f-stack/dpdk/lib/librte_acl/acl_run_scalar.c

193 lines
6.1 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "acl_run.h"
/*
* Resolve priority for multiple results (scalar version).
* This consists comparing the priority of the current traversal with the
* running set of results for the packet.
* For each result, keep a running array of the result (rule number) and
* its priority for each category.
*/
static inline void
resolve_priority_scalar(uint64_t transition, int n,
const struct rte_acl_ctx *ctx, struct parms *parms,
const struct rte_acl_match_results *p, uint32_t categories)
{
uint32_t i;
int32_t *saved_priority;
uint32_t *saved_results;
const int32_t *priority;
const uint32_t *results;
saved_results = parms[n].cmplt->results;
saved_priority = parms[n].cmplt->priority;
/* results and priorities for completed trie */
results = p[transition].results;
priority = p[transition].priority;
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
if (saved_priority[i] <= priority[i]) {
saved_priority[i] = priority[i];
saved_results[i] = results[i];
}
if (saved_priority[i + 1] <= priority[i + 1]) {
saved_priority[i + 1] = priority[i + 1];
saved_results[i + 1] = results[i + 1];
}
if (saved_priority[i + 2] <= priority[i + 2]) {
saved_priority[i + 2] = priority[i + 2];
saved_results[i + 2] = results[i + 2];
}
if (saved_priority[i + 3] <= priority[i + 3]) {
saved_priority[i + 3] = priority[i + 3];
saved_results[i + 3] = results[i + 3];
}
}
} else {
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
saved_priority[i] = priority[i];
saved_priority[i + 1] = priority[i + 1];
saved_priority[i + 2] = priority[i + 2];
saved_priority[i + 3] = priority[i + 3];
saved_results[i] = results[i];
saved_results[i + 1] = results[i + 1];
saved_results[i + 2] = results[i + 2];
saved_results[i + 3] = results[i + 3];
}
}
}
static inline uint32_t
scan_forward(uint32_t input, uint32_t max)
{
return (input == 0) ? max : rte_bsf32(input);
}
static inline uint64_t
scalar_transition(const uint64_t *trans_table, uint64_t transition,
uint8_t input)
{
uint32_t addr, index, ranges, x, a, b, c;
/* break transition into component parts */
ranges = transition >> (sizeof(index) * CHAR_BIT);
index = transition & ~RTE_ACL_NODE_INDEX;
addr = transition ^ index;
if (index != RTE_ACL_NODE_DFA) {
/* calc address for a QRANGE/SINGLE node */
c = (uint32_t)input * SCALAR_QRANGE_MULT;
a = ranges | SCALAR_QRANGE_MIN;
a -= (c & SCALAR_QRANGE_MASK);
b = c & SCALAR_QRANGE_MIN;
a &= SCALAR_QRANGE_MIN;
a ^= (ranges ^ b) & (a ^ b);
x = scan_forward(a, 32) >> 3;
} else {
/* calc address for a DFA node */
x = ranges >> (input /
RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
x &= UINT8_MAX;
x = input - x;
}
addr += x;
/* pickup next transition */
transition = *(trans_table + addr);
return transition;
}
int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
int n;
uint64_t transition0, transition1;
uint32_t input0, input1;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SCALAR];
struct completion cmplt[MAX_SEARCHES_SCALAR];
struct parms parms[MAX_SEARCHES_SCALAR];
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
transition0 = index_array[0];
transition1 = index_array[1];
while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
transition0 = acl_match_check(transition0,
0, ctx, parms, &flows, resolve_priority_scalar);
transition1 = acl_match_check(transition1,
1, ctx, parms, &flows, resolve_priority_scalar);
}
while (flows.started > 0) {
input0 = GET_NEXT_4BYTES(parms, 0);
input1 = GET_NEXT_4BYTES(parms, 1);
for (n = 0; n < 4; n++) {
transition0 = scalar_transition(flows.trans,
transition0, (uint8_t)input0);
input0 >>= CHAR_BIT;
transition1 = scalar_transition(flows.trans,
transition1, (uint8_t)input1);
input1 >>= CHAR_BIT;
}
while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
transition0 = acl_match_check(transition0,
0, ctx, parms, &flows, resolve_priority_scalar);
transition1 = acl_match_check(transition1,
1, ctx, parms, &flows, resolve_priority_scalar);
}
}
return 0;
}