f-stack/dpdk/drivers/net/failsafe/failsafe_ops.c

776 lines
20 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <rte_debug.h>
#include <rte_atomic.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_cycles.h>
#include "failsafe_private.h"
static struct rte_eth_dev_info default_infos = {
/* Max possible number of elements */
.max_rx_pktlen = UINT32_MAX,
.max_rx_queues = RTE_MAX_QUEUES_PER_PORT,
.max_tx_queues = RTE_MAX_QUEUES_PER_PORT,
.max_mac_addrs = FAILSAFE_MAX_ETHADDR,
.max_hash_mac_addrs = UINT32_MAX,
.max_vfs = UINT16_MAX,
.max_vmdq_pools = UINT16_MAX,
.rx_desc_lim = {
.nb_max = UINT16_MAX,
.nb_min = 0,
.nb_align = 1,
.nb_seg_max = UINT16_MAX,
.nb_mtu_seg_max = UINT16_MAX,
},
.tx_desc_lim = {
.nb_max = UINT16_MAX,
.nb_min = 0,
.nb_align = 1,
.nb_seg_max = UINT16_MAX,
.nb_mtu_seg_max = UINT16_MAX,
},
/*
* Set of capabilities that can be verified upon
* configuring a sub-device.
*/
.rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_TCP_LRO,
.tx_offload_capa = 0x0,
.flow_type_rss_offloads = 0x0,
};
static int
fs_dev_configure(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV(sdev, i, dev) {
int rmv_interrupt = 0;
int lsc_interrupt = 0;
int lsc_enabled;
if (sdev->state != DEV_PROBED)
continue;
rmv_interrupt = ETH(sdev)->data->dev_flags &
RTE_ETH_DEV_INTR_RMV;
if (rmv_interrupt) {
DEBUG("Enabling RMV interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.rmv = 1;
} else {
DEBUG("sub_device %d does not support RMV event", i);
}
lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
lsc_interrupt = lsc_enabled &&
(ETH(sdev)->data->dev_flags &
RTE_ETH_DEV_INTR_LSC);
if (lsc_interrupt) {
DEBUG("Enabling LSC interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.lsc = 1;
} else if (lsc_enabled && !lsc_interrupt) {
DEBUG("Disabling LSC interrupts for sub_device %d", i);
dev->data->dev_conf.intr_conf.lsc = 0;
}
DEBUG("Configuring sub-device %d", i);
sdev->remove = 0;
ret = rte_eth_dev_configure(PORT_ID(sdev),
dev->data->nb_rx_queues,
dev->data->nb_tx_queues,
&dev->data->dev_conf);
if (ret) {
ERROR("Could not configure sub_device %d", i);
return ret;
}
2018-11-21 08:34:11 +00:00
if (rmv_interrupt && sdev->rmv_callback == 0) {
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_RMV,
failsafe_eth_rmv_event_callback,
sdev);
if (ret)
WARN("Failed to register RMV callback for sub_device %d",
SUB_ID(sdev));
2018-11-21 08:34:11 +00:00
else
sdev->rmv_callback = 1;
}
dev->data->dev_conf.intr_conf.rmv = 0;
2018-11-21 08:34:11 +00:00
if (lsc_interrupt && sdev->lsc_callback == 0) {
ret = rte_eth_dev_callback_register(PORT_ID(sdev),
RTE_ETH_EVENT_INTR_LSC,
failsafe_eth_lsc_event_callback,
dev);
if (ret)
WARN("Failed to register LSC callback for sub_device %d",
SUB_ID(sdev));
2018-11-21 08:34:11 +00:00
else
sdev->lsc_callback = 1;
}
dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
sdev->state = DEV_ACTIVE;
}
if (PRIV(dev)->state < DEV_ACTIVE)
PRIV(dev)->state = DEV_ACTIVE;
return 0;
}
static int
fs_dev_start(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV(sdev, i, dev) {
if (sdev->state != DEV_ACTIVE)
continue;
DEBUG("Starting sub_device %d", i);
ret = rte_eth_dev_start(PORT_ID(sdev));
if (ret)
return ret;
sdev->state = DEV_STARTED;
}
if (PRIV(dev)->state < DEV_STARTED)
PRIV(dev)->state = DEV_STARTED;
fs_switch_dev(dev, NULL);
return 0;
}
static void
fs_dev_stop(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
PRIV(dev)->state = DEV_STARTED - 1;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
rte_eth_dev_stop(PORT_ID(sdev));
sdev->state = DEV_STARTED - 1;
}
}
static int
fs_dev_set_link_up(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
if (ret) {
ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static int
