f-stack/dpdk/drivers/crypto/dpaa_sec/dpaa_sec_raw_dp.c

1057 lines
25 KiB
C
Raw Normal View History

2022-09-06 04:00:10 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2021-2022 NXP
*/
#include <rte_byteorder.h>
#include <rte_common.h>
#include <cryptodev_pmd.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#ifdef RTE_LIB_SECURITY
#include <rte_security_driver.h>
#endif
/* RTA header files */
#include <desc/algo.h>
#include <desc/ipsec.h>
#include <rte_dpaa_bus.h>
#include <dpaa_sec.h>
#include <dpaa_sec_log.h>
struct dpaa_sec_raw_dp_ctx {
dpaa_sec_session *session;
uint32_t tail;
uint32_t head;
uint16_t cached_enqueue;
uint16_t cached_dequeue;
};
static inline int
is_encode(dpaa_sec_session *ses)
{
return ses->dir == DIR_ENC;
}
static inline int is_decode(dpaa_sec_session *ses)
{
return ses->dir == DIR_DEC;
}
static __rte_always_inline int
dpaa_sec_raw_enqueue_done(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(n);
return 0;
}
static __rte_always_inline int
dpaa_sec_raw_dequeue_done(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(n);
return 0;
}
static inline struct dpaa_sec_op_ctx *
dpaa_sec_alloc_raw_ctx(dpaa_sec_session *ses, int sg_count)
{
struct dpaa_sec_op_ctx *ctx;
int i, retval;
retval = rte_mempool_get(
ses->qp[rte_lcore_id() % MAX_DPAA_CORES]->ctx_pool,
(void **)(&ctx));
if (!ctx || retval) {
DPAA_SEC_DP_WARN("Alloc sec descriptor failed!");
return NULL;
}
/*
* Clear SG memory. There are 16 SG entries of 16 Bytes each.
* one call to dcbz_64() clear 64 bytes, hence calling it 4 times
* to clear all the SG entries. dpaa_sec_alloc_ctx() is called for
* each packet, memset is costlier than dcbz_64().
*/
for (i = 0; i < sg_count && i < MAX_JOB_SG_ENTRIES; i += 4)
dcbz_64(&ctx->job.sg[i]);
ctx->ctx_pool = ses->qp[rte_lcore_id() % MAX_DPAA_CORES]->ctx_pool;
ctx->vtop_offset = (size_t) ctx - rte_mempool_virt2iova(ctx);
return ctx;
}
static struct dpaa_sec_job *
build_dpaa_raw_dp_auth_fd(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata,
struct qm_fd *fd)
{
RTE_SET_USED(dest_sgl);
RTE_SET_USED(iv);
RTE_SET_USED(auth_iv);
RTE_SET_USED(fd);
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
phys_addr_t start_addr;
uint8_t *old_digest, extra_segs;
int data_len, data_offset, total_len = 0;
unsigned int i;
for (i = 0; i < sgl->num; i++)
total_len += sgl->vec[i].len;
data_len = total_len - ofs.ofs.auth.head - ofs.ofs.auth.tail;
data_offset = ofs.ofs.auth.head;
/* Support only length in bits for SNOW3G and ZUC */
if (is_decode(ses))
extra_segs = 3;
else
extra_segs = 2;
if (sgl->num > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Auth: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_raw_ctx(ses, sgl->num * 2 + extra_segs);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->userdata = (void *)userdata;
old_digest = ctx->digest;
/* output */
out_sg = &cf->sg[0];
qm_sg_entry_set64(out_sg, digest->iova);
out_sg->length = ses->digest_length;
cpu_to_hw_sg(out_sg);
/* input */
in_sg = &cf->sg[1];
/* need to extend the input to a compound frame */
in_sg->extension = 1;
in_sg->final = 1;
in_sg->length = data_len;
qm_sg_entry_set64(in_sg, rte_dpaa_mem_vtop(&cf->sg[2]));
/* 1st seg */
sg = in_sg + 1;
if (ses->iv.length) {
uint8_t *iv_ptr;
iv_ptr = rte_crypto_op_ctod_offset(userdata, uint8_t *,
ses->iv.offset);
if (ses->auth_alg == RTE_CRYPTO_AUTH_SNOW3G_UIA2) {
iv_ptr = conv_to_snow_f9_iv(iv_ptr);
sg->length = 12;
} else if (ses->auth_alg == RTE_CRYPTO_AUTH_ZUC_EIA3) {
iv_ptr = conv_to_zuc_eia_iv(iv_ptr);
sg->length = 8;
} else {
sg->length = ses->iv.length;
}
qm_sg_entry_set64(sg, rte_dpaa_mem_vtop(iv_ptr));
in_sg->length += sg->length;
cpu_to_hw_sg(sg);
sg++;
}
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->offset = data_offset;
