conversion_table[] = {
/* HAL_GPIO_OUTPUT_MUX_AS_OUTPUT */
AR_GPIO_OUTPUT_MUX_AS_OUTPUT,
/* HAL_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED */
AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_PCIE_POWER_LED */
AR_GPIO_OUTPUT_MUX_AS_PCIE_POWER_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_MAC_NETWORK_LED */
AR_GPIO_OUTPUT_MUX_AS_MAC_NETWORK_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_MAC_POWER_LED */
AR_GPIO_OUTPUT_MUX_AS_MAC_POWER_LED,
/* HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE */
AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL,
/* HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME */
AR_GPIO_OUTPUT_MUX_AS_TX_FRAME,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA */
AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK */
AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA */
AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA,
/* HAL_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK */
AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK,
/* HAL_GPIO_OUTPUT_MUX_AS_WL_IN_TX */
AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX,
/* HAL_GPIO_OUTPUT_MUX_AS_WL_IN_RX */
AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX,
/* HAL_GPIO_OUTPUT_MUX_AS_BT_IN_TX */
AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX,
/* HAL_GPIO_OUTPUT_MUX_AS_BT_IN_RX */
AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX,
AR_GPIO_OUTPUT_MUX_AS_RUCKUS_STROBE,
AR_GPIO_OUTPUT_MUX_AS_RUCKUS_DATA,
AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL0,
AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL1,
AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL2
};
HALASSERT(gpio < AH_PRIVATE(ah)->ah_caps.hal_num_gpio_pins);
/* Convert HAL signal type definitions to hardware-specific values. */
if ((int) halSignalType < ARRAY_LENGTH(mux_signal_conversion_table))
{
ah_signal_type = mux_signal_conversion_table[halSignalType];
} else {
return AH_FALSE;
}
#if UMAC_SUPPORT_SMARTANTENNA
/* Get the pin and func values for smart antenna */
switch (halSignalType)
{
case AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL0:
gpio = ATH_GPIOPIN_ANTCHAIN0;
ah_signal_type = ATH_GPIOFUNC_ANTCHAIN0;
smart_ant = 1;
break;
case AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL1:
gpio = ATH_GPIOPIN_ANTCHAIN1;
ah_signal_type = ATH_GPIOFUNC_ANTCHAIN1;
smart_ant = 1;
break;
case AR_GPIO_OUTPUT_MUX_AS_SMARTANT_CTRL2:
gpio = ATH_GPIOPIN_ANTCHAIN2;
ah_signal_type = ATH_GPIOFUNC_ANTCHAIN2;
smart_ant = 1;
break;
default:
break;
}
#endif
if (smart_ant && AR_SREV_WASP(ah))
{
return AH_FALSE;
}
// Configure the MUX
ar9300_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
// 2 bits per output mode
gpio_shift = 2*gpio;
OS_REG_RMW(ah,
AR_HOSTIF_REG(ah, AR_GPIO_OE_OUT),
(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
return AH_TRUE;
#undef N
}
/*
* Configure GPIO Input lines
*/
HAL_BOOL
ar9300_gpio_cfg_input(struct ath_hal *ah, u_int32_t gpio)
{
u_int32_t gpio_shift;
HALASSERT(gpio < AH_PRIVATE(ah)->ah_caps.halNumGpioPins);
if ((gpio == AR9382_GPIO_PIN_8_RESERVED) ||
(gpio > AR9382_MAX_GPIO_INPUT_PIN_NUM))
{
return AH_FALSE;
}
if (gpio <= AR9382_MAX_JTAG_GPIO_PIN_NUM) {
OS_REG_SET_BIT(ah,
AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), AR_GPIO_JTAG_DISABLE);
}
/* TODO: configure input mux for AR9300 */
/* If configured as input, set output to tristate */
gpio_shift = 2 * gpio;
OS_REG_RMW(ah,
AR_HOSTIF_REG(ah, AR_GPIO_OE_OUT),
(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
(AR_GPIO_OE_OUT_DRV << gpio_shift));
return AH_TRUE;
}
/*
* Once configured for I/O - set output lines
* output the level of GPio PIN without care work mode
*/
HAL_BOOL
ar9300_gpio_set(struct ath_hal *ah, u_int32_t gpio, u_int32_t val)
{
HALASSERT(gpio < AH_PRIVATE(ah)->ah_caps.halNumGpioPins);
if ((gpio == AR9382_GPIO_PIN_8_RESERVED) ||
(gpio == AR9382_GPIO_9_INPUT_ONLY))
{
return AH_FALSE;
}
OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUT),
((val & 1) << gpio), AR_GPIO_BIT(gpio));
return AH_TRUE;
}
/*
* Once configured for I/O - get input lines
*/
u_int32_t
ar9300_gpio_get(struct ath_hal *ah, u_int32_t gpio)
{
u_int32_t gpio_in;
HALASSERT(gpio < AH_PRIVATE(ah)->ah_caps.halNumGpioPins);
if (gpio == AR9382_GPIO_PIN_8_RESERVED)
{
return 0xffffffff;
}
gpio_in = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_IN));
OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_IN),
(1 << gpio), AR_GPIO_BIT(gpio));
return (MS(gpio_in, AR_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
}
u_int32_t
ar9300_gpio_get_intr(struct ath_hal *ah)
{
unsigned int mask = 0;
struct ath_hal_9300 *ahp = AH9300(ah);
mask = ahp->ah_gpio_cause;
return mask;
}
/*
* Set the GPIO Interrupt
* Sync and Async interrupts are both set/cleared.
