mirror of https://github.com/F-Stack/f-stack.git
566 lines
16 KiB
C
566 lines
16 KiB
C
|
/*
|
||
|
* Copyright (c) 2009-2016 Solarflare Communications Inc.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
||
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* The views and conclusions contained in the software and documentation are
|
||
|
* those of the authors and should not be interpreted as representing official
|
||
|
* policies, either expressed or implied, of the FreeBSD Project.
|
||
|
*/
|
||
|
|
||
|
#include "efx.h"
|
||
|
#include "efx_impl.h"
|
||
|
|
||
|
#if EFSYS_OPT_MON_MCDI
|
||
|
|
||
|
#if EFSYS_OPT_MON_STATS
|
||
|
|
||
|
#define MCDI_MON_NEXT_PAGE ((uint16_t)0xfffe)
|
||
|
#define MCDI_MON_INVALID_SENSOR ((uint16_t)0xfffd)
|
||
|
#define MCDI_MON_PAGE_SIZE 0x20
|
||
|
|
||
|
/* Bitmasks of valid port(s) for each sensor */
|
||
|
#define MCDI_MON_PORT_NONE (0x00)
|
||
|
#define MCDI_MON_PORT_P1 (0x01)
|
||
|
#define MCDI_MON_PORT_P2 (0x02)
|
||
|
#define MCDI_MON_PORT_P3 (0x04)
|
||
|
#define MCDI_MON_PORT_P4 (0x08)
|
||
|
#define MCDI_MON_PORT_Px (0xFFFF)
|
||
|
|
||
|
/* Get port mask from one-based MCDI port number */
|
||
|
#define MCDI_MON_PORT_MASK(_emip) (1U << ((_emip)->emi_port - 1))
|
||
|
|
||
|
/* Entry for MCDI sensor in sensor map */
|
||
|
#define STAT(portmask, stat) \
|
||
|
{ (MCDI_MON_PORT_##portmask), (EFX_MON_STAT_##stat) }
|
||
|
|
||
|
/* Entry for sensor next page flag in sensor map */
|
||
|
#define STAT_NEXT_PAGE() \
|
||
|
{ MCDI_MON_PORT_NONE, MCDI_MON_NEXT_PAGE }
|
||
|
|
||
|
/* Placeholder for gaps in the array */
|
||
|
#define STAT_NO_SENSOR() \
|
||
|
{ MCDI_MON_PORT_NONE, MCDI_MON_INVALID_SENSOR }
|
||
|
|
||
|
/* Map from MC sensors to monitor statistics */
|
||
|
static const struct mcdi_sensor_map_s {
|
||
|
uint16_t msm_port_mask;
|
||
|
uint16_t msm_stat;
|
||
|
} mcdi_sensor_map[] = {
|
||
|
/* Sensor page 0 MC_CMD_SENSOR_xxx */
|
||
|
STAT(Px, INT_TEMP), /* 0x00 CONTROLLER_TEMP */
|
||
|
STAT(Px, EXT_TEMP), /* 0x01 PHY_COMMON_TEMP */
|
||
|
STAT(Px, INT_COOLING), /* 0x02 CONTROLLER_COOLING */
|
||
|
STAT(P1, EXT_TEMP), /* 0x03 PHY0_TEMP */
|
||
|
STAT(P1, EXT_COOLING), /* 0x04 PHY0_COOLING */
|
||
|
STAT(P2, EXT_TEMP), /* 0x05 PHY1_TEMP */
|
||
|
STAT(P2, EXT_COOLING), /* 0x06 PHY1_COOLING */
|
||
|
STAT(Px, 1V), /* 0x07 IN_1V0 */
