f-stack/dpdk/drivers/net/mlx5/mlx5_flow_tcf.c

5957 lines
168 KiB
C
Raw Normal View History

2019-06-25 11:12:58 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018 6WIND S.A.
* Copyright 2018 Mellanox Technologies, Ltd
*/
#include <assert.h>
#include <errno.h>
#include <libmnl/libmnl.h>
#include <linux/gen_stats.h>
#include <linux/if_ether.h>
#include <linux/netlink.h>
#include <linux/pkt_cls.h>
#include <linux/pkt_sched.h>
#include <linux/rtnetlink.h>
#include <linux/tc_act/tc_gact.h>
#include <linux/tc_act/tc_mirred.h>
#include <netinet/in.h>
#include <stdalign.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_ether.h>
#include <rte_flow.h>
#include <rte_malloc.h>
#include <rte_common.h>
#include "mlx5.h"
#include "mlx5_flow.h"
#include "mlx5_autoconf.h"
#ifdef HAVE_TC_ACT_VLAN
#include <linux/tc_act/tc_vlan.h>
#else /* HAVE_TC_ACT_VLAN */
#define TCA_VLAN_ACT_POP 1
#define TCA_VLAN_ACT_PUSH 2
#define TCA_VLAN_ACT_MODIFY 3
#define TCA_VLAN_PARMS 2
#define TCA_VLAN_PUSH_VLAN_ID 3
#define TCA_VLAN_PUSH_VLAN_PROTOCOL 4
#define TCA_VLAN_PAD 5
#define TCA_VLAN_PUSH_VLAN_PRIORITY 6
struct tc_vlan {
tc_gen;
int v_action;
};
#endif /* HAVE_TC_ACT_VLAN */
#ifdef HAVE_TC_ACT_PEDIT
#include <linux/tc_act/tc_pedit.h>
#else /* HAVE_TC_ACT_VLAN */
enum {
TCA_PEDIT_UNSPEC,
TCA_PEDIT_TM,
TCA_PEDIT_PARMS,
TCA_PEDIT_PAD,
TCA_PEDIT_PARMS_EX,
TCA_PEDIT_KEYS_EX,
TCA_PEDIT_KEY_EX,
__TCA_PEDIT_MAX
};
enum {
TCA_PEDIT_KEY_EX_HTYPE = 1,
TCA_PEDIT_KEY_EX_CMD = 2,
__TCA_PEDIT_KEY_EX_MAX
};
enum pedit_header_type {
TCA_PEDIT_KEY_EX_HDR_TYPE_NETWORK = 0,
TCA_PEDIT_KEY_EX_HDR_TYPE_ETH = 1,
TCA_PEDIT_KEY_EX_HDR_TYPE_IP4 = 2,
TCA_PEDIT_KEY_EX_HDR_TYPE_IP6 = 3,
TCA_PEDIT_KEY_EX_HDR_TYPE_TCP = 4,
TCA_PEDIT_KEY_EX_HDR_TYPE_UDP = 5,
__PEDIT_HDR_TYPE_MAX,
};
enum pedit_cmd {
TCA_PEDIT_KEY_EX_CMD_SET = 0,
TCA_PEDIT_KEY_EX_CMD_ADD = 1,
__PEDIT_CMD_MAX,
};
struct tc_pedit_key {
__u32 mask; /* AND */
__u32 val; /*XOR */
__u32 off; /*offset */
__u32 at;
__u32 offmask;
__u32 shift;
};
__extension__
struct tc_pedit_sel {
tc_gen;
unsigned char nkeys;
unsigned char flags;
struct tc_pedit_key keys[0];
};
#endif /* HAVE_TC_ACT_VLAN */
#ifdef HAVE_TC_ACT_TUNNEL_KEY
#include <linux/tc_act/tc_tunnel_key.h>
#ifndef HAVE_TCA_TUNNEL_KEY_ENC_DST_PORT
#define TCA_TUNNEL_KEY_ENC_DST_PORT 9
#endif
#ifndef HAVE_TCA_TUNNEL_KEY_NO_CSUM
#define TCA_TUNNEL_KEY_NO_CSUM 10
#endif
#else /* HAVE_TC_ACT_TUNNEL_KEY */
#define TCA_ACT_TUNNEL_KEY 17
#define TCA_TUNNEL_KEY_ACT_SET 1
#define TCA_TUNNEL_KEY_ACT_RELEASE 2
#define TCA_TUNNEL_KEY_PARMS 2
#define TCA_TUNNEL_KEY_ENC_IPV4_SRC 3
#define TCA_TUNNEL_KEY_ENC_IPV4_DST 4
#define TCA_TUNNEL_KEY_ENC_IPV6_SRC 5
#define TCA_TUNNEL_KEY_ENC_IPV6_DST 6
#define TCA_TUNNEL_KEY_ENC_KEY_ID 7
#define TCA_TUNNEL_KEY_ENC_DST_PORT 9
#define TCA_TUNNEL_KEY_NO_CSUM 10
struct tc_tunnel_key {
tc_gen;
int t_action;
};
#endif /* HAVE_TC_ACT_TUNNEL_KEY */
/* Normally found in linux/netlink.h. */
#ifndef NETLINK_CAP_ACK
#define NETLINK_CAP_ACK 10
#endif
/* Normally found in linux/pkt_sched.h. */
#ifndef TC_H_MIN_INGRESS
#define TC_H_MIN_INGRESS 0xfff2u
#endif
/* Normally found in linux/pkt_cls.h. */
#ifndef TCA_CLS_FLAGS_SKIP_SW
#define TCA_CLS_FLAGS_SKIP_SW (1 << 1)
#endif
#ifndef TCA_CLS_FLAGS_IN_HW
#define TCA_CLS_FLAGS_IN_HW (1 << 2)
#endif
#ifndef HAVE_TCA_CHAIN
#define TCA_CHAIN 11
#endif
#ifndef HAVE_TCA_FLOWER_ACT
#define TCA_FLOWER_ACT 3
#endif
#ifndef HAVE_TCA_FLOWER_FLAGS
#define TCA_FLOWER_FLAGS 22
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_TYPE
#define TCA_FLOWER_KEY_ETH_TYPE 8
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_DST
#define TCA_FLOWER_KEY_ETH_DST 4
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_DST_MASK
#define TCA_FLOWER_KEY_ETH_DST_MASK 5
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_SRC
#define TCA_FLOWER_KEY_ETH_SRC 6
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ETH_SRC_MASK
#define TCA_FLOWER_KEY_ETH_SRC_MASK 7
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IP_PROTO
#define TCA_FLOWER_KEY_IP_PROTO 9
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_SRC
#define TCA_FLOWER_KEY_IPV4_SRC 10
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_SRC_MASK
#define TCA_FLOWER_KEY_IPV4_SRC_MASK 11
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_DST
#define TCA_FLOWER_KEY_IPV4_DST 12
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV4_DST_MASK
#define TCA_FLOWER_KEY_IPV4_DST_MASK 13