if (data_len <= (int)(sgl->vec[0].len - data_offset)) {
sg->length = data_len;
} else {
sg->length = sgl->vec[0].len - data_offset;
/* remaining i/p segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
if (data_len > (int)sgl->vec[i].len)
sg->length = sgl->vec[0].len;
else
sg->length = data_len;
data_len = data_len - sg->length;
if (data_len < 1)
break;
}
}
if (is_decode(ses)) {
/* Digest verification case */
cpu_to_hw_sg(sg);
sg++;
rte_memcpy(old_digest, digest->va,
ses->digest_length);
start_addr = rte_dpaa_mem_vtop(old_digest);
qm_sg_entry_set64(sg, start_addr);
sg->length = ses->digest_length;
in_sg->length += ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
cpu_to_hw_sg(in_sg);
return cf;
}
static inline struct dpaa_sec_job *
build_raw_cipher_auth_gcm_sg(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata,
struct qm_fd *fd)
{
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
uint8_t extra_req_segs;
uint8_t *IV_ptr = iv->va;
int data_len = 0, aead_len = 0;
unsigned int i;
for (i = 0; i < sgl->num; i++)
data_len += sgl->vec[i].len;
extra_req_segs = 4;
aead_len = data_len - ofs.ofs.cipher.head - ofs.ofs.cipher.tail;
if (ses->auth_only_len)
extra_req_segs++;
if (sgl->num > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("AEAD: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_raw_ctx(ses, sgl->num * 2 + extra_req_segs);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->userdata = (void *)userdata;
rte_prefetch0(cf->sg);
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
if (is_encode(ses))
out_sg->length = aead_len + ses->digest_length;
else
out_sg->length = aead_len;
/* output sg entries */
sg = &cf->sg[2];
qm_sg_entry_set64(out_sg, rte_dpaa_mem_vtop(sg));
cpu_to_hw_sg(out_sg);
if (dest_sgl) {
/* 1st seg */
qm_sg_entry_set64(sg, dest_sgl->vec[0].iova);
sg->length = dest_sgl->vec[0].len - ofs.ofs.cipher.head;
sg->offset = ofs.ofs.cipher.head;
/* Successive segs */
for (i = 1; i < dest_sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, dest_sgl->vec[i].iova);
sg->length = dest_sgl->vec[i].len;
}
} else {
/* 1st seg */
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - ofs.ofs.cipher.head;
sg->offset = ofs.ofs.cipher.head;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
}
if (is_encode(ses)) {
cpu_to_hw_sg(sg);
/* set auth output */
sg++;
qm_sg_entry_set64(sg, digest->iova);
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* input */
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
if (is_encode(ses))
in_sg->length = ses->iv.length + aead_len
+ ses->auth_only_len;
else
in_sg->length = ses->iv.length + aead_len
+ ses->auth_only_len + ses->digest_length;
/* input sg entries */
sg++;
qm_sg_entry_set64(in_sg, rte_dpaa_mem_vtop(sg));
cpu_to_hw_sg(in_sg);
/* 1st seg IV */
qm_sg_entry_set64(sg, rte_dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
/* 2 seg auth only */
if (ses->auth_only_len) {
sg++;
qm_sg_entry_set64(sg, auth_iv->iova);
sg->length = ses->auth_only_len;
cpu_to_hw_sg(sg);
}
/* 3rd seg */
sg++;
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - ofs.ofs.cipher.head;
sg->offset = ofs.ofs.cipher.head;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
if (is_decode(ses)) {
cpu_to_hw_sg(sg);
sg++;
memcpy(ctx->digest, digest->va,
ses->digest_length);
qm_sg_entry_set64(sg, rte_dpaa_mem_vtop(ctx->digest));
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
if (ses->auth_only_len)
fd->cmd = 0x80000000 | ses->auth_only_len;
return cf;
}
static inline struct dpaa_sec_job *
build_dpaa_raw_dp_chain_fd(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata,
struct qm_fd *fd)
{
RTE_SET_USED(auth_iv);
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
uint8_t *IV_ptr = iv->va;
unsigned int i;
uint16_t auth_hdr_len = ofs.ofs.cipher.head -
ofs.ofs.auth.head;