|
||
|
STAT(Px, 1_2V), /* 0x08 IN_1V2 */
|
||
|
STAT(Px, 1_8V), /* 0x09 IN_1V8 */
|
||
|
STAT(Px, 2_5V), /* 0x0a IN_2V5 */
|
||
|
STAT(Px, 3_3V), /* 0x0b IN_3V3 */
|
||
|
STAT(Px, 12V), /* 0x0c IN_12V0 */
|
||
|
STAT(Px, 1_2VA), /* 0x0d IN_1V2A */
|
||
|
STAT(Px, VREF), /* 0x0e IN_VREF */
|
||
|
STAT(Px, VAOE), /* 0x0f OUT_VAOE */
|
||
|
STAT(Px, AOE_TEMP), /* 0x10 AOE_TEMP */
|
||
|
STAT(Px, PSU_AOE_TEMP), /* 0x11 PSU_AOE_TEMP */
|
||
|
STAT(Px, PSU_TEMP), /* 0x12 PSU_TEMP */
|
||
|
STAT(Px, FAN0), /* 0x13 FAN_0 */
|
||
|
STAT(Px, FAN1), /* 0x14 FAN_1 */
|
||
|
STAT(Px, FAN2), /* 0x15 FAN_2 */
|
||
|
STAT(Px, FAN3), /* 0x16 FAN_3 */
|
||
|
STAT(Px, FAN4), /* 0x17 FAN_4 */
|
||
|
STAT(Px, VAOE_IN), /* 0x18 IN_VAOE */
|
||
|
STAT(Px, IAOE), /* 0x19 OUT_IAOE */
|
||
|
STAT(Px, IAOE_IN), /* 0x1a IN_IAOE */
|
||
|
STAT(Px, NIC_POWER), /* 0x1b NIC_POWER */
|
||
|
STAT(Px, 0_9V), /* 0x1c IN_0V9 */
|
||
|
STAT(Px, I0_9V), /* 0x1d IN_I0V9 */
|
||
|
STAT(Px, I1_2V), /* 0x1e IN_I1V2 */
|
||
|
STAT_NEXT_PAGE(), /* 0x1f Next page flag (not a sensor) */
|
||
|
|
||
|
/* Sensor page 1 MC_CMD_SENSOR_xxx */
|
||
|
STAT(Px, 0_9V_ADC), /* 0x20 IN_0V9_ADC */
|
||
|
STAT(Px, INT_TEMP2), /* 0x21 CONTROLLER_2_TEMP */
|
||
|
STAT(Px, VREG_TEMP), /* 0x22 VREG_INTERNAL_TEMP */
|
||
|
STAT(Px, VREG_0_9V_TEMP), /* 0x23 VREG_0V9_TEMP */
|
||
|
STAT(Px, VREG_1_2V_TEMP), /* 0x24 VREG_1V2_TEMP */
|
||
|
STAT(Px, INT_VPTAT), /* 0x25 CTRLR. VPTAT */
|
||
|
STAT(Px, INT_ADC_TEMP), /* 0x26 CTRLR. INTERNAL_TEMP */
|
||
|
STAT(Px, EXT_VPTAT), /* 0x27 CTRLR. VPTAT_EXTADC */
|
||
|
STAT(Px, EXT_ADC_TEMP), /* 0x28 CTRLR. INTERNAL_TEMP_EXTADC */
|
||
|
STAT(Px, AMBIENT_TEMP), /* 0x29 AMBIENT_TEMP */
|
||
|
STAT(Px, AIRFLOW), /* 0x2a AIRFLOW */
|
||
|
STAT(Px, VDD08D_VSS08D_CSR), /* 0x2b VDD08D_VSS08D_CSR */
|
||
|
STAT(Px, VDD08D_VSS08D_CSR_EXTADC), /* 0x2c VDD08D_VSS08D_CSR_EXTADC */
|
||
|
STAT(Px, HOTPOINT_TEMP), /* 0x2d HOTPOINT_TEMP */
|
||
|
STAT(P1, PHY_POWER_SWITCH_PORT0), /* 0x2e PHY_POWER_SWITCH_PORT0 */
|
||
|
STAT(P2, PHY_POWER_SWITCH_PORT1), /* 0x2f PHY_POWER_SWITCH_PORT1 */
|
||
|
STAT(Px, MUM_VCC), /* 0x30 MUM_VCC */
|
||
|
STAT(Px, 0V9_A), /* 0x31 0V9_A */
|
||
|
STAT(Px, I0V9_A), /* 0x32 I0V9_A */
|
||
|
STAT(Px, 0V9_A_TEMP), /* 0x33 0V9_A_TEMP */
|
||
|
STAT(Px, 0V9_B), /* 0x34 0V9_B */
|
||
|
