2017-04-21 10:43:26 +00:00
|
|
|
/*******************************************************************************
|
|
|
|
|
|
|
|
Copyright (c) 2001-2015, Intel Corporation
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
|
|
this list of conditions and the following disclaimer.
|
|
|
|
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
|
|
contributors may be used to endorse or promote products derived from
|
|
|
|
this software without specific prior written permission.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
/* 82571EB Gigabit Ethernet Controller
|
|
|
|
* 82571EB Gigabit Ethernet Controller (Copper)
|
|
|
|
* 82571EB Gigabit Ethernet Controller (Fiber)
|
|
|
|
* 82571EB Dual Port Gigabit Mezzanine Adapter
|
|
|
|
* 82571EB Quad Port Gigabit Mezzanine Adapter
|
|
|
|
* 82571PT Gigabit PT Quad Port Server ExpressModule
|
|
|
|
* 82572EI Gigabit Ethernet Controller (Copper)
|
|
|
|
* 82572EI Gigabit Ethernet Controller (Fiber)
|
|
|
|
* 82572EI Gigabit Ethernet Controller
|
|
|
|
* 82573V Gigabit Ethernet Controller (Copper)
|
|
|
|
* 82573E Gigabit Ethernet Controller (Copper)
|
|
|
|
* 82573L Gigabit Ethernet Controller
|
|
|
|
* 82574L Gigabit Network Connection
|
|
|
|
* 82583V Gigabit Network Connection
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "e1000_api.h"
|
|
|
|
|
|
|
|
STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
|
|
|
|
STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
|
|
|
|
u16 words, u16 *data);
|
|
|
|
STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
|
|
|
|
bool active);
|
|
|
|
STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw);
|
|
|
|
STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
|
|
|
|
STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_led_on_82574(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
|
|
|
|
STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
|
|
|
|
STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
|
|
|
|
STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
|
|
|
|
STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
|
|
|
|
bool active);
|
|
|
|
STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
|
|
|
|
bool active);
|
|
|
|
STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
|
|
|
|
u16 words, u16 *data);
|
|
|
|
STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw);
|
|
|
|
STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_phy_params_82571 - Init PHY func ptrs.
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_init_phy_params_82571");
|
|
|
|
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper) {
|
|
|
|
phy->type = e1000_phy_none;
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
phy->addr = 1;
|
|
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
|
phy->reset_delay_us = 100;
|
|
|
|
|
|
|
|
phy->ops.check_reset_block = e1000_check_reset_block_generic;
|
|
|
|
phy->ops.reset = e1000_phy_hw_reset_generic;
|
|
|
|
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
|
|
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
|
|
|
|
phy->ops.power_up = e1000_power_up_phy_copper;
|
|
|
|
phy->ops.power_down = e1000_power_down_phy_copper_82571;
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
phy->type = e1000_phy_igp_2;
|
|
|
|
phy->ops.get_cfg_done = e1000_get_cfg_done_82571;
|
|
|
|
phy->ops.get_info = e1000_get_phy_info_igp;
|
|
|
|
phy->ops.check_polarity = e1000_check_polarity_igp;
|
|
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
|
|
|
|
phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
|
|
|
|
phy->ops.read_reg = e1000_read_phy_reg_igp;
|
|
|
|
phy->ops.write_reg = e1000_write_phy_reg_igp;
|
|
|
|
phy->ops.acquire = e1000_get_hw_semaphore_82571;
|
|
|
|
phy->ops.release = e1000_put_hw_semaphore_82571;
|
|
|
|
break;
|
|
|
|
case e1000_82573:
|
|
|
|
phy->type = e1000_phy_m88;
|
|
|
|
phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
|
|
|
|
phy->ops.get_info = e1000_get_phy_info_m88;
|
|
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
|
|
phy->ops.commit = e1000_phy_sw_reset_generic;
|
|
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
|
|
|
|
phy->ops.get_cable_length = e1000_get_cable_length_m88;
|
|
|
|
phy->ops.read_reg = e1000_read_phy_reg_m88;
|
|
|
|
phy->ops.write_reg = e1000_write_phy_reg_m88;
|
|
|
|
phy->ops.acquire = e1000_get_hw_semaphore_82571;
|
|
|
|
phy->ops.release = e1000_put_hw_semaphore_82571;
|
|
|
|
break;
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex);
|
|
|
|
|
|
|
|
phy->type = e1000_phy_bm;
|
|
|
|
phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
|
|
|
|
phy->ops.get_info = e1000_get_phy_info_m88;
|
|
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
|
|
phy->ops.commit = e1000_phy_sw_reset_generic;
|
|
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
|
|
|
|
phy->ops.get_cable_length = e1000_get_cable_length_m88;
|
|
|
|
phy->ops.read_reg = e1000_read_phy_reg_bm2;
|
|
|
|
phy->ops.write_reg = e1000_write_phy_reg_bm2;
|
|
|
|
phy->ops.acquire = e1000_get_hw_semaphore_82574;
|
|
|
|
phy->ops.release = e1000_put_hw_semaphore_82574;
|
|
|
|
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
|
|
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -E1000_ERR_PHY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This can only be done after all function pointers are setup. */
|
|
|
|
ret_val = e1000_get_phy_id_82571(hw);
|
|
|
|
if (ret_val) {
|
|
|
|
DEBUGOUT("Error getting PHY ID\n");
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Verify phy id */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
if (phy->id != IGP01E1000_I_PHY_ID)
|
|
|
|
ret_val = -E1000_ERR_PHY;
|
|
|
|
break;
|
|
|
|
case e1000_82573:
|
|
|
|
if (phy->id != M88E1111_I_PHY_ID)
|
|
|
|
ret_val = -E1000_ERR_PHY;
|
|
|
|
break;
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
if (phy->id != BME1000_E_PHY_ID_R2)
|
|
|
|
ret_val = -E1000_ERR_PHY;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret_val = -E1000_ERR_PHY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret_val)
|
|
|
|
DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_nvm_params_82571 - Init NVM func ptrs.