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_SRC
#define TCA_FLOWER_KEY_IPV6_SRC 14
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_SRC_MASK
#define TCA_FLOWER_KEY_IPV6_SRC_MASK 15
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_DST
#define TCA_FLOWER_KEY_IPV6_DST 16
#endif
#ifndef HAVE_TCA_FLOWER_KEY_IPV6_DST_MASK
#define TCA_FLOWER_KEY_IPV6_DST_MASK 17
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_SRC
#define TCA_FLOWER_KEY_TCP_SRC 18
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_SRC_MASK
#define TCA_FLOWER_KEY_TCP_SRC_MASK 35
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_DST
#define TCA_FLOWER_KEY_TCP_DST 19
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_DST_MASK
#define TCA_FLOWER_KEY_TCP_DST_MASK 36
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_SRC
#define TCA_FLOWER_KEY_UDP_SRC 20
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_SRC_MASK
#define TCA_FLOWER_KEY_UDP_SRC_MASK 37
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_DST
#define TCA_FLOWER_KEY_UDP_DST 21
#endif
#ifndef HAVE_TCA_FLOWER_KEY_UDP_DST_MASK
#define TCA_FLOWER_KEY_UDP_DST_MASK 38
#endif
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_ID
#define TCA_FLOWER_KEY_VLAN_ID 23
#endif
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_PRIO
#define TCA_FLOWER_KEY_VLAN_PRIO 24
#endif
#ifndef HAVE_TCA_FLOWER_KEY_VLAN_ETH_TYPE
#define TCA_FLOWER_KEY_VLAN_ETH_TYPE 25
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_KEY_ID
#define TCA_FLOWER_KEY_ENC_KEY_ID 26
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_SRC
#define TCA_FLOWER_KEY_ENC_IPV4_SRC 27
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK
#define TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK 28
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_DST
#define TCA_FLOWER_KEY_ENC_IPV4_DST 29
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV4_DST_MASK
#define TCA_FLOWER_KEY_ENC_IPV4_DST_MASK 30
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_SRC
#define TCA_FLOWER_KEY_ENC_IPV6_SRC 31
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK
#define TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK 32
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_DST
#define TCA_FLOWER_KEY_ENC_IPV6_DST 33
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_IPV6_DST_MASK
#define TCA_FLOWER_KEY_ENC_IPV6_DST_MASK 34
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_SRC_PORT
#define TCA_FLOWER_KEY_ENC_UDP_SRC_PORT 43
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK
#define TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK 44
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_DST_PORT
#define TCA_FLOWER_KEY_ENC_UDP_DST_PORT 45
#endif
#ifndef HAVE_TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK
#define TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK 46
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_FLAGS
#define TCA_FLOWER_KEY_TCP_FLAGS 71
#endif
#ifndef HAVE_TCA_FLOWER_KEY_TCP_FLAGS_MASK
#define TCA_FLOWER_KEY_TCP_FLAGS_MASK 72
#endif
#ifndef HAVE_TC_ACT_GOTO_CHAIN
#define TC_ACT_GOTO_CHAIN 0x20000000
#endif
#ifndef IPV6_ADDR_LEN
#define IPV6_ADDR_LEN 16
#endif
#ifndef IPV4_ADDR_LEN
#define IPV4_ADDR_LEN 4
#endif
#ifndef TP_PORT_LEN
#define TP_PORT_LEN 2 /* Transport Port (UDP/TCP) Length */
#endif
#ifndef TTL_LEN
#define TTL_LEN 1
#endif
#ifndef TCA_ACT_MAX_PRIO
#define TCA_ACT_MAX_PRIO 32
#endif
/** UDP port range of VXLAN devices created by driver. */
#define MLX5_VXLAN_PORT_MIN 30000
#define MLX5_VXLAN_PORT_MAX 60000
#define MLX5_VXLAN_DEVICE_PFX "vmlx_"
/** Tunnel action type, used for @p type in header structure. */
enum flow_tcf_tunact_type {
FLOW_TCF_TUNACT_VXLAN_DECAP,
FLOW_TCF_TUNACT_VXLAN_ENCAP,
};
/** Flags used for @p mask in tunnel action encap descriptors. */
#define FLOW_TCF_ENCAP_ETH_SRC (1u << 0)
#define FLOW_TCF_ENCAP_ETH_DST (1u << 1)
#define FLOW_TCF_ENCAP_IPV4_SRC (1u << 2)
#define FLOW_TCF_ENCAP_IPV4_DST (1u << 3)
#define FLOW_TCF_ENCAP_IPV6_SRC (1u << 4)
#define FLOW_TCF_ENCAP_IPV6_DST (1u << 5)
#define FLOW_TCF_ENCAP_UDP_SRC (1u << 6)
#define FLOW_TCF_ENCAP_UDP_DST (1u << 7)
#define FLOW_TCF_ENCAP_VXLAN_VNI (1u << 8)
/**
* Structure for holding netlink context.
* Note the size of the message buffer which is MNL_SOCKET_BUFFER_SIZE.
* Using this (8KB) buffer size ensures that netlink messages will never be
* truncated.