uint16_t auth_tail_len;
uint32_t auth_only_len;
int data_len = 0, auth_len = 0, cipher_len = 0;
for (i = 0; i < sgl->num; i++)
data_len += sgl->vec[i].len;
cipher_len = data_len - ofs.ofs.cipher.head - ofs.ofs.cipher.tail;
auth_len = data_len - ofs.ofs.auth.head - ofs.ofs.auth.tail;
auth_tail_len = auth_len - cipher_len - auth_hdr_len;
auth_only_len = (auth_tail_len << 16) | auth_hdr_len;
if (sgl->num > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Cipher-Auth: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_raw_ctx(ses, sgl->num * 2 + 4);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->userdata = (void *)userdata;
rte_prefetch0(cf->sg);
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
if (is_encode(ses))
out_sg->length = cipher_len + ses->digest_length;
else
out_sg->length = cipher_len;
/* output sg entries */
sg = &cf->sg[2];
qm_sg_entry_set64(out_sg, rte_dpaa_mem_vtop(sg));
cpu_to_hw_sg(out_sg);
/* 1st seg */
if (dest_sgl) {
qm_sg_entry_set64(sg, dest_sgl->vec[0].iova);
sg->length = dest_sgl->vec[0].len - ofs.ofs.cipher.head;
sg->offset = ofs.ofs.cipher.head;
/* Successive segs */
for (i = 1; i < dest_sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, dest_sgl->vec[i].iova);
sg->length = dest_sgl->vec[i].len;
}
sg->length -= ofs.ofs.cipher.tail;
} else {
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - ofs.ofs.cipher.head;
sg->offset = ofs.ofs.cipher.head;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
sg->length -= ofs.ofs.cipher.tail;
}
if (is_encode(ses)) {
cpu_to_hw_sg(sg);
/* set auth output */
sg++;
qm_sg_entry_set64(sg, digest->iova);
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* input */
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
if (is_encode(ses))
in_sg->length = ses->iv.length + auth_len;
else
in_sg->length = ses->iv.length + auth_len
+ ses->digest_length;
/* input sg entries */
sg++;
qm_sg_entry_set64(in_sg, rte_dpaa_mem_vtop(sg));
cpu_to_hw_sg(in_sg);
/* 1st seg IV */
qm_sg_entry_set64(sg, rte_dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
/* 2 seg */
sg++;
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - ofs.ofs.auth.head;
sg->offset = ofs.ofs.auth.head;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
if (is_decode(ses)) {
cpu_to_hw_sg(sg);
sg++;
memcpy(ctx->digest, digest->va,
ses->digest_length);
qm_sg_entry_set64(sg, rte_dpaa_mem_vtop(ctx->digest));
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
if (auth_only_len)
fd->cmd = 0x80000000 | auth_only_len;
return cf;
}
static struct dpaa_sec_job *
build_dpaa_raw_dp_cipher_fd(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata,
struct qm_fd *fd)
{
RTE_SET_USED(digest);
RTE_SET_USED(auth_iv);
RTE_SET_USED(fd);
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
unsigned int i;
uint8_t *IV_ptr = iv->va;
int data_len, total_len = 0, data_offset;
for (i = 0; i < sgl->num; i++)
total_len += sgl->vec[i].len;
data_len = total_len - ofs.ofs.cipher.head - ofs.ofs.cipher.tail;
data_offset = ofs.ofs.cipher.head;
/* Support lengths in bits only for SNOW3G and ZUC */
if (sgl->num > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Cipher: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_raw_ctx(ses, sgl->num * 2 + 3);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->userdata = (void *)userdata;
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
out_sg->length = data_len;
qm_sg_entry_set64(out_sg, rte_dpaa_mem_vtop(&cf->sg[2]));
cpu_to_hw_sg(out_sg);
if (dest_sgl) {
/* 1st seg */
sg = &cf->sg[2];
qm_sg_entry_set64(sg, dest_sgl->vec[0].iova);
sg->length = dest_sgl->vec[0].len - data_offset;
sg->offset = data_offset;
/* Successive segs */
for (i = 1; i < dest_sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, dest_sgl->vec[i].iova);