* Async GPIO interrupts may not be raised when the chip is put to sleep.
*/
void
ar9300_gpio_set_intr(struct ath_hal *ah, u_int gpio, u_int32_t ilevel)
{
int i, reg_bit;
u_int32_t reg_val;
u_int32_t regs[2], shifts[2];
#ifdef AH_ASSERT
u_int32_t gpio_mask;
u_int32_t old_field_val = 0, field_val = 0;
#endif
#ifdef ATH_GPIO_USE_ASYNC_CAUSE
regs[0] = AR_HOSTIF_REG(ah, AR_INTR_ASYNC_ENABLE);
regs[1] = AR_HOSTIF_REG(ah, AR_INTR_ASYNC_MASK);
shifts[0] = AR_INTR_ASYNC_ENABLE_GPIO_S;
shifts[1] = AR_INTR_ASYNC_MASK_GPIO_S;
#else
regs[0] = AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE);
regs[1] = AR_HOSTIF_REG(ah, AR_INTR_SYNC_MASK);
shifts[0] = AR_INTR_SYNC_ENABLE_GPIO_S;
shifts[1] = AR_INTR_SYNC_MASK_GPIO_S;
#endif
HALASSERT(gpio < AH_PRIVATE(ah)->ah_caps.halNumGpioPins);
if ((gpio == AR9382_GPIO_PIN_8_RESERVED) ||
(gpio > AR9382_MAX_GPIO_INPUT_PIN_NUM))
{
return;
}
#ifdef AH_ASSERT
gpio_mask = (1 << AH_PRIVATE(ah)->ah_caps.halNumGpioPins) - 1;
#endif
if (ilevel == HAL_GPIO_INTR_DISABLE) {
/* clear this GPIO's bit in the interrupt registers */
for (i = 0; i < ARRAY_LENGTH(regs); i++) {
reg_val = OS_REG_READ(ah, regs[i]);
reg_bit = shifts[i] + gpio;
reg_val &= ~(1 << reg_bit);
OS_REG_WRITE(ah, regs[i], reg_val);
/* check that each register has same GPIOs enabled */
#ifdef AH_ASSERT
field_val = (reg_val >> shifts[i]) & gpio_mask;
HALASSERT(i == 0 || old_field_val == field_val);
old_field_val = field_val;
#endif
}
} else {
reg_val = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_INTR_POL));
reg_bit = gpio;
if (ilevel == HAL_GPIO_INTR_HIGH) {
/* 0 == interrupt on pin high */
reg_val &= ~(1 << reg_bit);
} else if (ilevel == HAL_GPIO_INTR_LOW) {
/* 1 == interrupt on pin low */
reg_val |= (1 << reg_bit);
}
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_GPIO_INTR_POL), reg_val);
/* set this GPIO's bit in the interrupt registers */
for (i = 0; i < ARRAY_LENGTH(regs); i++) {
reg_val = OS_REG_READ(ah, regs[i]);
reg_bit = shifts[i] + gpio;
reg_val |= (1 << reg_bit);
OS_REG_WRITE(ah, regs[i], reg_val);
/* check that each register has same GPIOs enabled */
#ifdef AH_ASSERT
field_val = (reg_val >> shifts[i]) & gpio_mask;
HALASSERT(i == 0 || old_field_val == field_val);
old_field_val = field_val;
#endif
}
}
}
u_int32_t
ar9300_gpio_get_polarity(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_INTR_POL));
}
void
ar9300_gpio_set_polarity(struct ath_hal *ah, u_int32_t pol_map,
u_int32_t changed_mask)
{
u_int32_t gpio_mask;
gpio_mask = (1 << AH_PRIVATE(ah)->ah_caps.halNumGpioPins) - 1;
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_GPIO_INTR_POL), gpio_mask & pol_map);
#ifndef ATH_GPIO_USE_ASYNC_CAUSE
/*
* For SYNC_CAUSE type interrupts, we need to clear the cause register
* explicitly. Otherwise an interrupt with the original polarity setting
* will come up immediately (if there is already an interrupt source),
* which is not what we want usually.