fs_dev_set_link_down(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
if (ret) {
ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static void fs_dev_free_queues(struct rte_eth_dev *dev);
static void
fs_dev_close(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
failsafe_hotplug_alarm_cancel(dev);
if (PRIV(dev)->state == DEV_STARTED)
dev->dev_ops->dev_stop(dev);
PRIV(dev)->state = DEV_ACTIVE - 1;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Closing sub_device %d", i);
2018-11-21 08:34:11 +00:00
failsafe_eth_dev_unregister_callbacks(sdev);
rte_eth_dev_close(PORT_ID(sdev));
sdev->state = DEV_ACTIVE - 1;
}
fs_dev_free_queues(dev);
}
static void
fs_rx_queue_release(void *queue)
{
struct rte_eth_dev *dev;
struct sub_device *sdev;
uint8_t i;
struct rxq *rxq;
if (queue == NULL)
return;
rxq = queue;
dev = rxq->priv->dev;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
SUBOPS(sdev, rx_queue_release)
(ETH(sdev)->data->rx_queues[rxq->qid]);
dev->data->rx_queues[rxq->qid] = NULL;
rte_free(rxq);
}
static int
fs_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
struct sub_device *sdev;
struct rxq *rxq;
uint8_t i;
int ret;
rxq = dev->data->rx_queues[rx_queue_id];
if (rxq != NULL) {
fs_rx_queue_release(rxq);
dev->data->rx_queues[rx_queue_id] = NULL;
}
rxq = rte_zmalloc(NULL,
sizeof(*rxq) +
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
RTE_CACHE_LINE_SIZE);
if (rxq == NULL)
return -ENOMEM;
FOREACH_SUBDEV(sdev, i, dev)
rte_atomic64_init(&rxq->refcnt[i]);
rxq->qid = rx_queue_id;
rxq->socket_id = socket_id;
rxq->info.mp = mb_pool;
rxq->info.conf = *rx_conf;
rxq->info.nb_desc = nb_rx_desc;
rxq->priv = PRIV(dev);
dev->data->rx_queues[rx_queue_id] = rxq;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
rx_queue_id,
nb_rx_desc, socket_id,
rx_conf, mb_pool);
if (ret) {
ERROR("RX queue setup failed for sub_device %d", i);
goto free_rxq;
}
}
return 0;
free_rxq:
fs_rx_queue_release(rxq);
return ret;
}
static void
fs_tx_queue_release(void *queue)
{
struct rte_eth_dev *dev;
struct sub_device *sdev;
uint8_t i;
struct txq *txq;
if (queue == NULL)
return;
txq = queue;
dev = txq->priv->dev;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
SUBOPS(sdev, tx_queue_release)
(ETH(sdev)->data->tx_queues[txq->qid]);
dev->data->tx_queues[txq->qid] = NULL;
rte_free(txq);
}
static int
fs_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct sub_device *sdev;
struct txq *txq;
uint8_t i;
int ret;
txq = dev->data->tx_queues[tx_queue_id];
if (txq != NULL) {
fs_tx_queue_release(txq);
dev->data->tx_queues[tx_queue_id] = NULL;
}
txq = rte_zmalloc("ethdev TX queue",
sizeof(*txq) +
sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
RTE_CACHE_LINE_SIZE);
if (txq == NULL)
return -ENOMEM;
FOREACH_SUBDEV(sdev, i, dev)
rte_atomic64_init(&txq->refcnt[i]);
txq->qid = tx_queue_id;
txq->socket_id = socket_id;
txq->info.conf = *tx_conf;
txq->info.nb_desc = nb_tx_desc;
txq->priv = PRIV(dev);
dev->data->tx_queues[tx_queue_id] = txq;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
tx_queue_id,
nb_tx_desc, socket_id,
tx_conf);
if (ret) {
ERROR("TX queue setup failed for sub_device %d", i);
goto free_txq;
}
}
return 0;
free_txq:
fs_tx_queue_release(txq);
return ret;
}
static void
fs_dev_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
fs_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
fs_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
static void
fs_promiscuous_enable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_promiscuous_enable(PORT_ID(sdev));
}
static void
fs_promiscuous_disable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_promiscuous_disable(PORT_ID(sdev));
}
static void
fs_allmulticast_enable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_allmulticast_enable(PORT_ID(sdev));
}