sg->length = dest_sgl->vec[i].len;
}
} else {
/* 1st seg */
sg = &cf->sg[2];
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - data_offset;
sg->offset = data_offset;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* input */
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
in_sg->length = data_len + ses->iv.length;
sg++;
qm_sg_entry_set64(in_sg, rte_dpaa_mem_vtop(sg));
cpu_to_hw_sg(in_sg);
/* IV */
qm_sg_entry_set64(sg, rte_dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
/* 1st seg */
sg++;
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - data_offset;
sg->offset = data_offset;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
sg->final = 1;
cpu_to_hw_sg(sg);
return cf;
}
#ifdef RTE_LIBRTE_SECURITY
static inline struct dpaa_sec_job *
build_dpaa_raw_proto_sg(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata,
struct qm_fd *fd)
{
RTE_SET_USED(iv);
RTE_SET_USED(digest);
RTE_SET_USED(auth_iv);
RTE_SET_USED(ofs);
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
uint32_t in_len = 0, out_len = 0;
unsigned int i;
if (sgl->num > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Proto: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_raw_ctx(ses, sgl->num * 2 + 4);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->userdata = (void *)userdata;
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
qm_sg_entry_set64(out_sg, rte_dpaa_mem_vtop(&cf->sg[2]));
if (dest_sgl) {
/* 1st seg */
sg = &cf->sg[2];
qm_sg_entry_set64(sg, dest_sgl->vec[0].iova);
sg->offset = 0;
sg->length = dest_sgl->vec[0].len;
out_len += sg->length;
for (i = 1; i < dest_sgl->num; i++) {
/* Successive segs */
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, dest_sgl->vec[i].iova);
sg->offset = 0;
sg->length = dest_sgl->vec[i].len;
out_len += sg->length;
}
sg->length = dest_sgl->vec[i - 1].tot_len;
} else {
/* 1st seg */
sg = &cf->sg[2];
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->offset = 0;
sg->length = sgl->vec[0].len;
out_len += sg->length;
for (i = 1; i < sgl->num; i++) {
/* Successive segs */
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->offset = 0;
sg->length = sgl->vec[i].len;
out_len += sg->length;
}
sg->length = sgl->vec[i - 1].tot_len;
}
out_len += sg->length;
sg->final = 1;
cpu_to_hw_sg(sg);
out_sg->length = out_len;
cpu_to_hw_sg(out_sg);
/* input */
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
in_len = sgl->vec[0].len;
sg++;
qm_sg_entry_set64(in_sg, rte_dpaa_mem_vtop(sg));
/* 1st seg */
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len;
sg->offset = 0;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
sg->offset = 0;
in_len += sg->length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
in_sg->length = in_len;
cpu_to_hw_sg(in_sg);
if ((ses->ctxt == DPAA_SEC_PDCP) && ses->pdcp.hfn_ovd) {
fd->cmd = 0x80000000 |
*((uint32_t *)((uint8_t *)userdata +
ses->pdcp.hfn_ovd_offset));
DPAA_SEC_DP_DEBUG("Per packet HFN: %x, ovd:%u\n",
*((uint32_t *)((uint8_t *)userdata +
ses->pdcp.hfn_ovd_offset)),
ses->pdcp.hfn_ovd);
}
return cf;
}
#endif
static uint32_t
dpaa_sec_raw_enqueue_burst(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
void *user_data[], int *status)
{
/* Function to transmit the frames to given device and queuepair */
uint32_t loop;
struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp_data;
uint16_t num_tx = 0;
struct qm_fd fds[DPAA_SEC_BURST], *fd;
uint32_t frames_to_send;
struct dpaa_sec_job *cf;
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
uint32_t flags[DPAA_SEC_BURST] = {0};
struct qman_fq *inq[DPAA_SEC_BURST];
if (unlikely(!DPAA_PER_LCORE_PORTAL)) {
if (rte_dpaa_portal_init((void *)0)) {
DPAA_SEC_ERR("Failure in affining portal");
return 0;
}
}
while (vec->num) {
frames_to_send = (vec->num > DPAA_SEC_BURST) ?
