If I execute "l2fwd -l 0-3 -m 64 -n 3 -- -p 3", I get the following output, indicating that there are no socket 0 hugepages to allocate the mbuf and ring structures to?
I have set up a total of 1024 Hugepages (that is, allocated 512 2M pages to each NUMA node).
The -m command line parameter does not guarantee that huge pages will be reserved on specific sockets. Therefore, allocated huge pages may not be on socket 0.
To request memory to be reserved on a specific socket, please use the --socket-mem command-line parameter instead of -m.
I am running a 32-bit DPDK application on a NUMA system, and sometimes the application initializes fine but cannot allocate memory. Why is that happening?
32-bit applications have limitations in terms of how much virtual memory is available, hence the number of hugepages they are able to allocate is also limited (1 GB size).
If your system has a lot (>1 GB size) of hugepage memory, not all of it will be allocated.
Due to hugepages typically being allocated on a local NUMA node, the hugepages allocation the application gets during the initialization depends on which
NUMA node it is running on (the EAL does not affinitize cores until much later in the initialization process).
For example, if your EAL coremask is 0xff0, the main core will usually be the first core in the coremask (0x10); this is what you have to supply to taskset::
However, this is not very desirable when tuning for low latency, because the first packet that was received must also wait for the other 31 packets to be received.
It cannot be transmitted until the other 31 packets have also been processed because the NIC will not know to transmit the packets until the TX tail pointer has been updated,
which is not done until all 32 packets have been processed for transmission.
I have a dual Intel® Xeon® E5645 processors 2.40 GHz with four Intel® 82599 10 Gigabit Ethernet NICs.
Using eight logical cores on each processor with RSS set to distribute network load from two 10 GbE interfaces to the cores on each processor.
Without NUMA enabled, memory is allocated from both sockets, since memory is interleaved.
Therefore, each 64B chunk is interleaved across both memory domains.
The first 64B chunk is mapped to node 0, the second 64B chunk is mapped to node 1, the third to node 0, the fourth to node 1.
If you allocated 256B, you would get memory that looks like this:
..code-block:: console
256B buffer
Offset 0x00 - Node 0
Offset 0x40 - Node 1
Offset 0x80 - Node 0
Offset 0xc0 - Node 1
Therefore, packet buffers and descriptor rings are allocated from both memory domains, thus incurring QPI bandwidth accessing the other memory and much higher latency.
For best performance with NUMA disabled, only one socket should be populated.
I am getting errors about not being able to open files. Why?
As the DPDK operates, it opens a lot of files, which can result in reaching the open files limits, which is set using the ulimit command or in the limits.conf file.
This is especially true when using a large number (>512) of 2 MB huge pages. Please increase the open file limit if your application is not able to open files.
This can be done either by issuing a ulimit command or editing the limits.conf file. Please consult Linux manpages for usage information.
VF driver for IXGBE devices cannot be initialized
-------------------------------------------------
Some versions of Linux IXGBE driver do not assign a random MAC address to VF devices at initialization.
In this case, this has to be done manually on the VM host, using the following command:
..code-block:: console
ip link set <interface> vf <VF function> mac <MAC address>
where <interface> being the interface providing the virtual functions for example, eth0, <VF function> being the virtual function number, for example 0,
and <MAC address> being the desired MAC address.
Is it safe to add an entry to the hash table while running?
Currently the table implementation is not a thread safe implementation and assumes that locking between threads and processes is handled by the user's application.
This is likely to be supported in future releases.
What is the purpose of setting iommu=pt?
----------------------------------------
DPDK uses a 1:1 mapping and does not support IOMMU. IOMMU allows for simpler VM physical address translation.
The second role of IOMMU is to allow protection from unwanted memory access by an unsafe device that has DMA privileges.
Unfortunately, the protection comes with an extremely high performance cost for high speed NICs.
Setting ``iommu=pt`` disables IOMMU support for the hypervisor.
When trying to send packets from an application to itself, meaning smac==dmac, using Intel(R) 82599 VF packets are lost.