STAT(Px, I0V9_B), /* 0x35 I0V9_B */
|
||
|
STAT(Px, 0V9_B_TEMP), /* 0x36 0V9_B_TEMP */
|
||
|
STAT(Px, CCOM_AVREG_1V2_SUPPLY), /* 0x37 CCOM_AVREG_1V2_SUPPLY */
|
||
|
STAT(Px, CCOM_AVREG_1V2_SUPPLY_EXT_ADC),
|
||
|
/* 0x38 CCOM_AVREG_1V2_SUPPLY_EXT_ADC */
|
||
|
STAT(Px, CCOM_AVREG_1V8_SUPPLY), /* 0x39 CCOM_AVREG_1V8_SUPPLY */
|
||
|
STAT(Px, CCOM_AVREG_1V8_SUPPLY_EXT_ADC),
|
||
|
/* 0x3a CCOM_AVREG_1V8_SUPPLY_EXT_ADC */
|
||
|
STAT_NO_SENSOR(), /* 0x3b (no sensor) */
|
||
|
STAT_NO_SENSOR(), /* 0x3c (no sensor) */
|
||
|
STAT_NO_SENSOR(), /* 0x3d (no sensor) */
|
||
|
STAT_NO_SENSOR(), /* 0x3e (no sensor) */
|
||
|
STAT_NEXT_PAGE(), /* 0x3f Next page flag (not a sensor) */
|
||
|
|
||
|
/* Sensor page 2 MC_CMD_SENSOR_xxx */
|
||
|
STAT(Px, CONTROLLER_MASTER_VPTAT), /* 0x40 MASTER_VPTAT */
|
||
|
STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP), /* 0x41 MASTER_INT_TEMP */
|
||
|
STAT(Px, CONTROLLER_MASTER_VPTAT_EXT_ADC), /* 0x42 MAST_VPTAT_EXT_ADC */
|
||
|
STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC),
|
||
|
/* 0x43 MASTER_INTERNAL_TEMP_EXT_ADC */
|
||
|
STAT(Px, CONTROLLER_SLAVE_VPTAT), /* 0x44 SLAVE_VPTAT */
|
||
|
STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP), /* 0x45 SLAVE_INTERNAL_TEMP */
|
||
|
STAT(Px, CONTROLLER_SLAVE_VPTAT_EXT_ADC), /* 0x46 SLAVE_VPTAT_EXT_ADC */
|
||
|
STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC),
|
||
|
/* 0x47 SLAVE_INTERNAL_TEMP_EXT_ADC */
|
||
|
STAT_NO_SENSOR(), /* 0x48 (no sensor) */
|
||
|
STAT(Px, SODIMM_VOUT), /* 0x49 SODIMM_VOUT */
|
||
|
STAT(Px, SODIMM_0_TEMP), /* 0x4a SODIMM_0_TEMP */
|
||
|
STAT(Px, SODIMM_1_TEMP), /* 0x4b SODIMM_1_TEMP */
|
||
|
STAT(Px, PHY0_VCC), /* 0x4c PHY0_VCC */
|
||
|
STAT(Px, PHY1_VCC), /* 0x4d PHY1_VCC */
|
||
|
STAT(Px, CONTROLLER_TDIODE_TEMP), /* 0x4e CONTROLLER_TDIODE_TEMP */
|
||
|
STAT(Px, BOARD_FRONT_TEMP), /* 0x4f BOARD_FRONT_TEMP */
|
||
|
STAT(Px, BOARD_BACK_TEMP), /* 0x50 BOARD_BACK_TEMP */
|
||
|
};
|
||
|
|
||
|
#define MCDI_STATIC_SENSOR_ASSERT(_field) \
|
||
|
EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field \
|
||
|
== EFX_MON_STAT_STATE_ ## _field)
|
||
|
|
||
|
static void
|
||
|
mcdi_mon_decode_stats(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in_bcount(sensor_mask_size) uint32_t *sensor_mask,
|
||
|
__in size_t sensor_mask_size,
|
||
|