DPAA_SEC_BURST : vec->num;
for (loop = 0; loop < frames_to_send; loop++) {
if (unlikely(!ses->qp[rte_lcore_id() % MAX_DPAA_CORES])) {
if (dpaa_sec_attach_sess_q(dpaa_qp, ses)) {
frames_to_send = loop;
goto send_pkts;
}
} else if (unlikely(ses->qp[rte_lcore_id() %
MAX_DPAA_CORES] != dpaa_qp)) {
DPAA_SEC_DP_ERR("Old:sess->qp = %p"
" New qp = %p\n",
ses->qp[rte_lcore_id() %
MAX_DPAA_CORES], dpaa_qp);
frames_to_send = loop;
goto send_pkts;
}
/*Clear the unused FD fields before sending*/
fd = &fds[loop];
memset(fd, 0, sizeof(struct qm_fd));
cf = ses->build_raw_dp_fd(drv_ctx,
&vec->src_sgl[loop],
&vec->dest_sgl[loop],
&vec->iv[loop],
&vec->digest[loop],
&vec->auth_iv[loop],
ofs,
user_data[loop],
fd);
if (!cf) {
DPAA_SEC_ERR("error: Improper packet contents"
" for crypto operation");
goto skip_tx;
}
inq[loop] = ses->inq[rte_lcore_id() % MAX_DPAA_CORES];
qm_fd_addr_set64(fd, rte_dpaa_mem_vtop(cf->sg));
fd->_format1 = qm_fd_compound;
fd->length29 = 2 * sizeof(struct qm_sg_entry);
status[loop] = 1;
}
send_pkts:
loop = 0;
while (loop < frames_to_send) {
loop += qman_enqueue_multi_fq(&inq[loop], &fds[loop],
&flags[loop], frames_to_send - loop);
}
vec->num -= frames_to_send;
num_tx += frames_to_send;
}
skip_tx:
dpaa_qp->tx_pkts += num_tx;
dpaa_qp->tx_errs += vec->num - num_tx;
return num_tx;
}
static int
dpaa_sec_deq_raw(struct dpaa_sec_qp *qp, void **out_user_data,
uint8_t is_user_data_array,
rte_cryptodev_raw_post_dequeue_t post_dequeue,
int nb_ops)
{
struct qman_fq *fq;
unsigned int pkts = 0;
int num_rx_bufs, ret;
struct qm_dqrr_entry *dq;
uint32_t vdqcr_flags = 0;
uint8_t is_success = 0;
fq = &qp->outq;
/*
* Until request for four buffers, we provide exact number of buffers.
* Otherwise we do not set the QM_VDQCR_EXACT flag.
* Not setting QM_VDQCR_EXACT flag can provide two more buffers than
* requested, so we request two less in this case.
*/
if (nb_ops < 4) {
vdqcr_flags = QM_VDQCR_EXACT;
num_rx_bufs = nb_ops;
} else {
num_rx_bufs = nb_ops > DPAA_MAX_DEQUEUE_NUM_FRAMES ?
(DPAA_MAX_DEQUEUE_NUM_FRAMES - 2) : (nb_ops - 2);
}
ret = qman_set_vdq(fq, num_rx_bufs, vdqcr_flags);
if (ret)
return 0;
do {
const struct qm_fd *fd;
struct dpaa_sec_job *job;
struct dpaa_sec_op_ctx *ctx;
dq = qman_dequeue(fq);
if (!dq)
continue;
fd = &dq->fd;
/* sg is embedded in an op ctx,
* sg[0] is for output
* sg[1] for input
*/
job = rte_dpaa_mem_ptov(qm_fd_addr_get64(fd));
ctx = container_of(job, struct dpaa_sec_op_ctx, job);
ctx->fd_status = fd->status;
if (is_user_data_array)
out_user_data[pkts] = ctx->userdata;
else
out_user_data[0] = ctx->userdata;
if (!ctx->fd_status) {
is_success = true;
} else {
is_success = false;
DPAA_SEC_DP_WARN("SEC return err:0x%x", ctx->fd_status);
}
post_dequeue(ctx->op, pkts, is_success);
pkts++;
/* report op status to sym->op and then free the ctx memory */
rte_mempool_put(ctx->ctx_pool, (void *)ctx);
qman_dqrr_consume(fq, dq);
} while (fq->flags & QMAN_FQ_STATE_VDQCR);
return pkts;
}
static __rte_always_inline uint32_t
dpaa_sec_raw_dequeue_burst(void *qp_data, uint8_t *drv_ctx,
rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count,
uint32_t max_nb_to_dequeue,
rte_cryptodev_raw_post_dequeue_t post_dequeue,