static void
fs_allmulticast_disable(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_allmulticast_disable(PORT_ID(sdev));
}
static int
fs_link_update(struct rte_eth_dev *dev,
int wait_to_complete)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling link_update on sub_device %d", i);
ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
if (ret && ret != -1) {
ERROR("Link update failed for sub_device %d with error %d",
i, ret);
return ret;
}
}
if (TX_SUBDEV(dev)) {
struct rte_eth_link *l1;
struct rte_eth_link *l2;
l1 = &dev->data->dev_link;
l2 = &ETH(TX_SUBDEV(dev))->data->dev_link;
if (memcmp(l1, l2, sizeof(*l1))) {
*l1 = *l2;
return 0;
}
}
return -1;
}
static int
fs_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct sub_device *sdev;
uint8_t i;
int ret;
rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
if (ret) {
ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
i, ret);
*timestamp = 0;
return ret;
}
*timestamp = rte_rdtsc();
failsafe_stats_increment(stats, snapshot);
}
return 0;
}
static void
fs_stats_reset(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
rte_eth_stats_reset(PORT_ID(sdev));
memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
}
memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
}
/**
* Fail-safe dev_infos_get rules:
*
* No sub_device:
* Numerables:
* Use the maximum possible values for any field, so as not
* to impede any further configuration effort.
* Capabilities:
* Limits capabilities to those that are understood by the
* fail-safe PMD. This understanding stems from the fail-safe
* being capable of verifying that the related capability is
* expressed within the device configuration (struct rte_eth_conf).
*
* At least one probed sub_device:
* Numerables:
* Uses values from the active probed sub_device
* The rationale here is that if any sub_device is less capable
* (for example concerning the number of queues) than the active
* sub_device, then its subsequent configuration will fail.
* It is impossible to foresee this failure when the failing sub_device
* is supposed to be plugged-in later on, so the configuration process
* is the single point of failure and error reporting.
* Capabilities:
* Uses a logical AND of RX capabilities among
* all sub_devices and the default capabilities.
* Uses a logical AND of TX capabilities among
* the active probed sub_device and the default capabilities.
*
*/
static void
fs_dev_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *infos)
{
struct sub_device *sdev;
uint8_t i;
sdev = TX_SUBDEV(dev);
if (sdev == NULL) {
DEBUG("No probed device, using default infos");
rte_memcpy(&PRIV(dev)->infos, &default_infos,
sizeof(default_infos));
} else {
uint32_t rx_offload_capa;
rx_offload_capa = default_infos.rx_offload_capa;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
rte_eth_dev_info_get(PORT_ID(sdev),
&PRIV(dev)->infos);
rx_offload_capa &= PRIV(dev)->infos.rx_offload_capa;
}
sdev = TX_SUBDEV(dev);
rte_eth_dev_info_get(PORT_ID(sdev), &PRIV(dev)->infos);
PRIV(dev)->infos.rx_offload_capa = rx_offload_capa;
PRIV(dev)->infos.tx_offload_capa &=
default_infos.tx_offload_capa;
PRIV(dev)->infos.flow_type_rss_offloads &=
default_infos.flow_type_rss_offloads;
}
rte_memcpy(infos, &PRIV(dev)->infos, sizeof(*infos));
}
static const uint32_t *
fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
struct sub_device *sdev;
struct rte_eth_dev *edev;
sdev = TX_SUBDEV(dev);
if (sdev == NULL)
return NULL;
edev = ETH(sdev);
/* ENOTSUP: counts as no supported ptypes */
if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL)
return NULL;
/*
* The API does not permit to do a clean AND of all ptypes,
* It is also incomplete by design and we do not really care
* to have a best possible value in this context.