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
u16 size;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_init_nvm_params_82571");
|
|
|
|
|
|
|
|
nvm->opcode_bits = 8;
|
|
|
|
nvm->delay_usec = 1;
|
|
|
|
switch (nvm->override) {
|
|
|
|
case e1000_nvm_override_spi_large:
|
|
|
|
nvm->page_size = 32;
|
|
|
|
nvm->address_bits = 16;
|
|
|
|
break;
|
|
|
|
case e1000_nvm_override_spi_small:
|
|
|
|
nvm->page_size = 8;
|
|
|
|
nvm->address_bits = 8;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
|
|
|
|
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
if (((eecd >> 15) & 0x3) == 0x3) {
|
|
|
|
nvm->type = e1000_nvm_flash_hw;
|
|
|
|
nvm->word_size = 2048;
|
|
|
|
/* Autonomous Flash update bit must be cleared due
|
|
|
|
* to Flash update issue.
|
|
|
|
*/
|
|
|
|
eecd &= ~E1000_EECD_AUPDEN;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Fall Through */
|
|
|
|
default:
|
|
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
|
|
|
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
|
|
|
E1000_EECD_SIZE_EX_SHIFT);
|
|
|
|
/* Added to a constant, "size" becomes the left-shift value
|
|
|
|
* for setting word_size.
|
|
|
|
*/
|
|
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
|
|
|
|
|
|
|
/* EEPROM access above 16k is unsupported */
|
|
|
|
if (size > 14)
|
|
|
|
size = 14;
|
|
|
|
nvm->word_size = 1 << size;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Function Pointers */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
nvm->ops.acquire = e1000_get_hw_semaphore_82574;
|
|
|
|
nvm->ops.release = e1000_put_hw_semaphore_82574;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
nvm->ops.acquire = e1000_acquire_nvm_82571;
|
|
|
|
nvm->ops.release = e1000_release_nvm_82571;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
nvm->ops.read = e1000_read_nvm_eerd;
|
|
|
|
nvm->ops.update = e1000_update_nvm_checksum_82571;
|
|
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_82571;
|
|
|
|
nvm->ops.valid_led_default = e1000_valid_led_default_82571;
|
|
|
|
nvm->ops.write = e1000_write_nvm_82571;
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_mac_params_82571 - Init MAC func ptrs.
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
u32 swsm = 0;
|
|
|
|
u32 swsm2 = 0;
|
|
|
|
bool force_clear_smbi = false;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_init_mac_params_82571");
|
|
|
|
|
|
|
|
/* Set media type and media-dependent function pointers */
|
|
|
|
switch (hw->device_id) {
|
|
|
|
case E1000_DEV_ID_82571EB_FIBER:
|
|
|
|
case E1000_DEV_ID_82572EI_FIBER:
|
|
|
|
case E1000_DEV_ID_82571EB_QUAD_FIBER:
|
|
|
|
hw->phy.media_type = e1000_media_type_fiber;
|
|
|
|
mac->ops.setup_physical_interface =
|
|
|
|
e1000_setup_fiber_serdes_link_82571;
|
|
|
|
mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
|
|
|
|
mac->ops.get_link_up_info =
|
|
|
|
e1000_get_speed_and_duplex_fiber_serdes_generic;
|
|
|
|
break;
|
|
|
|
case E1000_DEV_ID_82571EB_SERDES:
|
|
|
|
case E1000_DEV_ID_82571EB_SERDES_DUAL:
|
|
|
|
case E1000_DEV_ID_82571EB_SERDES_QUAD:
|
|
|
|
case E1000_DEV_ID_82572EI_SERDES:
|
|
|
|
hw->phy.media_type = e1000_media_type_internal_serdes;
|
|
|
|
mac->ops.setup_physical_interface =
|
|
|
|
e1000_setup_fiber_serdes_link_82571;
|
|
|
|
mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
|
|
|
|
mac->ops.get_link_up_info =
|
|
|
|
e1000_get_speed_and_duplex_fiber_serdes_generic;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
|
|
mac->ops.setup_physical_interface =
|
|
|
|
e1000_setup_copper_link_82571;
|
|
|
|
mac->ops.check_for_link = e1000_check_for_copper_link_generic;
|
|
|
|
mac->ops.get_link_up_info =
|
|
|
|
e1000_get_speed_and_duplex_copper_generic;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set mta register count */
|
|
|
|
mac->mta_reg_count = 128;
|
|
|
|
/* Set rar entry count */
|
|
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES;
|
|
|
|
/* Set if part includes ASF firmware */
|
|
|
|
mac->asf_firmware_present = true;
|
|
|
|
/* Adaptive IFS supported */
|
|
|
|
mac->adaptive_ifs = true;
|
|
|
|
|
|
|
|
/* Function pointers */
|
|
|
|
|
|
|
|
/* bus type/speed/width */
|
|
|
|
mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
|
|
|
|
/* reset */
|
|
|
|
mac->ops.reset_hw = e1000_reset_hw_82571;
|
|
|
|
/* hw initialization */
|
|
|
|
mac->ops.init_hw = e1000_init_hw_82571;
|
|
|
|
/* link setup */
|
|
|
|
mac->ops.setup_link = e1000_setup_link_82571;
|
|
|
|
/* multicast address update */
|
|
|
|
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
|
|
|
|
/* writing VFTA */
|
|
|
|
mac->ops.write_vfta = e1000_write_vfta_generic;
|
|
|
|
/* clearing VFTA */
|
|
|
|
mac->ops.clear_vfta = e1000_clear_vfta_82571;
|
|
|
|
/* read mac address */
|
|
|
|
mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
|
|
|
|
/* ID LED init */
|
|
|
|
mac->ops.id_led_init = e1000_id_led_init_generic;
|
|
|
|
/* setup LED */
|
|
|
|
mac->ops.setup_led = e1000_setup_led_generic;
|
|
|
|
/* cleanup LED */
|
|
|
|
mac->ops.cleanup_led = e1000_cleanup_led_generic;
|
|
|
|
/* turn off LED */
|
|
|
|
mac->ops.led_off = e1000_led_off_generic;
|
|
|
|
/* clear hardware counters */
|
|
|
|
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
|
|
|
|
|
|
|
|
/* MAC-specific function pointers */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
mac->ops.set_lan_id = e1000_set_lan_id_single_port;
|
|
|
|
mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
|
|
|
|
mac->ops.led_on = e1000_led_on_generic;
|
|
|
|
mac->ops.blink_led = e1000_blink_led_generic;
|
|
|
|
|
|
|
|
/* FWSM register */
|
|
|
|
mac->has_fwsm = true;
|
|
|
|
/* ARC supported; valid only if manageability features are
|
|
|
|
* enabled.
|
|
|
|
*/
|
|
|
|
mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
|
|
|
|
E1000_FWSM_MODE_MASK);
|
|
|
|
break;
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
mac->ops.set_lan_id = e1000_set_lan_id_single_port;
|
|
|
|
mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
|
|
|
|
mac->ops.led_on = e1000_led_on_82574;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
|
|
|
|
mac->ops.led_on = e1000_led_on_generic;
|
|
|
|
mac->ops.blink_led = e1000_blink_led_generic;
|
|
|
|
|
|
|
|
/* FWSM register */
|
|
|
|
mac->has_fwsm = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
|
|
|
|
* first NVM or PHY access. This should be done for single-port
|
|
|
|
* devices, and for one port only on dual-port devices so that
|
|
|
|
* for those devices we can still use the SMBI lock to synchronize
|
|
|
|
* inter-port accesses to the PHY & NVM.
|
|
|
|
*/
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
|
|
|
|
|
|
|
|
if (!(swsm2 & E1000_SWSM2_LOCK)) {
|
|
|
|
/* Only do this for the first interface on this card */
|
|
|
|
E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
|
|
|
|
E1000_SWSM2_LOCK);
|
|
|
|
force_clear_smbi = true;
|
|
|
|
} else {
|
|
|
|
force_clear_smbi = false;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
force_clear_smbi = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (force_clear_smbi) {
|
|
|
|
/* Make sure SWSM.SMBI is clear */
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
if (swsm & E1000_SWSM_SMBI) {
|
|
|
|
/* This bit should not be set on a first interface, and
|
|
|
|
* indicates that the bootagent or EFI code has
|
|
|
|
* improperly left this bit enabled
|
|
|
|
*/
|
|
|
|
DEBUGOUT("Please update your 82571 Bootagent\n");
|
|
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Initialze device specific counter of SMBI acquisition timeouts. */
|
|
|
|
hw->dev_spec._82571.smb_counter = 0;
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_function_pointers_82571 - Init func ptrs.