*/
struct mlx5_flow_tcf_context {
struct mnl_socket *nl; /* NETLINK_ROUTE libmnl socket. */
uint32_t seq; /* Message sequence number. */
uint32_t buf_size; /* Message buffer size. */
uint8_t *buf; /* Message buffer. */
};
/**
* Neigh rule structure. The neigh rule is applied via Netlink to
* outer tunnel iface in order to provide destination MAC address
* for the VXLAN encapsultion. The neigh rule is implicitly related
* to the Flow itself and can be shared by multiple Flows.
*/
struct tcf_neigh_rule {
LIST_ENTRY(tcf_neigh_rule) next;
uint32_t refcnt;
struct ether_addr eth;
uint16_t mask;
union {
struct {
rte_be32_t dst;
} ipv4;
struct {
uint8_t dst[IPV6_ADDR_LEN];
} ipv6;
};
};
/**
* Local rule structure. The local rule is applied via Netlink to
* outer tunnel iface in order to provide local and peer IP addresses
* of the VXLAN tunnel for encapsulation. The local rule is implicitly
* related to the Flow itself and can be shared by multiple Flows.
*/
struct tcf_local_rule {
LIST_ENTRY(tcf_local_rule) next;
uint32_t refcnt;
uint16_t mask;
union {
struct {
rte_be32_t dst;
rte_be32_t src;
} ipv4;
struct {
uint8_t dst[IPV6_ADDR_LEN];
uint8_t src[IPV6_ADDR_LEN];
} ipv6;
};
};
/** VXLAN virtual netdev. */
struct tcf_vtep {
LIST_ENTRY(tcf_vtep) next;
LIST_HEAD(, tcf_neigh_rule) neigh;
LIST_HEAD(, tcf_local_rule) local;
uint32_t refcnt;
unsigned int ifindex; /**< Own interface index. */
unsigned int ifouter; /**< Index of device attached to. */
uint16_t port;
uint8_t created;
};
/** Tunnel descriptor header, common for all tunnel types. */
struct flow_tcf_tunnel_hdr {
uint32_t type; /**< Tunnel action type. */
struct tcf_vtep *vtep; /**< Virtual tunnel endpoint device. */
unsigned int ifindex_org; /**< Original dst/src interface */
unsigned int *ifindex_ptr; /**< Interface ptr in message. */
};
struct flow_tcf_vxlan_decap {
struct flow_tcf_tunnel_hdr hdr;
uint16_t udp_port;
};
struct flow_tcf_vxlan_encap {
struct flow_tcf_tunnel_hdr hdr;
uint32_t mask;
struct {
struct ether_addr dst;
struct ether_addr src;
} eth;
union {
struct {
rte_be32_t dst;
rte_be32_t src;
} ipv4;
struct {
uint8_t dst[IPV6_ADDR_LEN];
uint8_t src[IPV6_ADDR_LEN];
} ipv6;
};
struct {
rte_be16_t src;
rte_be16_t dst;
} udp;
struct {
uint8_t vni[3];
} vxlan;
};
/** Structure used when extracting the values of a flow counters
* from a netlink message.
*/
struct flow_tcf_stats_basic {
bool valid;
struct gnet_stats_basic counters;
};
/** Empty masks for known item types. */
static const union {
struct rte_flow_item_port_id port_id;
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv6 ipv6;
struct rte_flow_item_tcp tcp;
struct rte_flow_item_udp udp;
struct rte_flow_item_vxlan vxlan;
} flow_tcf_mask_empty;
/** Supported masks for known item types. */
static const struct {
struct rte_flow_item_port_id port_id;
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv6 ipv6;
struct rte_flow_item_tcp tcp;
struct rte_flow_item_udp udp;
struct rte_flow_item_vxlan vxlan;
} flow_tcf_mask_supported = {
.port_id = {
.id = 0xffffffff,
},
.eth = {
.type = RTE_BE16(0xffff),
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
},
.vlan = {
/* PCP and VID only, no DEI. */
.tci = RTE_BE16(0xefff),
.inner_type = RTE_BE16(0xffff),
},
.ipv4.hdr = {
.next_proto_id = 0xff,
.src_addr = RTE_BE32(0xffffffff),
.dst_addr = RTE_BE32(0xffffffff),
},
.ipv6.hdr = {
.proto = 0xff,
.src_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.dst_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
},
.tcp.hdr = {
.src_port = RTE_BE16(0xffff),
.dst_port = RTE_BE16(0xffff),
.tcp_flags = 0xff,
},
.udp.hdr = {
.src_port = RTE_BE16(0xffff),
.dst_port = RTE_BE16(0xffff),
},
.vxlan = {
.vni = "\xff\xff\xff",
},
};
#define SZ_NLATTR_HDR MNL_ALIGN(sizeof(struct nlattr))
#define SZ_NLATTR_NEST SZ_NLATTR_HDR
#define SZ_NLATTR_DATA_OF(len) MNL_ALIGN(SZ_NLATTR_HDR + (len))
#define SZ_NLATTR_TYPE_OF(typ) SZ_NLATTR_DATA_OF(sizeof(typ))
#define SZ_NLATTR_STRZ_OF(str) SZ_NLATTR_DATA_OF(strlen(str) + 1)
#define PTOI_TABLE_SZ_MAX(dev) (mlx5_dev_to_port_id((dev)->device, NULL, 0) + 2)
/** DPDK port to network interface index (ifindex) conversion. */
struct flow_tcf_ptoi {
uint16_t port_id; /**< DPDK port ID. */
unsigned int ifindex; /**< Network interface index. */
};
/* Due to a limitation on driver/FW. */
#define MLX5_TCF_GROUP_ID_MAX 3
/*
* Due to a limitation on driver/FW, priority ranges from 1 to 16 in kernel.
* Priority in rte_flow attribute starts from 0 and is added by 1 in
* translation. This is subject to be changed to determine the max priority
* based on trial-and-error like Verbs driver once the restriction is lifted or
* the range is extended.