__in_opt efsys_mem_t *esmp,
|
||
|
__out_bcount_opt(sensor_mask_size) uint32_t *stat_maskp,
|
||
|
__inout_ecount_opt(EFX_MON_NSTATS) efx_mon_stat_value_t *stat)
|
||
|
{
|
||
|
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
|
||
|
uint16_t port_mask;
|
||
|
uint16_t sensor;
|
||
|
size_t sensor_max;
|
||
|
uint32_t stat_mask[(EFX_ARRAY_SIZE(mcdi_sensor_map) + 31) / 32];
|
||
|
uint32_t idx = 0;
|
||
|
uint32_t page = 0;
|
||
|
|
||
|
/* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */
|
||
|
MCDI_STATIC_SENSOR_ASSERT(OK);
|
||
|
MCDI_STATIC_SENSOR_ASSERT(WARNING);
|
||
|
MCDI_STATIC_SENSOR_ASSERT(FATAL);
|
||
|
MCDI_STATIC_SENSOR_ASSERT(BROKEN);
|
||
|
MCDI_STATIC_SENSOR_ASSERT(NO_READING);
|
||
|
|
||
|
EFX_STATIC_ASSERT(sizeof (stat_mask[0]) * 8 ==
|
||
|
EFX_MON_MASK_ELEMENT_SIZE);
|
||
|
sensor_max =
|
||
|
MIN((8 * sensor_mask_size), EFX_ARRAY_SIZE(mcdi_sensor_map));
|
||
|
|
||
|
EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */
|
||
|
port_mask = MCDI_MON_PORT_MASK(emip);
|
||
|
|
||
|
memset(stat_mask, 0, sizeof (stat_mask));
|
||
|
|
||
|
/*
|
||
|
* The MCDI sensor readings in the DMA buffer are a packed array of
|
||
|
* MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for
|
||
|
* supported sensors (bit set in sensor_mask). The sensor_mask and
|
||
|
* sensor readings do not include entries for the per-page NEXT_PAGE
|
||
|
* flag.
|
||
|
*
|
||
|
* sensor_mask may legitimately contain MCDI sensors that the driver
|
||
|
* does not understand.
|
||
|
*/
|
||
|
for (sensor = 0; sensor < sensor_max; ++sensor) {
|
||
|
efx_mon_stat_t id = mcdi_sensor_map[sensor].msm_stat;
|
||
|
|
||
|
if ((sensor % MCDI_MON_PAGE_SIZE) == MC_CMD_SENSOR_PAGE0_NEXT) {
|
||
|
EFSYS_ASSERT3U(id, ==, MCDI_MON_NEXT_PAGE);
|
||
|
page++;
|
||
|
continue;
|
||
|
}
|
||
|
if (~(sensor_mask[page]) & (1U << sensor))
|
||
|
continue;
|
||
|
idx++;
|
||
|
|
||
|
if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
|
||
|
continue;
|
||
|
EFSYS_ASSERT(id < EFX_MON_NSTATS);
|
||
|
|
||
|
/*
|
||
|
* stat_mask is a bitmask indexed by EFX_MON_* monitor statistic
|
||
|
* identifiers from efx_mon_stat_t (without NEXT_PAGE bits).
|
||
|
*
|
||
|
* If there is an entry in the MCDI sensor to monitor statistic
|
||
|
* map then the sensor reading is used for the value of the
|
||
|
* monitor statistic.