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Called to initialize all function pointers and parameters.
|
|
|
|
**/
|
|
|
|
void e1000_init_function_pointers_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_init_function_pointers_82571");
|
|
|
|
|
|
|
|
hw->mac.ops.init_params = e1000_init_mac_params_82571;
|
|
|
|
hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
|
|
|
|
hw->phy.ops.init_params = e1000_init_phy_params_82571;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Reads the PHY registers and stores the PHY ID and possibly the PHY
|
|
|
|
* revision in the hardware structure.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
|
|
s32 ret_val;
|
|
|
|
u16 phy_id = 0;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_phy_id_82571");
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
/* The 82571 firmware may still be configuring the PHY.
|
|
|
|
* In this case, we cannot access the PHY until the
|
|
|
|
* configuration is done. So we explicitly set the
|
|
|
|
* PHY ID.
|
|
|
|
*/
|
|
|
|
phy->id = IGP01E1000_I_PHY_ID;
|
|
|
|
break;
|
|
|
|
case e1000_82573:
|
|
|
|
return e1000_get_phy_id(hw);
|
|
|
|
break;
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
phy->id = (u32)(phy_id << 16);
|
|
|
|
usec_delay(20);
|
|
|
|
ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
phy->id |= (u32)(phy_id);
|
|
|
|
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -E1000_ERR_PHY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Acquire the HW semaphore to access the PHY or NVM
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 swsm;
|
|
|
|
s32 sw_timeout = hw->nvm.word_size + 1;
|
|
|
|
s32 fw_timeout = hw->nvm.word_size + 1;
|
|
|
|
s32 i = 0;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_hw_semaphore_82571");
|
|
|
|
|
|
|
|
/* If we have timedout 3 times on trying to acquire
|
|
|
|
* the inter-port SMBI semaphore, there is old code
|
|
|
|
* operating on the other port, and it is not
|
|
|
|
* releasing SMBI. Modify the number of times that
|
|
|
|
* we try for the semaphore to interwork with this
|
|
|
|
* older code.
|
|
|
|
*/
|
|
|
|
if (hw->dev_spec._82571.smb_counter > 2)
|
|
|
|
sw_timeout = 1;
|
|
|
|
|
|
|
|
/* Get the SW semaphore */
|
|
|
|
while (i < sw_timeout) {
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
if (!(swsm & E1000_SWSM_SMBI))
|
|
|
|
break;
|
|
|
|
|
|
|
|
usec_delay(50);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == sw_timeout) {
|
|
|
|
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
|
|
|
|
hw->dev_spec._82571.smb_counter++;
|
|
|
|
}
|
|
|
|
/* Get the FW semaphore. */
|
|
|
|
for (i = 0; i < fw_timeout; i++) {
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
|
|
|
|
|
|
|
|
/* Semaphore acquired if bit latched */
|
|
|
|
if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
|
|
|
|
break;
|
|
|
|
|
|
|
|
usec_delay(50);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == fw_timeout) {
|
|
|
|
/* Release semaphores */
|
|
|
|
e1000_put_hw_semaphore_82571(hw);
|
|
|
|
DEBUGOUT("Driver can't access the NVM\n");
|
|
|
|
return -E1000_ERR_NVM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_put_hw_semaphore_82571 - Release hardware semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Release hardware semaphore used to access the PHY or NVM
|
|
|
|
**/
|
|
|
|
STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 swsm;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_put_hw_semaphore_generic");
|
|
|
|
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
|
|
|
|
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Acquire the HW semaphore during reset.
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 extcnf_ctrl;
|
|
|
|
s32 i = 0;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_hw_semaphore_82573");
|
|
|
|
|
|
|
|
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
|
|
|
|
do {
|
|
|
|
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
|
|
|
|
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
|
|
|
|
|
|
|
|
if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
|
|
|
|
break;
|
|
|
|
|
|
|
|
msec_delay(2);
|
|
|
|
i++;
|
|
|
|
} while (i < MDIO_OWNERSHIP_TIMEOUT);
|
|
|
|
|
|
|
|
if (i == MDIO_OWNERSHIP_TIMEOUT) {
|
|
|
|
/* Release semaphores */
|
|
|
|
e1000_put_hw_semaphore_82573(hw);
|
|
|
|
DEBUGOUT("Driver can't access the PHY\n");
|
|
|
|
return -E1000_ERR_PHY;
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_put_hw_semaphore_82573 - Release hardware semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Release hardware semaphore used during reset.
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 extcnf_ctrl;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_put_hw_semaphore_82573");
|
|
|
|
|
|
|
|
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
|
|
|
|
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Acquire the HW semaphore to access the PHY or NVM.
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_hw_semaphore_82574");
|
|
|
|
|
|
|
|
E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex);
|
|
|
|
ret_val = e1000_get_hw_semaphore_82573(hw);
|
|
|
|
if (ret_val)
|
|
|
|
E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_put_hw_semaphore_82574 - Release hardware semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Release hardware semaphore used to access the PHY or NVM
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_put_hw_semaphore_82574");
|
|
|
|
|
|
|
|
e1000_put_hw_semaphore_82573(hw);
|
|
|
|
E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @active: true to enable LPLU, false to disable
|
|
|
|
*
|
|
|
|
* Sets the LPLU D0 state according to the active flag.
|
|
|
|
* LPLU will not be activated unless the
|
|
|
|
* device autonegotiation advertisement meets standards of
|
|
|
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
|
|
* This is a function pointer entry point only called by
|
|
|
|
* PHY setup routines.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
|
|
|
|
{
|
|
|
|
u32 data = E1000_READ_REG(hw, E1000_POEMB);
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_set_d0_lplu_state_82574");
|
|
|
|
|
|
|
|
if (active)
|
|
|
|
data |= E1000_PHY_CTRL_D0A_LPLU;
|
|
|
|
else
|
|
|
|
data &= ~E1000_PHY_CTRL_D0A_LPLU;
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, E1000_POEMB, data);
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @active: boolean used to enable/disable lplu
|
|
|
|
*
|
|
|
|
* The low power link up (lplu) state is set to the power management level D3
|
|
|
|
* when active is true, else clear lplu for D3. LPLU
|
|
|
|
* is used during Dx states where the power conservation is most important.