*/
#define MLX5_TCF_GROUP_PRIORITY_MAX 15
#define MLX5_TCF_FATE_ACTIONS \
(MLX5_FLOW_ACTION_DROP | MLX5_FLOW_ACTION_PORT_ID | \
MLX5_FLOW_ACTION_JUMP)
#define MLX5_TCF_VLAN_ACTIONS \
(MLX5_FLOW_ACTION_OF_POP_VLAN | MLX5_FLOW_ACTION_OF_PUSH_VLAN | \
MLX5_FLOW_ACTION_OF_SET_VLAN_VID | MLX5_FLOW_ACTION_OF_SET_VLAN_PCP)
#define MLX5_TCF_VXLAN_ACTIONS \
(MLX5_FLOW_ACTION_VXLAN_ENCAP | MLX5_FLOW_ACTION_VXLAN_DECAP)
#define MLX5_TCF_PEDIT_ACTIONS \
(MLX5_FLOW_ACTION_SET_IPV4_SRC | MLX5_FLOW_ACTION_SET_IPV4_DST | \
MLX5_FLOW_ACTION_SET_IPV6_SRC | MLX5_FLOW_ACTION_SET_IPV6_DST | \
MLX5_FLOW_ACTION_SET_TP_SRC | MLX5_FLOW_ACTION_SET_TP_DST | \
MLX5_FLOW_ACTION_SET_TTL | MLX5_FLOW_ACTION_DEC_TTL | \
MLX5_FLOW_ACTION_SET_MAC_SRC | MLX5_FLOW_ACTION_SET_MAC_DST)
#define MLX5_TCF_CONFIG_ACTIONS \
(MLX5_FLOW_ACTION_PORT_ID | MLX5_FLOW_ACTION_JUMP | \
MLX5_FLOW_ACTION_OF_PUSH_VLAN | MLX5_FLOW_ACTION_OF_SET_VLAN_VID | \
MLX5_FLOW_ACTION_OF_SET_VLAN_PCP | \
(MLX5_TCF_PEDIT_ACTIONS & ~MLX5_FLOW_ACTION_DEC_TTL))
#define MAX_PEDIT_KEYS 128
#define SZ_PEDIT_KEY_VAL 4
#define NUM_OF_PEDIT_KEYS(sz) \
(((sz) / SZ_PEDIT_KEY_VAL) + (((sz) % SZ_PEDIT_KEY_VAL) ? 1 : 0))
struct pedit_key_ex {
enum pedit_header_type htype;
enum pedit_cmd cmd;
};
struct pedit_parser {
struct tc_pedit_sel sel;
struct tc_pedit_key keys[MAX_PEDIT_KEYS];
struct pedit_key_ex keys_ex[MAX_PEDIT_KEYS];
};
/**
* Create space for using the implicitly created TC flow counter.
*
* @param[in] dev
* Pointer to the Ethernet device structure.
*
* @return
* A pointer to the counter data structure, NULL otherwise and
* rte_errno is set.
*/
static struct mlx5_flow_counter *
flow_tcf_counter_new(void)
{
struct mlx5_flow_counter *cnt;
/*
* eswitch counter cannot be shared and its id is unknown.
* currently returning all with id 0.
* in the future maybe better to switch to unique numbers.
*/
struct mlx5_flow_counter tmpl = {
.ref_cnt = 1,
};
cnt = rte_calloc(__func__, 1, sizeof(*cnt), 0);
if (!cnt) {
rte_errno = ENOMEM;
return NULL;
}
*cnt = tmpl;
/* Implicit counter, do not add to list. */
return cnt;
}
/**
* Set pedit key of MAC address
*
* @param[in] actions
* pointer to action specification
* @param[in,out] p_parser
* pointer to pedit_parser
*/
static void
flow_tcf_pedit_key_set_mac(const struct rte_flow_action *actions,
struct pedit_parser *p_parser)
{
int idx = p_parser->sel.nkeys;
uint32_t off = actions->type == RTE_FLOW_ACTION_TYPE_SET_MAC_SRC ?
offsetof(struct ether_hdr, s_addr) :
offsetof(struct ether_hdr, d_addr);
const struct rte_flow_action_set_mac *conf =
(const struct rte_flow_action_set_mac *)actions->conf;
p_parser->keys[idx].off = off;
p_parser->keys[idx].mask = ~UINT32_MAX;
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_ETH;
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
memcpy(&p_parser->keys[idx].val,
conf->mac_addr, SZ_PEDIT_KEY_VAL);
idx++;
p_parser->keys[idx].off = off + SZ_PEDIT_KEY_VAL;
p_parser->keys[idx].mask = 0xFFFF0000;
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_ETH;
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
memcpy(&p_parser->keys[idx].val,
conf->mac_addr + SZ_PEDIT_KEY_VAL,
ETHER_ADDR_LEN - SZ_PEDIT_KEY_VAL);
p_parser->sel.nkeys = (++idx);
}
/**
* Set pedit key of decrease/set ttl
*
* @param[in] actions
* pointer to action specification
* @param[in,out] p_parser
* pointer to pedit_parser
* @param[in] item_flags
* flags of all items presented
*/
static void
flow_tcf_pedit_key_set_dec_ttl(const struct rte_flow_action *actions,
struct pedit_parser *p_parser,
uint64_t item_flags)
{
int idx = p_parser->sel.nkeys;
p_parser->keys[idx].mask = 0xFFFFFF00;
if (item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV4) {
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP4;
p_parser->keys[idx].off =
offsetof(struct ipv4_hdr, time_to_live);
}
if (item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV6) {
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP6;
p_parser->keys[idx].off =
offsetof(struct ipv6_hdr, hop_limits);
}
if (actions->type == RTE_FLOW_ACTION_TYPE_DEC_TTL) {
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_ADD;
p_parser->keys[idx].val = 0x000000FF;
} else {
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
p_parser->keys[idx].val =
(__u32)((const struct rte_flow_action_set_ttl *)
actions->conf)->ttl_value;
}
p_parser->sel.nkeys = (++idx);
}
/**
* Set pedit key of transport (TCP/UDP) port value
*
* @param[in] actions
* pointer to action specification
* @param[in,out] p_parser
* pointer to pedit_parser
* @param[in] item_flags
* flags of all items presented
*/
static void
flow_tcf_pedit_key_set_tp_port(const struct rte_flow_action *actions,
struct pedit_parser *p_parser,
uint64_t item_flags)
{
int idx = p_parser->sel.nkeys;
if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_UDP;
if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_TCP;
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
/* offset of src/dst port is same for TCP and UDP */
p_parser->keys[idx].off =
actions->type == RTE_FLOW_ACTION_TYPE_SET_TP_SRC ?