*/
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE_CLR),
changed_mask << AR_INTR_SYNC_ENABLE_GPIO_S);
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE_CLR));
#endif
}
/*
* get the GPIO input pin mask
* gpio0 - gpio13
* gpio8, gpio11, regard as reserved by the chip ar9382
*/
u_int32_t
ar9300_gpio_get_mask(struct ath_hal *ah)
{
u_int32_t mask = (1 << (AR9382_MAX_GPIO_INPUT_PIN_NUM + 1) ) - 1;
if (AH_PRIVATE(ah)->ah_devid == AR9300_DEVID_AR9380_PCIE) {
mask = (1 << AR9382_MAX_GPIO_PIN_NUM) - 1;
mask &= ~(1 << AR9382_GPIO_PIN_8_RESERVED);
}
return mask;
}
int
ar9300_gpio_set_mask(struct ath_hal *ah, u_int32_t mask, u_int32_t pol_map)
{
u_int32_t invalid = ~((1 << (AR9382_MAX_GPIO_INPUT_PIN_NUM + 1)) - 1);
if (AH_PRIVATE(ah)->ah_devid == AR9300_DEVID_AR9380_PCIE) {
invalid = ~((1 << AR9382_MAX_GPIO_PIN_NUM) - 1);
invalid |= 1 << AR9382_GPIO_PIN_8_RESERVED;
}
if (mask & invalid) {
ath_hal_printf(ah, "%s: invalid GPIO mask 0x%x\n", __func__, mask);
return -1;
}
AH9300(ah)->ah_gpio_mask = mask;
OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_GPIO_INTR_POL), mask & pol_map);
return 0;
}
#ifdef AH_DEBUG
void ar9300_gpio_show(struct ath_hal *ah);
void ar9300_gpio_show(struct ath_hal *ah)
{
ath_hal_printf(ah, "--- 9382 GPIOs ---(ah=%p)\n", ah );
ath_hal_printf(ah,
"AH9300(_ah)->ah_hostifregs:%p\r\n", &(AH9300(ah)->ah_hostifregs));
ath_hal_printf(ah,
"GPIO_OUT: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUT)));
ath_hal_printf(ah,
"GPIO_IN: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_IN)));
ath_hal_printf(ah,
"GPIO_OE: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_OE_OUT)));
ath_hal_printf(ah,
"GPIO_OE1_OUT: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_OE1_OUT)));
ath_hal_printf(ah,
"GPIO_INTR_POLAR: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_INTR_POL)));
ath_hal_printf(ah,
"GPIO_INPUT_VALUE: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL)));
ath_hal_printf(ah,
"GPIO_INPUT_MUX1: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1)));
ath_hal_printf(ah,
"GPIO_INPUT_MUX2: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2)));
ath_hal_printf(ah,
"GPIO_OUTPUT_MUX1: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX1)));
ath_hal_printf(ah,
"GPIO_OUTPUT_MUX2: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX2)));
ath_hal_printf(ah,
"GPIO_OUTPUT_MUX3: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX3)));
ath_hal_printf(ah,
"GPIO_INPUT_STATE: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INPUT_STATE)));
ath_hal_printf(ah,
"GPIO_PDPU: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU)));
ath_hal_printf(ah,
"GPIO_DS: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_GPIO_DS)));
ath_hal_printf(ah,
"AR_INTR_ASYNC_ENABLE: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_ENABLE)));
ath_hal_printf(ah,
"AR_INTR_ASYNC_MASK: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_MASK)));
ath_hal_printf(ah,
"AR_INTR_SYNC_ENABLE: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE)));
ath_hal_printf(ah,
"AR_INTR_SYNC_MASK: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_MASK)));
ath_hal_printf(ah,
"AR_INTR_ASYNC_CAUSE: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_ASYNC_CAUSE)));
ath_hal_printf(ah,
"AR_INTR_SYNC_CAUSE: 0x%08X\n",
OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE)));
}
#endif /*AH_DEBUG*/