|
|
|
|
* During driver activity, SmartSpeed should be enabled so performance is
|
|
|
|
* maintained.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
|
|
|
|
{
|
|
|
|
u32 data = E1000_READ_REG(hw, E1000_POEMB);
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_set_d3_lplu_state_82574");
|
|
|
|
|
|
|
|
if (!active) {
|
|
|
|
data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
|
|
|
|
} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
|
|
|
|
(hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
|
|
|
|
(hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
|
|
|
|
data |= E1000_PHY_CTRL_NOND0A_LPLU;
|
|
|
|
}
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, E1000_POEMB, data);
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_acquire_nvm_82571 - Request for access to the EEPROM
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* To gain access to the EEPROM, first we must obtain a hardware semaphore.
|
|
|
|
* Then for non-82573 hardware, set the EEPROM access request bit and wait
|
|
|
|
* for EEPROM access grant bit. If the access grant bit is not set, release
|
|
|
|
* hardware semaphore.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_acquire_nvm_82571");
|
|
|
|
|
|
|
|
ret_val = e1000_get_hw_semaphore_82571(hw);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret_val = e1000_acquire_nvm_generic(hw);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret_val)
|
|
|
|
e1000_put_hw_semaphore_82571(hw);
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_release_nvm_82571 - Release exclusive access to EEPROM
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
|
|
|
|
**/
|
|
|
|
STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_release_nvm_82571");
|
|
|
|
|
|
|
|
e1000_release_nvm_generic(hw);
|
|
|
|
e1000_put_hw_semaphore_82571(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @offset: offset within the EEPROM to be written to
|
|
|
|
* @words: number of words to write
|
|
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
|
|
*
|
|
|
|
* For non-82573 silicon, write data to EEPROM at offset using SPI interface.
|
|
|
|
*
|
|
|
|
* If e1000_update_nvm_checksum is not called after this function, the
|
|
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
|
u16 *data)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_write_nvm_82571");
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
|
|
|
|
break;
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
ret_val = e1000_write_nvm_spi(hw, offset, words, data);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret_val = -E1000_ERR_NVM;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_update_nvm_checksum_82571 - Update EEPROM checksum
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
|
|
* value to the EEPROM.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 eecd;
|
|
|
|
s32 ret_val;
|
|
|
|
u16 i;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_update_nvm_checksum_82571");
|
|
|
|
|
|
|
|
ret_val = e1000_update_nvm_checksum_generic(hw);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
/* If our nvm is an EEPROM, then we're done
|
|
|
|
* otherwise, commit the checksum to the flash NVM.
|
|
|
|
*/
|
|
|
|
if (hw->nvm.type != e1000_nvm_flash_hw)
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
|
|
|
|
/* Check for pending operations. */
|
|
|
|
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
|
|
|
|
msec_delay(1);
|
|
|
|
if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == E1000_FLASH_UPDATES)
|
|
|
|
return -E1000_ERR_NVM;
|
|
|
|
|
|
|
|
/* Reset the firmware if using STM opcode. */
|
|
|
|
if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
|
|
|
|
/* The enabling of and the actual reset must be done
|
|
|
|
* in two write cycles.
|
|
|
|
*/
|
|
|
|
E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Commit the write to flash */
|
|
|
|
eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
|
|
|
|
|
|
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
|
|
|
|
msec_delay(1);
|
|
|
|
if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == E1000_FLASH_UPDATES)
|
|
|
|
return -E1000_ERR_NVM;
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_validate_nvm_checksum_82571");
|
|
|
|
|
|
|
|
if (hw->nvm.type == e1000_nvm_flash_hw)
|
|
|
|
e1000_fix_nvm_checksum_82571(hw);
|
|
|
|
|
|
|
|
return e1000_validate_nvm_checksum_generic(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @offset: offset within the EEPROM to be written to
|
|
|
|
* @words: number of words to write
|
|
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
|
|
*
|
|
|
|
* After checking for invalid values, poll the EEPROM to ensure the previous
|
|
|
|
* command has completed before trying to write the next word. After write
|
|
|
|
* poll for completion.
|
|
|
|
*
|
|
|
|
* If e1000_update_nvm_checksum is not called after this function, the
|
|
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
|
|
|
|
u16 words, u16 *data)
|
|
|
|
{
|
|
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
u32 i, eewr = 0;
|
|
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_write_nvm_eewr_82571");
|
|
|
|
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
|
|
* and not enough words.
|
|
|
|
*/
|
|
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
|
|
(words == 0)) {
|
|
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
|
|
return -E1000_ERR_NVM;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < words; i++) {
|
|
|
|
eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
|
|
|
|
((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
|
|
|
|
E1000_NVM_RW_REG_START);
|
|
|
|
|
|
|
|
ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
|
|
|
|
if (ret_val)
|
|
|
|
break;
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, E1000_EEWR, eewr);
|
|
|
|
|
|
|
|
ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
|
|
|
|
if (ret_val)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_cfg_done_82571 - Poll for configuration done
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Reads the management control register for the config done bit to be set.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 timeout = PHY_CFG_TIMEOUT;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_cfg_done_82571");
|
|
|
|
|
|
|
|
while (timeout) {
|
|
|
|
if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
|
|
|
|
E1000_NVM_CFG_DONE_PORT_0)
|
|
|
|
break;
|
|
|
|
msec_delay(1);
|
|
|
|
timeout--;
|
|
|
|
}
|
|
|
|
if (!timeout) {
|
|
|
|
DEBUGOUT("MNG configuration cycle has not completed.\n");
|
|
|
|
return -E1000_ERR_RESET;
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @active: true to enable LPLU, false to disable
|
|
|
|
*
|
|
|
|
* Sets the LPLU D0 state according to the active flag. When activating LPLU
|
|
|
|
* this function also disables smart speed and vice versa. LPLU will not be
|
|
|
|
* activated unless the device autonegotiation advertisement meets standards
|
|
|
|
* of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
|
|
|
|
* pointer entry point only called by PHY setup routines.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
|
|
|
|
{
|
|
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
|
|
s32 ret_val;
|
|
|
|
u16 data;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_set_d0_lplu_state_82571");
|
|
|
|
|
|
|
|
if (!(phy->ops.read_reg))
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
|
|
|
|
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
if (active) {
|
|
|
|
data |= IGP02E1000_PM_D0_LPLU;
|
|
|
|
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
|
|
data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
|
|
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
|
&data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
|
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
|
data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
} else {
|
|
|
|
data &= ~IGP02E1000_PM_D0_LPLU;
|
|
|
|
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
|
|
data);
|
|
|
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
|
|
* during Dx states where the power conservation is most
|
|
|
|
* important. During driver activity we should enable
|
|
|
|
* SmartSpeed, so performance is maintained.