offsetof(struct tcp_hdr, src_port) :
offsetof(struct tcp_hdr, dst_port);
p_parser->keys[idx].mask = 0xFFFF0000;
p_parser->keys[idx].val =
(__u32)((const struct rte_flow_action_set_tp *)
actions->conf)->port;
p_parser->sel.nkeys = (++idx);
}
/**
* Set pedit key of ipv6 address
*
* @param[in] actions
* pointer to action specification
* @param[in,out] p_parser
* pointer to pedit_parser
*/
static void
flow_tcf_pedit_key_set_ipv6_addr(const struct rte_flow_action *actions,
struct pedit_parser *p_parser)
{
int idx = p_parser->sel.nkeys;
int keys = NUM_OF_PEDIT_KEYS(IPV6_ADDR_LEN);
int off_base =
actions->type == RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC ?
offsetof(struct ipv6_hdr, src_addr) :
offsetof(struct ipv6_hdr, dst_addr);
const struct rte_flow_action_set_ipv6 *conf =
(const struct rte_flow_action_set_ipv6 *)actions->conf;
for (int i = 0; i < keys; i++, idx++) {
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP6;
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
p_parser->keys[idx].off = off_base + i * SZ_PEDIT_KEY_VAL;
p_parser->keys[idx].mask = ~UINT32_MAX;
memcpy(&p_parser->keys[idx].val,
conf->ipv6_addr + i * SZ_PEDIT_KEY_VAL,
SZ_PEDIT_KEY_VAL);
}
p_parser->sel.nkeys += keys;
}
/**
* Set pedit key of ipv4 address
*
* @param[in] actions
* pointer to action specification
* @param[in,out] p_parser
* pointer to pedit_parser
*/
static void
flow_tcf_pedit_key_set_ipv4_addr(const struct rte_flow_action *actions,
struct pedit_parser *p_parser)
{
int idx = p_parser->sel.nkeys;
p_parser->keys_ex[idx].htype = TCA_PEDIT_KEY_EX_HDR_TYPE_IP4;
p_parser->keys_ex[idx].cmd = TCA_PEDIT_KEY_EX_CMD_SET;
p_parser->keys[idx].off =
actions->type == RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC ?
offsetof(struct ipv4_hdr, src_addr) :
offsetof(struct ipv4_hdr, dst_addr);
p_parser->keys[idx].mask = ~UINT32_MAX;
p_parser->keys[idx].val =
((const struct rte_flow_action_set_ipv4 *)
actions->conf)->ipv4_addr;
p_parser->sel.nkeys = (++idx);
}
/**
* Create the pedit's na attribute in netlink message
* on pre-allocate message buffer
*
* @param[in,out] nl
* pointer to pre-allocated netlink message buffer
* @param[in,out] actions
* pointer to pointer of actions specification.
* @param[in,out] action_flags
* pointer to actions flags
* @param[in] item_flags
* flags of all item presented
*/
static void
flow_tcf_create_pedit_mnl_msg(struct nlmsghdr *nl,
const struct rte_flow_action **actions,
uint64_t item_flags)
{
struct pedit_parser p_parser;
struct nlattr *na_act_options;
struct nlattr *na_pedit_keys;
memset(&p_parser, 0, sizeof(p_parser));
mnl_attr_put_strz(nl, TCA_ACT_KIND, "pedit");
na_act_options = mnl_attr_nest_start(nl, TCA_ACT_OPTIONS);
/* all modify header actions should be in one tc-pedit action */
for (; (*actions)->type != RTE_FLOW_ACTION_TYPE_END; (*actions)++) {
switch ((*actions)->type) {
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
flow_tcf_pedit_key_set_ipv4_addr(*actions, &p_parser);
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
flow_tcf_pedit_key_set_ipv6_addr(*actions, &p_parser);
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
flow_tcf_pedit_key_set_tp_port(*actions,
&p_parser, item_flags);
break;
case RTE_FLOW_ACTION_TYPE_SET_TTL:
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
flow_tcf_pedit_key_set_dec_ttl(*actions,
&p_parser, item_flags);
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
flow_tcf_pedit_key_set_mac(*actions, &p_parser);
break;
default:
goto pedit_mnl_msg_done;
}
}
pedit_mnl_msg_done:
p_parser.sel.action = TC_ACT_PIPE;
mnl_attr_put(nl, TCA_PEDIT_PARMS_EX,
sizeof(p_parser.sel) +
p_parser.sel.nkeys * sizeof(struct tc_pedit_key),
&p_parser);
na_pedit_keys =
mnl_attr_nest_start(nl, TCA_PEDIT_KEYS_EX | NLA_F_NESTED);
for (int i = 0; i < p_parser.sel.nkeys; i++) {
struct nlattr *na_pedit_key =
mnl_attr_nest_start(nl,
TCA_PEDIT_KEY_EX | NLA_F_NESTED);
mnl_attr_put_u16(nl, TCA_PEDIT_KEY_EX_HTYPE,
p_parser.keys_ex[i].htype);
mnl_attr_put_u16(nl, TCA_PEDIT_KEY_EX_CMD,
p_parser.keys_ex[i].cmd);
mnl_attr_nest_end(nl, na_pedit_key);
}
mnl_attr_nest_end(nl, na_pedit_keys);
mnl_attr_nest_end(nl, na_act_options);
(*actions)--;
}
/**
* Calculate max memory size of one TC-pedit actions.
* One TC-pedit action can contain set of keys each defining
* a rewrite element (rte_flow action)
*
* @param[in,out] actions
* actions specification.