|
||
|
*/
|
||
|
stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |=
|
||
|
(1U << (id % EFX_MON_MASK_ELEMENT_SIZE));
|
||
|
|
||
|
if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) {
|
||
|
efx_dword_t dword;
|
||
|
|
||
|
/* Get MCDI sensor reading from DMA buffer */
|
||
|
EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword);
|
||
|
|
||
|
/* Update EFX monitor stat from MCDI sensor reading */
|
||
|
stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword,
|
||
|
MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE);
|
||
|
|
||
|
stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword,
|
||
|
MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (stat_maskp != NULL) {
|
||
|
memcpy(stat_maskp, stat_mask, sizeof (stat_mask));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
mcdi_mon_ev(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_qword_t *eqp,
|
||
|
__out efx_mon_stat_t *idp,
|
||
|
__out efx_mon_stat_value_t *valuep)
|
||
|
{
|
||
|
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
|
||
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
||
|
uint16_t port_mask;
|
||
|
uint16_t sensor;
|
||
|
uint16_t state;
|
||
|
uint16_t value;
|
||
|
efx_mon_stat_t id;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */
|
||
|
port_mask = MCDI_MON_PORT_MASK(emip);
|
||
|
|
||
|
sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR);
|
||
|
state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE);
|
||
|
value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE);
|
||
|
|
||
|
/* Hardware must support this MCDI sensor */
|
||
|
EFSYS_ASSERT3U(sensor, <, (8 * encp->enc_mcdi_sensor_mask_size));
|
||
|
EFSYS_ASSERT((sensor % MCDI_MON_PAGE_SIZE) != MC_CMD_SENSOR_PAGE0_NEXT);
|
||
|
EFSYS_ASSERT(encp->enc_mcdi_sensor_maskp != NULL);
|
||
|
EFSYS_ASSERT((encp->enc_mcdi_sensor_maskp[sensor / MCDI_MON_PAGE_SIZE] &
|
||
|
(1U << (sensor % MCDI_MON_PAGE_SIZE))) != 0);
|
||
|
|
||
|
/* But we don't have to understand it */
|
||
|
if (sensor >= EFX_ARRAY_SIZE(mcdi_sensor_map)) {
|
||
|
rc = ENOTSUP;
|
||
|
goto fail1;
|
||
|
}
|
||
|
id = mcdi_sensor_map[sensor].msm_stat;
|
||
|
if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
|
||
|
return (ENODEV);
|
||
|
EFSYS_ASSERT(id < EFX_MON_NSTATS);
|
||
|
|
||
|
*idp = id;
|
||
|
valuep->emsv_value = value;
|
||
|
valuep->emsv_state = state;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
|
||
|
static __checkReturn efx_rc_t
|
||
|
efx_mcdi_read_sensors(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efsys_mem_t *esmp,
|
||
|
__in uint32_t size)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_READ_SENSORS_EXT_IN_LEN,
|
||
|
MC_CMD_READ_SENSORS_EXT_OUT_LEN)];
|
||
|
uint32_t addr_lo, addr_hi;
|
||
|
|
||
|
req.emr_cmd = MC_CMD_READ_SENSORS;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN;
|
||
|
|
||
|
addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff);
|
||
|
addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32);
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo);
|
||
|
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi);
|
||
|
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
return (req.emr_rc);
|
||
|
}
|
||
|
|
||
|
static __checkReturn efx_rc_t
|
||
|
efx_mcdi_sensor_info_npages(
|
||
|
__in efx_nic_t *enp,
|
||
|
__out uint32_t *npagesp)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
|
||
|
MC_CMD_SENSOR_INFO_OUT_LENMAX)];
|
||
|
int page;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(npagesp != NULL);
|
||
|
|
||
|
page = 0;
|
||
|
do {
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_SENSOR_INFO;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++);
|
||
|
|
||
|
efx_mcdi_execute_quiet(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
} while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) &
|