|
|
|
|
*/
|
|
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
|
|
|
ret_val = phy->ops.read_reg(hw,
|
|
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
|
|
&data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
|
|
data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
|
|
|
ret_val = phy->ops.read_reg(hw,
|
|
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
|
|
&data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
|
|
data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_reset_hw_82571 - Reset hardware
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* This resets the hardware into a known state.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 ctrl, ctrl_ext, eecd, tctl;
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_reset_hw_82571");
|
|
|
|
|
|
|
|
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
|
|
*/
|
|
|
|
ret_val = e1000_disable_pcie_master_generic(hw);
|
|
|
|
if (ret_val)
|
|
|
|
DEBUGOUT("PCI-E Master disable polling has failed.\n");
|
|
|
|
|
|
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, 0);
|
|
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
|
|
tctl &= ~E1000_TCTL_EN;
|
|
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
|
|
|
|
msec_delay(10);
|
|
|
|
|
|
|
|
/* Must acquire the MDIO ownership before MAC reset.
|
|
|
|
* Ownership defaults to firmware after a reset.
|
|
|
|
*/
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
ret_val = e1000_get_hw_semaphore_82573(hw);
|
|
|
|
break;
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
ret_val = e1000_get_hw_semaphore_82574(hw);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
|
|
|
|
DEBUGOUT("Issuing a global reset to MAC\n");
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
|
|
|
|
|
|
|
|
/* Must release MDIO ownership and mutex after MAC reset. */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
/* Release mutex only if the hw semaphore is acquired */
|
|
|
|
if (!ret_val)
|
|
|
|
e1000_put_hw_semaphore_82573(hw);
|
|
|
|
break;
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
/* Release mutex only if the hw semaphore is acquired */
|
|
|
|
if (!ret_val)
|
|
|
|
e1000_put_hw_semaphore_82574(hw);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hw->nvm.type == e1000_nvm_flash_hw) {
|
|
|
|
usec_delay(10);
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
|
|
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
ret_val = e1000_get_auto_rd_done_generic(hw);
|
|
|
|
if (ret_val)
|
|
|
|
/* We don't want to continue accessing MAC registers. */
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
|
|
|
|
* Need to wait for Phy configuration completion before accessing
|
|
|
|
* NVM and Phy.
|
|
|
|
*/
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
/* REQ and GNT bits need to be cleared when using AUTO_RD
|
|
|
|
* to access the EEPROM.
|
|
|
|
*/
|
|
|
|
eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
|
|
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd);
|
|
|
|
break;
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
msec_delay(25);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear any pending interrupt events. */
|
|
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
|
|
E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
|
|
|
|
if (hw->mac.type == e1000_82571) {
|
|
|
|
/* Install any alternate MAC address into RAR0 */
|
|
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
e1000_set_laa_state_82571(hw, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reinitialize the 82571 serdes link state machine */
|
|
|
|
if (hw->phy.media_type == e1000_media_type_internal_serdes)
|
|
|
|
hw->mac.serdes_link_state = e1000_serdes_link_down;
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_hw_82571 - Initialize hardware
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* This inits the hardware readying it for operation.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
u32 reg_data;
|
|
|
|
s32 ret_val;
|
|
|
|
u16 i, rar_count = mac->rar_entry_count;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_init_hw_82571");
|
|
|
|
|
|
|
|
e1000_initialize_hw_bits_82571(hw);
|
|
|
|
|
|
|
|
/* Initialize identification LED */
|
|
|
|
ret_val = mac->ops.id_led_init(hw);
|
|
|
|
/* An error is not fatal and we should not stop init due to this */
|
|
|
|
if (ret_val)
|
|
|
|
DEBUGOUT("Error initializing identification LED\n");
|
|
|
|
|
|
|
|
/* Disabling VLAN filtering */
|
|
|
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
|
|
mac->ops.clear_vfta(hw);
|
|
|
|
|
|
|
|
/* Setup the receive address.
|
|
|
|
* If, however, a locally administered address was assigned to the
|
|
|
|
* 82571, we must reserve a RAR for it to work around an issue where
|
|
|
|
* resetting one port will reload the MAC on the other port.
|
|
|
|
*/
|
|
|
|
if (e1000_get_laa_state_82571(hw))
|
|
|
|
rar_count--;
|
|
|
|
e1000_init_rx_addrs_generic(hw, rar_count);
|
|
|
|
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
|
|
DEBUGOUT("Zeroing the MTA\n");
|
|
|
|
for (i = 0; i < mac->mta_reg_count; i++)
|
|
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
|
|
|
|
|
|
|
/* Setup link and flow control */
|
|
|
|
ret_val = mac->ops.setup_link(hw);
|
|
|
|
|
|
|
|
/* Set the transmit descriptor write-back policy */
|
|
|
|
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
|
|
|
|
reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
|
|
|
|
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
|
|
|
|
|
|
|
|
/* ...for both queues. */
|
|
|
|
switch (mac->type) {
|
|
|
|
case e1000_82573:
|
|
|
|
e1000_enable_tx_pkt_filtering_generic(hw);
|
|
|
|
/* fall through */
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
reg_data = E1000_READ_REG(hw, E1000_GCR);
|
|
|
|
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
|
|
|
|
E1000_WRITE_REG(hw, E1000_GCR, reg_data);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
|
|
|
|
reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
|
|
|
|
E1000_TXDCTL_FULL_TX_DESC_WB |
|
|
|
|
E1000_TXDCTL_COUNT_DESC);
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear all of the statistics registers (clear on read). It is
|
|
|
|
* important that we do this after we have tried to establish link
|
|
|
|
* because the symbol error count will increment wildly if there
|
|
|
|
* is no link.
|
|
|
|
*/
|
|
|
|
e1000_clear_hw_cntrs_82571(hw);
|
|
|
|
|
2019-06-25 11:12:58 +00:00
|
|
|
/* MSI-X configure for 82574 */
|
|
|
|
if (mac->type == e1000_82574)
|
|
|
|
E1000_WRITE_REG(hw, E1000_IVAR,
|
|
|
|
(E1000_IVAR_INT_ALLOC_VALID << 16));
|
|
|
|
|
2017-04-21 10:43:26 +00:00
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Initializes required hardware-dependent bits needed for normal operation.