* @param[in,out] action_flags
* actions flags
* @param[in,out] size
* accumulated size
* @return
* Max memory size of one TC-pedit action
*/
static int
flow_tcf_get_pedit_actions_size(const struct rte_flow_action **actions,
uint64_t *action_flags)
{
int pedit_size = 0;
int keys = 0;
uint64_t flags = 0;
pedit_size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("pedit") +
SZ_NLATTR_NEST; /* TCA_ACT_OPTIONS. */
for (; (*actions)->type != RTE_FLOW_ACTION_TYPE_END; (*actions)++) {
switch ((*actions)->type) {
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
keys += NUM_OF_PEDIT_KEYS(IPV4_ADDR_LEN);
flags |= MLX5_FLOW_ACTION_SET_IPV4_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
keys += NUM_OF_PEDIT_KEYS(IPV4_ADDR_LEN);
flags |= MLX5_FLOW_ACTION_SET_IPV4_DST;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
keys += NUM_OF_PEDIT_KEYS(IPV6_ADDR_LEN);
flags |= MLX5_FLOW_ACTION_SET_IPV6_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
keys += NUM_OF_PEDIT_KEYS(IPV6_ADDR_LEN);
flags |= MLX5_FLOW_ACTION_SET_IPV6_DST;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
/* TCP is as same as UDP */
keys += NUM_OF_PEDIT_KEYS(TP_PORT_LEN);
flags |= MLX5_FLOW_ACTION_SET_TP_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
/* TCP is as same as UDP */
keys += NUM_OF_PEDIT_KEYS(TP_PORT_LEN);
flags |= MLX5_FLOW_ACTION_SET_TP_DST;
break;
case RTE_FLOW_ACTION_TYPE_SET_TTL:
keys += NUM_OF_PEDIT_KEYS(TTL_LEN);
flags |= MLX5_FLOW_ACTION_SET_TTL;
break;
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
keys += NUM_OF_PEDIT_KEYS(TTL_LEN);
flags |= MLX5_FLOW_ACTION_DEC_TTL;
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
keys += NUM_OF_PEDIT_KEYS(ETHER_ADDR_LEN);
flags |= MLX5_FLOW_ACTION_SET_MAC_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
keys += NUM_OF_PEDIT_KEYS(ETHER_ADDR_LEN);
flags |= MLX5_FLOW_ACTION_SET_MAC_DST;
break;
default:
goto get_pedit_action_size_done;
}
}
get_pedit_action_size_done:
/* TCA_PEDIT_PARAMS_EX */
pedit_size +=
SZ_NLATTR_DATA_OF(sizeof(struct tc_pedit_sel) +
keys * sizeof(struct tc_pedit_key));
pedit_size += SZ_NLATTR_NEST; /* TCA_PEDIT_KEYS */
pedit_size += keys *
/* TCA_PEDIT_KEY_EX + HTYPE + CMD */
(SZ_NLATTR_NEST + SZ_NLATTR_DATA_OF(2) +
SZ_NLATTR_DATA_OF(2));
(*action_flags) |= flags;
(*actions)--;
return pedit_size;
}
/**
* Retrieve mask for pattern item.
*
* This function does basic sanity checks on a pattern item in order to
* return the most appropriate mask for it.
*
* @param[in] item
* Item specification.
* @param[in] mask_default
* Default mask for pattern item as specified by the flow API.
* @param[in] mask_supported
* Mask fields supported by the implementation.
* @param[in] mask_empty
* Empty mask to return when there is no specification.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* Either @p item->mask or one of the mask parameters on success, NULL
* otherwise and rte_errno is set.
*/
static const void *
flow_tcf_item_mask(const struct rte_flow_item *item, const void *mask_default,
const void *mask_supported, const void *mask_empty,
size_t mask_size, struct rte_flow_error *error)
{
const uint8_t *mask;
size_t i;
/* item->last and item->mask cannot exist without item->spec. */
if (!item->spec && (item->mask || item->last)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"\"mask\" or \"last\" field provided without"
" a corresponding \"spec\"");
return NULL;
}
/* No spec, no mask, no problem. */
if (!item->spec)
return mask_empty;
mask = item->mask ? item->mask : mask_default;
assert(mask);
/*
* Single-pass check to make sure that:
* - Mask is supported, no bits are set outside mask_supported.
* - Both item->spec and item->last are included in mask.
*/
for (i = 0; i != mask_size; ++i) {
if (!mask[i])
continue;
if ((mask[i] | ((const uint8_t *)mask_supported)[i]) !=
((const uint8_t *)mask_supported)[i]) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"unsupported field found"
" in \"mask\"");
return NULL;
}
if (item->last &&
(((const uint8_t *)item->spec)[i] & mask[i]) !=
(((const uint8_t *)item->last)[i] & mask[i])) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_LAST,
item->last,
"range between \"spec\" and \"last\""
" not comprised in \"mask\"");
return NULL;
}
}
return mask;
}
/**
* Build a conversion table between port ID and ifindex.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[out] ptoi
* Pointer to ptoi table.
* @param[in] len
* Size of ptoi table provided.
*
* @return
* Size of ptoi table filled.
*/
static unsigned int
flow_tcf_build_ptoi_table(struct rte_eth_dev *dev, struct flow_tcf_ptoi *ptoi,
unsigned int len)
{
unsigned int n = mlx5_dev_to_port_id(dev->device, NULL, 0);
uint16_t port_id[n + 1];
unsigned int i;
unsigned int own = 0;
/* At least one port is needed when no switch domain is present. */
if (!n) {
n = 1;
port_id[0] = dev->data->port_id;
} else {
n = RTE_MIN(mlx5_dev_to_port_id(dev->device, port_id, n), n);
}
if (n > len)
return 0;
for (i = 0; i != n; ++i) {
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(port_id[i], &dev_info);
if (port_id[i] == dev->data->port_id)
own = i;
ptoi[i].port_id = port_id[i];
ptoi[i].ifindex = dev_info.if_index;
}
/* Ensure first entry of ptoi[] is the current device. */
if (own) {
ptoi[n] = ptoi[0];
ptoi[0] = ptoi[own];
ptoi[own] = ptoi[n];
}
/* An entry with zero ifindex terminates ptoi[]. */
ptoi[n].port_id = 0;
ptoi[n].ifindex = 0;
return n;
}
/**
* Verify the @p attr will be correctly understood by the E-switch.
*
* @param[in] attr
* Pointer to flow attributes
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_validate_attributes(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
/*
* Supported attributes: groups, some priorities and ingress only.