void **out_user_data, uint8_t is_user_data_array,
uint32_t *n_success, int *dequeue_status)
{
RTE_SET_USED(drv_ctx);
RTE_SET_USED(get_dequeue_count);
uint16_t num_rx;
struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp_data;
uint32_t nb_ops = max_nb_to_dequeue;
if (unlikely(!DPAA_PER_LCORE_PORTAL)) {
if (rte_dpaa_portal_init((void *)0)) {
DPAA_SEC_ERR("Failure in affining portal");
return 0;
}
}
num_rx = dpaa_sec_deq_raw(dpaa_qp, out_user_data,
is_user_data_array, post_dequeue, nb_ops);
dpaa_qp->rx_pkts += num_rx;
*dequeue_status = 1;
*n_success = num_rx;
DPAA_SEC_DP_DEBUG("SEC Received %d Packets\n", num_rx);
return num_rx;
}
static __rte_always_inline int
dpaa_sec_raw_enqueue(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_vec *data_vec,
uint16_t n_data_vecs, union rte_crypto_sym_ofs ofs,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *aad_or_auth_iv,
void *user_data)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(data_vec);
RTE_SET_USED(n_data_vecs);
RTE_SET_USED(ofs);
RTE_SET_USED(iv);
RTE_SET_USED(digest);
RTE_SET_USED(aad_or_auth_iv);
RTE_SET_USED(user_data);
return 0;
}
static __rte_always_inline void *
dpaa_sec_raw_dequeue(void *qp_data, uint8_t *drv_ctx, int *dequeue_status,
enum rte_crypto_op_status *op_status)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(dequeue_status);
RTE_SET_USED(op_status);
return NULL;
}
int
dpaa_sec_configure_raw_dp_ctx(struct rte_cryptodev *dev, uint16_t qp_id,
struct rte_crypto_raw_dp_ctx *raw_dp_ctx,
enum rte_crypto_op_sess_type sess_type,
union rte_cryptodev_session_ctx session_ctx, uint8_t is_update)
{
dpaa_sec_session *sess;
struct dpaa_sec_raw_dp_ctx *dp_ctx;
RTE_SET_USED(qp_id);
if (!is_update) {
memset(raw_dp_ctx, 0, sizeof(*raw_dp_ctx));
raw_dp_ctx->qp_data = dev->data->queue_pairs[qp_id];
}
if (sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
sess = (dpaa_sec_session *)get_sec_session_private_data(
session_ctx.sec_sess);
else if (sess_type == RTE_CRYPTO_OP_WITH_SESSION)
sess = (dpaa_sec_session *)get_sym_session_private_data(
session_ctx.crypto_sess, dpaa_cryptodev_driver_id);
else
return -ENOTSUP;
raw_dp_ctx->dequeue_burst = dpaa_sec_raw_dequeue_burst;
raw_dp_ctx->dequeue = dpaa_sec_raw_dequeue;
raw_dp_ctx->dequeue_done = dpaa_sec_raw_dequeue_done;
raw_dp_ctx->enqueue_burst = dpaa_sec_raw_enqueue_burst;
raw_dp_ctx->enqueue = dpaa_sec_raw_enqueue;
raw_dp_ctx->enqueue_done = dpaa_sec_raw_enqueue_done;
if (sess->ctxt == DPAA_SEC_CIPHER)
sess->build_raw_dp_fd = build_dpaa_raw_dp_cipher_fd;
else if (sess->ctxt == DPAA_SEC_AUTH)
sess->build_raw_dp_fd = build_dpaa_raw_dp_auth_fd;
else if (sess->ctxt == DPAA_SEC_CIPHER_HASH)
sess->build_raw_dp_fd = build_dpaa_raw_dp_chain_fd;
else if (sess->ctxt == DPAA_SEC_AEAD)
sess->build_raw_dp_fd = build_raw_cipher_auth_gcm_sg;
#ifdef RTE_LIBRTE_SECURITY
else if (sess->ctxt == DPAA_SEC_IPSEC ||
sess->ctxt == DPAA_SEC_PDCP)
sess->build_raw_dp_fd = build_dpaa_raw_proto_sg;
#endif
else
return -ENOTSUP;
dp_ctx = (struct dpaa_sec_raw_dp_ctx *)raw_dp_ctx->drv_ctx_data;
dp_ctx->session = sess;
return 0;
}
int
dpaa_sec_get_dp_ctx_size(__rte_unused struct rte_cryptodev *dev)
{
return sizeof(struct dpaa_sec_raw_dp_ctx);
}