|
|
|
|
**/
|
|
|
|
STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 reg;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_initialize_hw_bits_82571");
|
|
|
|
|
|
|
|
/* Transmit Descriptor Control 0 */
|
|
|
|
reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
|
|
|
|
reg |= (1 << 22);
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
|
|
|
|
|
|
|
|
/* Transmit Descriptor Control 1 */
|
|
|
|
reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
|
|
|
|
reg |= (1 << 22);
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
|
|
|
|
|
|
|
|
/* Transmit Arbitration Control 0 */
|
|
|
|
reg = E1000_READ_REG(hw, E1000_TARC(0));
|
|
|
|
reg &= ~(0xF << 27); /* 30:27 */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
|
|
|
|
break;
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
reg |= (1 << 26);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_TARC(0), reg);
|
|
|
|
|
|
|
|
/* Transmit Arbitration Control 1 */
|
|
|
|
reg = E1000_READ_REG(hw, E1000_TARC(1));
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
reg &= ~((1 << 29) | (1 << 30));
|
|
|
|
reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
|
|
|
|
if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
|
|
|
|
reg &= ~(1 << 28);
|
|
|
|
else
|
|
|
|
reg |= (1 << 28);
|
|
|
|
E1000_WRITE_REG(hw, E1000_TARC(1), reg);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Device Control */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
reg &= ~(1 << 29);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Extended Device Control */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
|
|
reg &= ~(1 << 23);
|
|
|
|
reg |= (1 << 22);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hw->mac.type == e1000_82571) {
|
|
|
|
reg = E1000_READ_REG(hw, E1000_PBA_ECC);
|
|
|
|
reg |= E1000_PBA_ECC_CORR_EN;
|
|
|
|
E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Workaround for hardware errata.
|
|
|
|
* Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
|
|
|
|
*/
|
|
|
|
if ((hw->mac.type == e1000_82571) ||
|
|
|
|
(hw->mac.type == e1000_82572)) {
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
|
|
reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Disable IPv6 extension header parsing because some malformed
|
|
|
|
* IPv6 headers can hang the Rx.
|
|
|
|
*/
|
|
|
|
if (hw->mac.type <= e1000_82573) {
|
|
|
|
reg = E1000_READ_REG(hw, E1000_RFCTL);
|
|
|
|
reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* PCI-Ex Control Registers */
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
reg = E1000_READ_REG(hw, E1000_GCR);
|
|
|
|
reg |= (1 << 22);
|
|
|
|
E1000_WRITE_REG(hw, E1000_GCR, reg);
|
|
|
|
|
|
|
|
/* Workaround for hardware errata.
|
|
|
|
* apply workaround for hardware errata documented in errata
|
|
|
|
* docs Fixes issue where some error prone or unreliable PCIe
|
|
|
|
* completions are occurring, particularly with ASPM enabled.
|
|
|
|
* Without fix, issue can cause Tx timeouts.
|
|
|
|
*/
|
|
|
|
reg = E1000_READ_REG(hw, E1000_GCR2);
|
|
|
|
reg |= 1;
|
|
|
|
E1000_WRITE_REG(hw, E1000_GCR2, reg);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_clear_vfta_82571 - Clear VLAN filter table
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Clears the register array which contains the VLAN filter table by
|
|
|
|
* setting all the values to 0.
|
|
|
|
**/
|
|
|
|
STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 offset;
|
|
|
|
u32 vfta_value = 0;
|
|
|
|
u32 vfta_offset = 0;
|
|
|
|
u32 vfta_bit_in_reg = 0;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_clear_vfta_82571");
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
if (hw->mng_cookie.vlan_id != 0) {
|
|
|
|
/* The VFTA is a 4096b bit-field, each identifying
|
|
|
|
* a single VLAN ID. The following operations
|
|
|
|
* determine which 32b entry (i.e. offset) into the
|
|
|
|
* array we want to set the VLAN ID (i.e. bit) of
|
|
|
|
* the manageability unit.
|
|
|
|
*/
|
|
|
|
vfta_offset = (hw->mng_cookie.vlan_id >>
|
|
|
|
E1000_VFTA_ENTRY_SHIFT) &
|
|
|
|
E1000_VFTA_ENTRY_MASK;
|
|
|
|
vfta_bit_in_reg =
|
|
|
|
1 << (hw->mng_cookie.vlan_id &
|
|
|
|
E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
|
|
|
|
/* If the offset we want to clear is the same offset of the
|
|
|
|
* manageability VLAN ID, then clear all bits except that of
|
|
|
|
* the manageability unit.
|
|
|
|
*/
|
|
|
|
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
|
|
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_check_mng_mode_82574 - Check manageability is enabled
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Reads the NVM Initialization Control Word 2 and returns true
|
|
|
|
* (>0) if any manageability is enabled, else false (0).
|
|
|
|
**/
|
|
|
|
STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u16 data;
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_check_mng_mode_82574");
|
|
|
|
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
|
|
|
|
if (ret_val)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_led_on_82574 - Turn LED on
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Turn LED on.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_led_on_82574(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 ctrl;
|
|
|
|
u32 i;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_led_on_82574");
|
|
|
|
|
|
|
|
ctrl = hw->mac.ledctl_mode2;
|
|
|
|
if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
|
|
|
|
/* If no link, then turn LED on by setting the invert bit
|
|
|
|
* for each LED that's "on" (0x0E) in ledctl_mode2.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
|
|
|
|
E1000_LEDCTL_MODE_LED_ON)
|
|
|
|
ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
|
|
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_check_phy_82574 - check 82574 phy hung state
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Returns whether phy is hung or not
|
|
|
|
**/
|
|
|
|
bool e1000_check_phy_82574(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u16 status_1kbt = 0;
|
|
|
|
u16 receive_errors = 0;
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_check_phy_82574");
|
|
|
|
|
|
|
|
/* Read PHY Receive Error counter first, if its is max - all F's then
|
|
|
|
* read the Base1000T status register If both are max then PHY is hung.
|
|
|
|
*/
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
|
|
|
|
&receive_errors);
|
|
|
|
if (ret_val)
|
|
|
|
return false;
|
|
|
|
if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
|
|
|
|
&status_1kbt);
|
|
|
|
if (ret_val)
|
|
|
|
return false;
|
|
|
|
if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
|
|
|
|
E1000_IDLE_ERROR_COUNT_MASK)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_setup_link_82571 - Setup flow control and link settings
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Determines which flow control settings to use, then configures flow
|
|
|
|
* control. Calls the appropriate media-specific link configuration
|
|
|
|
* function. Assuming the adapter has a valid link partner, a valid link
|
|
|
|
* should be established. Assumes the hardware has previously been reset
|
|
|
|
* and the transmitter and receiver are not enabled.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_setup_link_82571");
|
|
|
|
|
|
|
|
/* 82573 does not have a word in the NVM to determine
|
|
|
|
* the default flow control setting, so we explicitly
|
|
|
|
* set it to full.