* group is supported only if kernel supports chain. Don't care about
* transfer as it is the caller's problem.
*/
if (attr->group > MLX5_TCF_GROUP_ID_MAX)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
"group ID larger than "
RTE_STR(MLX5_TCF_GROUP_ID_MAX)
" isn't supported");
else if (attr->priority > MLX5_TCF_GROUP_PRIORITY_MAX)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr,
"priority more than "
RTE_STR(MLX5_TCF_GROUP_PRIORITY_MAX)
" is not supported");
if (!attr->ingress)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "only ingress is supported");
if (attr->egress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "egress is not supported");
return 0;
}
/**
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_ETH item for E-Switch.
* The routine checks the L2 fields to be used in encapsulation header.
*
* @param[in] item
* Pointer to the item structure.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
**/
static int
flow_tcf_validate_vxlan_encap_eth(const struct rte_flow_item *item,
struct rte_flow_error *error)
{
const struct rte_flow_item_eth *spec = item->spec;
const struct rte_flow_item_eth *mask = item->mask;
if (!spec) {
/*
* Specification for L2 addresses can be empty
* because these ones are optional and not
* required directly by tc rule. Kernel tries
* to resolve these ones on its own
*/
return 0;
}
if (!mask) {
/* If mask is not specified use the default one. */
mask = &rte_flow_item_eth_mask;
}
if (memcmp(&mask->dst,
&flow_tcf_mask_empty.eth.dst,
sizeof(flow_tcf_mask_empty.eth.dst))) {
if (memcmp(&mask->dst,
&rte_flow_item_eth_mask.dst,
sizeof(rte_flow_item_eth_mask.dst)))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"eth.dst\" field");
}
if (memcmp(&mask->src,
&flow_tcf_mask_empty.eth.src,
sizeof(flow_tcf_mask_empty.eth.src))) {
if (memcmp(&mask->src,
&rte_flow_item_eth_mask.src,
sizeof(rte_flow_item_eth_mask.src)))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"eth.src\" field");
}
if (mask->type != RTE_BE16(0x0000)) {
if (mask->type != RTE_BE16(0xffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"eth.type\" field");
DRV_LOG(WARNING,
"outer ethernet type field"
" cannot be forced for vxlan"
" encapsulation, parameter ignored");
}
return 0;
}
/**
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_IPV4 item for E-Switch.
* The routine checks the IPv4 fields to be used in encapsulation header.
*
* @param[in] item
* Pointer to the item structure.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
**/
static int
flow_tcf_validate_vxlan_encap_ipv4(const struct rte_flow_item *item,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv4 *spec = item->spec;
const struct rte_flow_item_ipv4 *mask = item->mask;
if (!spec) {
/*
* Specification for IP addresses cannot be empty
* because it is required by tunnel_key parameter.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"NULL outer ipv4 address"
" specification for vxlan"
" encapsulation");
}
if (!mask)
mask = &rte_flow_item_ipv4_mask;
if (mask->hdr.dst_addr != RTE_BE32(0x00000000)) {
if (mask->hdr.dst_addr != RTE_BE32(0xffffffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv4.hdr.dst_addr\" field"
" for vxlan encapsulation");
/* More IPv4 address validations can be put here. */
} else {
/*
* Kernel uses the destination IP address to determine
* the routing path and obtain the MAC destination
* address, so IP destination address must be
* specified in the tc rule.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"outer ipv4 destination address"
" must be specified for"
" vxlan encapsulation");
}
if (mask->hdr.src_addr != RTE_BE32(0x00000000)) {
if (mask->hdr.src_addr != RTE_BE32(0xffffffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv4.hdr.src_addr\" field"
" for vxlan encapsulation");
/* More IPv4 address validations can be put here. */
} else {
/*
* Kernel uses the source IP address to select the
* interface for egress encapsulated traffic, so
* it must be specified in the tc rule.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"outer ipv4 source address"
" must be specified for"
" vxlan encapsulation");
}
return 0;
}
/**
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_IPV6 item for E-Switch.
* The routine checks the IPv6 fields to be used in encapsulation header.
*
* @param[in] item
* Pointer to the item structure.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
**/
static int
flow_tcf_validate_vxlan_encap_ipv6(const struct rte_flow_item *item,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv6 *spec = item->spec;
const struct rte_flow_item_ipv6 *mask = item->mask;
if (!spec) {
/*
* Specification for IP addresses cannot be empty
* because it is required by tunnel_key parameter.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"NULL outer ipv6 address"
" specification for"
" vxlan encapsulation");
}
if (!mask)
mask = &rte_flow_item_ipv6_mask;
if (memcmp(&mask->hdr.dst_addr,
&flow_tcf_mask_empty.ipv6.hdr.dst_addr,
IPV6_ADDR_LEN)) {
if (memcmp(&mask->hdr.dst_addr,
&rte_flow_item_ipv6_mask.hdr.dst_addr,
IPV6_ADDR_LEN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv6.hdr.dst_addr\" field"
" for vxlan encapsulation");
/* More IPv6 address validations can be put here. */
} else {
/*
* Kernel uses the destination IP address to determine
* the routing path and obtain the MAC destination
* address (heigh or gate), so IP destination address
* must be specified within the tc rule.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"outer ipv6 destination address"
" must be specified for"
" vxlan encapsulation");
}
if (memcmp(&mask->hdr.src_addr,
&flow_tcf_mask_empty.ipv6.hdr.src_addr,
IPV6_ADDR_LEN)) {
if (memcmp(&mask->hdr.src_addr,
&rte_flow_item_ipv6_mask.hdr.src_addr,
IPV6_ADDR_LEN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv6.hdr.src_addr\" field"
" for vxlan encapsulation");
/* More L3 address validation can be put here. */
} else {
/*
* Kernel uses the source IP address to select the
* interface for egress encapsulated traffic, so
* it must be specified in the tc rule.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"outer L3 source address"
" must be specified for"
" vxlan encapsulation");
}
return 0;
}
/**
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_UDP item for E-Switch.
* The routine checks the UDP fields to be used in encapsulation header.