||
|
(1U << MC_CMD_SENSOR_PAGE0_NEXT));
|
||
|
|
||
|
*npagesp = page;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
static __checkReturn efx_rc_t
|
||
|
efx_mcdi_sensor_info(
|
||
|
__in efx_nic_t *enp,
|
||
|
__out_ecount(npages) uint32_t *sensor_maskp,
|
||
|
__in size_t npages)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
|
||
|
MC_CMD_SENSOR_INFO_OUT_LENMAX)];
|
||
|
uint32_t page;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(sensor_maskp != NULL);
|
||
|
|
||
|
for (page = 0; page < npages; page++) {
|
||
|
uint32_t mask;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_SENSOR_INFO;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK);
|
||
|
|
||
|
if ((page != (npages - 1)) &&
|
||
|
((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) {
|
||
|
rc = EINVAL;
|
||
|
goto fail2;
|
||
|
}
|
||
|
sensor_maskp[page] = mask;
|
||
|
}
|
||
|
|
||
|
if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) {
|
||
|
rc = EINVAL;
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
mcdi_mon_stats_update(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efsys_mem_t *esmp,
|
||
|
__inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values)
|
||
|
{
|
||
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
||
|
uint32_t size = encp->enc_mon_stat_dma_buf_size;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size);
|
||
|
|
||
|
mcdi_mon_decode_stats(enp,
|
||
|
encp->enc_mcdi_sensor_maskp,
|
||
|
encp->enc_mcdi_sensor_mask_size,
|
||
|
esmp, NULL, values);
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
mcdi_mon_cfg_build(
|
||
|
__in efx_nic_t *enp)
|
||
|
{
|
||
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
||
|
uint32_t npages;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
switch (enp->en_family) {
|
||
|
#if EFSYS_OPT_SIENA
|
||
|
case EFX_FAMILY_SIENA:
|
||
|
encp->enc_mon_type = EFX_MON_SFC90X0;
|
||
|
break;
|
||
|
#endif
|
||
|
#if EFSYS_OPT_HUNTINGTON
|
||
|
case EFX_FAMILY_HUNTINGTON:
|
||
|
encp->enc_mon_type = EFX_MON_SFC91X0;
|
||
|
break;
|
||
|
#endif
|
||
|
#if EFSYS_OPT_MEDFORD
|
||
|
case EFX_FAMILY_MEDFORD:
|
||
|
encp->enc_mon_type = EFX_MON_SFC92X0;
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
rc = EINVAL;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
/* Get mc sensor mask size */
|
||
|
npages = 0;
|
||
|
if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
encp->enc_mon_stat_dma_buf_size = npages * EFX_MON_STATS_PAGE_SIZE;
|
||
|
encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t);
|
||
|
|
||
|
/* Allocate mc sensor mask */
|
||
|
EFSYS_KMEM_ALLOC(enp->en_esip,
|
||
|
encp->enc_mcdi_sensor_mask_size,
|
||
|
encp->enc_mcdi_sensor_maskp);
|
||
|
|
||
|
if (encp->enc_mcdi_sensor_maskp == NULL) {
|
||
|
rc = ENOMEM;
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
/* Read mc sensor mask */
|
||
|
if ((rc = efx_mcdi_sensor_info(enp,
|
||
|
encp->enc_mcdi_sensor_maskp,
|
||
|
npages)) != 0)
|
||
|
goto fail4;
|
||
|
|
||
|
/* Build monitor statistics mask */
|
||
|
mcdi_mon_decode_stats(enp,
|
||
|
encp->enc_mcdi_sensor_maskp,
|
||
|
encp->enc_mcdi_sensor_mask_size,
|
||
|
NULL, encp->enc_mon_stat_mask, NULL);
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail4:
|
||
|
EFSYS_PROBE(fail4);
|
||
|
EFSYS_KMEM_FREE(enp->en_esip,
|
||
|
encp->enc_mcdi_sensor_mask_size,
|
||
|
encp->enc_mcdi_sensor_maskp);
|
||
|
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
mcdi_mon_cfg_free(
|
||
|
__in efx_nic_t *enp)
|
||
|
{
|
||
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
||
|
|
||
|
if (encp->enc_mcdi_sensor_maskp != NULL) {
|
||
|
EFSYS_KMEM_FREE(enp->en_esip,
|
||
|
encp->enc_mcdi_sensor_mask_size,
|
||
|
encp->enc_mcdi_sensor_maskp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif /* EFSYS_OPT_MON_STATS */
|
||
|
|
||
|
#endif /* EFSYS_OPT_MON_MCDI */
|