* We just return the ptypes of the device of highest
* priority, usually the PREFERRED device.
*/
return SUBOPS(sdev, dev_supported_ptypes_get)(edev);
}
static int
fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
if (ret) {
ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
i, ret);
return ret;
}
}
return 0;
}
static int
fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
if (ret) {
ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static int
fs_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct sub_device *sdev;
sdev = TX_SUBDEV(dev);
if (sdev == NULL)
return 0;
if (SUBOPS(sdev, flow_ctrl_get) == NULL)
return -ENOTSUP;
return SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
}
static int
fs_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf)
{
struct sub_device *sdev;
uint8_t i;
int ret;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
if (ret) {
ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
static void
fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct sub_device *sdev;
uint8_t i;
/* No check: already done within the rte_eth_dev_mac_addr_remove
* call for the fail-safe device.
*/
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
&dev->data->mac_addrs[index]);
PRIV(dev)->mac_addr_pool[index] = 0;
}
static int
fs_mac_addr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
uint32_t index,
uint32_t vmdq)
{
struct sub_device *sdev;
int ret;
uint8_t i;
RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
if (ret) {
ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
PRIu8 " with error %d", i, ret);
return ret;
}
}
if (index >= PRIV(dev)->nb_mac_addr) {
DEBUG("Growing mac_addrs array");
PRIV(dev)->nb_mac_addr = index;
}
PRIV(dev)->mac_addr_pool[index] = vmdq;
return 0;
}
static void
fs_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
{
struct sub_device *sdev;
uint8_t i;
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
}
static int
fs_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type type,
enum rte_filter_op op,
void *arg)
{
struct sub_device *sdev;
uint8_t i;
int ret;
if (type == RTE_ETH_FILTER_GENERIC &&
op == RTE_ETH_FILTER_GET) {
*(const void **)arg = &fs_flow_ops;
return 0;
}
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
DEBUG("Calling rte_eth_dev_filter_ctrl on sub_device %d", i);
ret = rte_eth_dev_filter_ctrl(PORT_ID(sdev), type, op, arg);
if (ret) {
ERROR("Operation rte_eth_dev_filter_ctrl failed for sub_device %d"
" with error %d", i, ret);
return ret;
}
}
return 0;
}
const struct eth_dev_ops failsafe_ops = {
.dev_configure = fs_dev_configure,
.dev_start = fs_dev_start,
.dev_stop = fs_dev_stop,
.dev_set_link_down = fs_dev_set_link_down,
.dev_set_link_up = fs_dev_set_link_up,
.dev_close = fs_dev_close,
.promiscuous_enable = fs_promiscuous_enable,
.promiscuous_disable = fs_promiscuous_disable,
.allmulticast_enable = fs_allmulticast_enable,
.allmulticast_disable = fs_allmulticast_disable,
.link_update = fs_link_update,
.stats_get = fs_stats_get,
.stats_reset = fs_stats_reset,
.dev_infos_get = fs_dev_infos_get,
.dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
.mtu_set = fs_mtu_set,
.vlan_filter_set = fs_vlan_filter_set,
.rx_queue_setup = fs_rx_queue_setup,
.tx_queue_setup = fs_tx_queue_setup,
.rx_queue_release = fs_rx_queue_release,
.tx_queue_release = fs_tx_queue_release,
.flow_ctrl_get = fs_flow_ctrl_get,
.flow_ctrl_set = fs_flow_ctrl_set,
.mac_addr_remove = fs_mac_addr_remove,
.mac_addr_add = fs_mac_addr_add,
.mac_addr_set = fs_mac_addr_set,
.filter_ctrl = fs_filter_ctrl,
};