|
|
|
|
*/
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
if (hw->fc.requested_mode == e1000_fc_default)
|
|
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return e1000_setup_link_generic(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_setup_copper_link_82571 - Configure copper link settings
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Configures the link for auto-neg or forced speed and duplex. Then we check
|
|
|
|
* for link, once link is established calls to configure collision distance
|
|
|
|
* and flow control are called.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 ctrl;
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_setup_copper_link_82571");
|
|
|
|
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
ctrl |= E1000_CTRL_SLU;
|
|
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
|
|
|
|
switch (hw->phy.type) {
|
|
|
|
case e1000_phy_m88:
|
|
|
|
case e1000_phy_bm:
|
|
|
|
ret_val = e1000_copper_link_setup_m88(hw);
|
|
|
|
break;
|
|
|
|
case e1000_phy_igp_2:
|
|
|
|
ret_val = e1000_copper_link_setup_igp(hw);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -E1000_ERR_PHY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
return e1000_setup_copper_link_generic(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Configures collision distance and flow control for fiber and serdes links.
|
|
|
|
* Upon successful setup, poll for link.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82571:
|
|
|
|
case e1000_82572:
|
|
|
|
/* If SerDes loopback mode is entered, there is no form
|
|
|
|
* of reset to take the adapter out of that mode. So we
|
|
|
|
* have to explicitly take the adapter out of loopback
|
|
|
|
* mode. This prevents drivers from twiddling their thumbs
|
|
|
|
* if another tool failed to take it out of loopback mode.
|
|
|
|
*/
|
|
|
|
E1000_WRITE_REG(hw, E1000_SCTL,
|
|
|
|
E1000_SCTL_DISABLE_SERDES_LOOPBACK);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return e1000_setup_fiber_serdes_link_generic(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_check_for_serdes_link_82571 - Check for link (Serdes)
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Reports the link state as up or down.
|
|
|
|
*
|
|
|
|
* If autonegotiation is supported by the link partner, the link state is
|
|
|
|
* determined by the result of autonegotiation. This is the most likely case.
|
|
|
|
* If autonegotiation is not supported by the link partner, and the link
|
|
|
|
* has a valid signal, force the link up.
|
|
|
|
*
|
|
|
|
* The link state is represented internally here by 4 states:
|
|
|
|
*
|
|
|
|
* 1) down
|
|
|
|
* 2) autoneg_progress
|
|
|
|
* 3) autoneg_complete (the link successfully autonegotiated)
|
|
|
|
* 4) forced_up (the link has been forced up, it did not autonegotiate)
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
u32 rxcw;
|
|
|
|
u32 ctrl;
|
|
|
|
u32 status;
|
|
|
|
u32 txcw;
|
|
|
|
u32 i;
|
|
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_check_for_serdes_link_82571");
|
|
|
|
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
|
|
E1000_READ_REG(hw, E1000_RXCW);
|
|
|
|
/* SYNCH bit and IV bit are sticky */
|
|
|
|
usec_delay(10);
|
|
|
|
rxcw = E1000_READ_REG(hw, E1000_RXCW);
|
|
|
|
|
|
|
|
if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
|
|
|
|
/* Receiver is synchronized with no invalid bits. */
|
|
|
|
switch (mac->serdes_link_state) {
|
|
|
|
case e1000_serdes_link_autoneg_complete:
|
|
|
|
if (!(status & E1000_STATUS_LU)) {
|
|
|
|
/* We have lost link, retry autoneg before
|
|
|
|
* reporting link failure
|
|
|
|
*/
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_autoneg_progress;
|
|
|
|
mac->serdes_has_link = false;
|
|
|
|
DEBUGOUT("AN_UP -> AN_PROG\n");
|
|
|
|
} else {
|
|
|
|
mac->serdes_has_link = true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case e1000_serdes_link_forced_up:
|
|
|
|
/* If we are receiving /C/ ordered sets, re-enable
|
|
|
|
* auto-negotiation in the TXCW register and disable
|
|
|
|
* forced link in the Device Control register in an
|
|
|
|
* attempt to auto-negotiate with our link partner.
|
|
|
|
*/
|
|
|
|
if (rxcw & E1000_RXCW_C) {
|
|
|
|
/* Enable autoneg, and unforce link up */
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL,
|
|
|
|
(ctrl & ~E1000_CTRL_SLU));
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_autoneg_progress;
|
|
|
|
mac->serdes_has_link = false;
|
|
|
|
DEBUGOUT("FORCED_UP -> AN_PROG\n");
|
|
|
|
} else {
|
|
|
|
mac->serdes_has_link = true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case e1000_serdes_link_autoneg_progress:
|
|
|
|
if (rxcw & E1000_RXCW_C) {
|
|
|
|
/* We received /C/ ordered sets, meaning the
|
|
|
|
* link partner has autonegotiated, and we can
|
|
|
|
* trust the Link Up (LU) status bit.
|
|
|
|
*/
|
|
|
|
if (status & E1000_STATUS_LU) {
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_autoneg_complete;
|
|
|
|
DEBUGOUT("AN_PROG -> AN_UP\n");
|
|
|
|
mac->serdes_has_link = true;
|
|
|
|
} else {
|
|
|
|
/* Autoneg completed, but failed. */
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_down;
|
|
|
|
DEBUGOUT("AN_PROG -> DOWN\n");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* The link partner did not autoneg.
|
|
|
|
* Force link up and full duplex, and change
|
|
|
|
* state to forced.
|
|
|
|
*/
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXCW,
|
|
|
|
(mac->txcw & ~E1000_TXCW_ANE));
|
|
|
|
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
|
|
|
|
/* Configure Flow Control after link up. */
|
|
|
|
ret_val =
|
|
|
|
e1000_config_fc_after_link_up_generic(hw);
|
|
|
|
if (ret_val) {
|
|
|
|
DEBUGOUT("Error config flow control\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_forced_up;
|
|
|
|
mac->serdes_has_link = true;
|
|
|
|
DEBUGOUT("AN_PROG -> FORCED_UP\n");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case e1000_serdes_link_down:
|
|
|
|
default:
|
|
|
|
/* The link was down but the receiver has now gained
|
|
|
|
* valid sync, so lets see if we can bring the link
|
|
|
|
* up.
|
|
|
|
*/
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
|
|
|
|
~E1000_CTRL_SLU));
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_autoneg_progress;
|
|
|
|
mac->serdes_has_link = false;
|
|
|
|
DEBUGOUT("DOWN -> AN_PROG\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (!(rxcw & E1000_RXCW_SYNCH)) {
|
|
|
|
mac->serdes_has_link = false;
|
|
|
|
mac->serdes_link_state = e1000_serdes_link_down;
|
|
|
|
DEBUGOUT("ANYSTATE -> DOWN\n");
|
|
|
|
} else {
|
|
|
|
/* Check several times, if SYNCH bit and CONFIG
|
|
|
|
* bit both are consistently 1 then simply ignore
|
|
|
|
* the IV bit and restart Autoneg
|
|
|
|
*/
|
|
|
|
for (i = 0; i < AN_RETRY_COUNT; i++) {
|
|
|
|
usec_delay(10);
|
|
|
|
rxcw = E1000_READ_REG(hw, E1000_RXCW);
|
|
|
|
if ((rxcw & E1000_RXCW_SYNCH) &&
|
|
|
|
(rxcw & E1000_RXCW_C))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (rxcw & E1000_RXCW_IV) {
|
|
|
|
mac->serdes_has_link = false;
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_down;
|
|
|
|
DEBUGOUT("ANYSTATE -> DOWN\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == AN_RETRY_COUNT) {
|
|
|
|
txcw = E1000_READ_REG(hw, E1000_TXCW);
|
|
|
|
txcw |= E1000_TXCW_ANE;
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXCW, txcw);
|
|
|
|
mac->serdes_link_state =
|
|
|
|
e1000_serdes_link_autoneg_progress;
|
|
|
|
mac->serdes_has_link = false;
|
|
|
|
DEBUGOUT("ANYSTATE -> AN_PROG\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_valid_led_default_82571 - Verify a valid default LED config
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @data: pointer to the NVM (EEPROM)
|
|
|
|
*
|
|
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_valid_led_default_82571");
|
|
|
|
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
|
|
if (ret_val) {
|
|
|
|
DEBUGOUT("NVM Read Error\n");
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case e1000_82573:
|
|
|
|
case e1000_82574:
|
|
|
|
case e1000_82583:
|
|
|
|
if (*data == ID_LED_RESERVED_F746)
|
|
|
|
*data = ID_LED_DEFAULT_82573;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
if (*data == ID_LED_RESERVED_0000 ||
|
|
|
|
*data == ID_LED_RESERVED_FFFF)
|
|
|
|
*data = ID_LED_DEFAULT;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_laa_state_82571 - Get locally administered address state
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Retrieve and return the current locally administered address state.
|
|
|
|
**/
|
|
|
|
bool e1000_get_laa_state_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_get_laa_state_82571");
|
|
|
|
|
|
|
|
if (hw->mac.type != e1000_82571)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return hw->dev_spec._82571.laa_is_present;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_set_laa_state_82571 - Set locally administered address state
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @state: enable/disable locally administered address
|
|
|
|
*
|
|
|
|
* Enable/Disable the current locally administered address state.
|
|
|
|
**/
|
|
|
|
void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_set_laa_state_82571");
|
|
|
|
|
|
|
|
if (hw->mac.type != e1000_82571)
|
|
|
|
return;
|
|
|
|
|
|
|
|
hw->dev_spec._82571.laa_is_present = state;
|
|
|
|
|
|
|
|
/* If workaround is activated... */
|
|
|
|
if (state)
|
|
|
|
/* Hold a copy of the LAA in RAR[14] This is done so that
|
|
|
|
* between the time RAR[0] gets clobbered and the time it
|
|
|
|
* gets fixed, the actual LAA is in one of the RARs and no
|
|
|
|
* incoming packets directed to this port are dropped.
|
|
|
|
* Eventually the LAA will be in RAR[0] and RAR[14].
|
|
|
|
*/
|
|
|
|
hw->mac.ops.rar_set(hw, hw->mac.addr,
|
|
|
|
hw->mac.rar_entry_count - 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Verifies that the EEPROM has completed the update. After updating the
|
|
|
|
* EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
|
|
|
|
* the checksum fix is not implemented, we need to set the bit and update
|
|
|
|
* the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
|
|
|
|
* we need to return bad checksum.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
s32 ret_val;
|
|
|
|
u16 data;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_fix_nvm_checksum_82571");
|
|
|
|
|
|
|
|
if (nvm->type != e1000_nvm_flash_hw)
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
|
|
|
|
/* Check bit 4 of word 10h. If it is 0, firmware is done updating
|
|
|
|
* 10h-12h. Checksum may need to be fixed.
|
|
|
|
*/
|
|
|
|
ret_val = nvm->ops.read(hw, 0x10, 1, &data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
if (!(data & 0x10)) {
|
|
|
|
/* Read 0x23 and check bit 15. This bit is a 1
|
|
|
|
* when the checksum has already been fixed. If
|
|
|
|
* the checksum is still wrong and this bit is a
|
|
|
|
* 1, we need to return bad checksum. Otherwise,
|
|
|
|
* we need to set this bit to a 1 and update the
|
|
|
|
* checksum.
|
|
|
|
*/
|
|
|
|
ret_val = nvm->ops.read(hw, 0x23, 1, &data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
if (!(data & 0x8000)) {
|
|
|
|
data |= 0x8000;
|
|
|
|
ret_val = nvm->ops.write(hw, 0x23, 1, &data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
ret_val = nvm->ops.update(hw);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_read_mac_addr_82571 - Read device MAC address
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_read_mac_addr_82571");
|
|
|
|
|
|
|
|
if (hw->mac.type == e1000_82571) {
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
/* If there's an alternate MAC address place it in RAR0
|
|
|
|
* so that it will override the Si installed default perm
|
|
|
|
* address.
|
|
|
|
*/
|
|
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
return e1000_read_mac_addr_generic(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_power_down_phy_copper_82571 - Remove link during PHY power down
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* In the case of a PHY power down to save power, or to turn off link during a
|
|
|
|
* driver unload, or wake on lan is not enabled, remove the link.
|
|
|
|
**/
|
|
|
|
STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
|
|
|
|
if (!phy->ops.check_reset_block)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* If the management interface is not enabled, then power down */
|
|
|
|
if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
|
|
|
|
e1000_power_down_phy_copper(hw);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Clears the hardware counters by reading the counter registers.
|
|
|
|
**/
|
|
|
|
STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_clear_hw_cntrs_82571");
|
|
|
|
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
|
|
|
|
E1000_READ_REG(hw, E1000_PRC64);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC127);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC255);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC511);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC1023);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC1522);
|
|
|
|
E1000_READ_REG(hw, E1000_PTC64);
|
|
|
|
E1000_READ_REG(hw, E1000_PTC127);
|
|
|
|
E1000_READ_REG(hw, E1000_PTC255);
|
|
|
|
E1000_READ_REG(hw, E1000_PTC511);
|
|
|
|
E1000_READ_REG(hw, E1000_PTC1023);
|
|
|
|
E1000_READ_REG(hw, E1000_PTC1522);
|
|
|
|
|
|
|
|
E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
|
|
E1000_READ_REG(hw, E1000_RXERRC);
|
|
|
|
E1000_READ_REG(hw, E1000_TNCRS);
|
|
|
|
E1000_READ_REG(hw, E1000_CEXTERR);
|
|
|
|
E1000_READ_REG(hw, E1000_TSCTC);
|
|
|
|
E1000_READ_REG(hw, E1000_TSCTFC);
|
|
|
|
|
|
|
|
E1000_READ_REG(hw, E1000_MGTPRC);
|
|
|
|
E1000_READ_REG(hw, E1000_MGTPDC);
|
|
|
|
E1000_READ_REG(hw, E1000_MGTPTC);
|
|
|
|
|
|
|
|
E1000_READ_REG(hw, E1000_IAC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICRXOC);
|
|
|
|
|
|
|
|
E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICRXATC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICTXATC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
|
|
}
|