*
* @param[in] item
* Pointer to the item structure.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
**/
static int
flow_tcf_validate_vxlan_encap_udp(const struct rte_flow_item *item,
struct rte_flow_error *error)
{
const struct rte_flow_item_udp *spec = item->spec;
const struct rte_flow_item_udp *mask = item->mask;
if (!spec) {
/*
* Specification for UDP ports cannot be empty
* because it is required by tunnel_key parameter.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"NULL UDP port specification "
" for vxlan encapsulation");
}
if (!mask)
mask = &rte_flow_item_udp_mask;
if (mask->hdr.dst_port != RTE_BE16(0x0000)) {
if (mask->hdr.dst_port != RTE_BE16(0xffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"udp.hdr.dst_port\" field"
" for vxlan encapsulation");
if (!spec->hdr.dst_port)
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"outer UDP remote port cannot be"
" 0 for vxlan encapsulation");
} else {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"outer UDP remote port"
" must be specified for"
" vxlan encapsulation");
}
if (mask->hdr.src_port != RTE_BE16(0x0000)) {
if (mask->hdr.src_port != RTE_BE16(0xffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"udp.hdr.src_port\" field"
" for vxlan encapsulation");
DRV_LOG(WARNING,
"outer UDP source port cannot be"
" forced for vxlan encapsulation,"
" parameter ignored");
}
return 0;
}
/**
* Validate VXLAN_ENCAP action RTE_FLOW_ITEM_TYPE_VXLAN item for E-Switch.
* The routine checks the VNIP fields to be used in encapsulation header.
*
* @param[in] item
* Pointer to the item structure.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
**/
static int
flow_tcf_validate_vxlan_encap_vni(const struct rte_flow_item *item,
struct rte_flow_error *error)
{
const struct rte_flow_item_vxlan *spec = item->spec;
const struct rte_flow_item_vxlan *mask = item->mask;
if (!spec) {
/* Outer VNI is required by tunnel_key parameter. */
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"NULL VNI specification"
" for vxlan encapsulation");
}
if (!mask)
mask = &rte_flow_item_vxlan_mask;
if (!mask->vni[0] && !mask->vni[1] && !mask->vni[2])
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"outer VNI must be specified "
"for vxlan encapsulation");
if (mask->vni[0] != 0xff ||
mask->vni[1] != 0xff ||
mask->vni[2] != 0xff)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"vxlan.vni\" field");
if (!spec->vni[0] && !spec->vni[1] && !spec->vni[2])
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"vxlan vni cannot be 0");
return 0;
}
/**
* Validate VXLAN_ENCAP action item list for E-Switch.
* The routine checks items to be used in encapsulation header.
*
* @param[in] action
* Pointer to the VXLAN_ENCAP action structure.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
**/
static int
flow_tcf_validate_vxlan_encap(const struct rte_flow_action *action,
struct rte_flow_error *error)
{
const struct rte_flow_item *items;
int ret;
uint32_t item_flags = 0;
if (!action->conf)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"Missing vxlan tunnel"
" action configuration");
items = ((const struct rte_flow_action_vxlan_encap *)
action->conf)->definition;
if (!items)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"Missing vxlan tunnel"
" encapsulation parameters");
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_ETH:
ret = mlx5_flow_validate_item_eth(items, item_flags,
error);
if (ret < 0)
return ret;
ret = flow_tcf_validate_vxlan_encap_eth(items, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L2;
break;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ret = mlx5_flow_validate_item_ipv4(items, item_flags,
error);
if (ret < 0)
return ret;
ret = flow_tcf_validate_vxlan_encap_ipv4(items, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ret = mlx5_flow_validate_item_ipv6(items, item_flags,
error);
if (ret < 0)
return ret;
ret = flow_tcf_validate_vxlan_encap_ipv6(items, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
break;
case RTE_FLOW_ITEM_TYPE_UDP:
ret = mlx5_flow_validate_item_udp(items, item_flags,
0xFF, error);
if (ret < 0)
return ret;
ret = flow_tcf_validate_vxlan_encap_udp(items, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
ret = mlx5_flow_validate_item_vxlan(items,
item_flags, error);
if (ret < 0)
return ret;
ret = flow_tcf_validate_vxlan_encap_vni(items, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_VXLAN;
break;
default:
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, items,
"vxlan encap item not supported");
}
}
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"no outer IP layer found"
" for vxlan encapsulation");
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"no outer UDP layer found"
" for vxlan encapsulation");
if (!(item_flags & MLX5_FLOW_LAYER_VXLAN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"no VXLAN VNI found"
" for vxlan encapsulation");
return 0;
}
/**
* Validate RTE_FLOW_ITEM_TYPE_IPV4 item if VXLAN_DECAP action
* is present in actions list.
*
* @param[in] ipv4
* Outer IPv4 address item (if any, NULL otherwise).
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
**/
static int
flow_tcf_validate_vxlan_decap_ipv4(const struct rte_flow_item *ipv4,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv4 *spec = ipv4->spec;
const struct rte_flow_item_ipv4 *mask = ipv4->mask;
if (!spec) {
/*
* Specification for IP addresses cannot be empty
* because it is required as decap parameter.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, ipv4,
"NULL outer ipv4 address"
" specification for vxlan"
" for vxlan decapsulation");
}
if (!mask)
mask = &rte_flow_item_ipv4_mask;
if (mask->hdr.dst_addr != RTE_BE32(0x00000000)) {
if (mask->hdr.dst_addr != RTE_BE32(0xffffffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv4.hdr.dst_addr\" field");
/* More IP address validations can be put here. */
} else {
/*
* Kernel uses the destination IP address
* to determine the ingress network interface
* for traffic being decapsulated.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, ipv4,
"outer ipv4 destination address"
" must be specified for"
" vxlan decapsulation");
}
/* Source IP address is optional for decap. */
if (mask->hdr.src_addr != RTE_BE32(0x00000000) &&
mask->hdr.src_addr != RTE_BE32(0xffffffff))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv4.hdr.src_addr\" field");
return 0;
}
/**
* Validate RTE_FLOW_ITEM_TYPE_IPV6 item if VXLAN_DECAP action
* is present in actions list.
*
* @param[in] ipv6
* Outer IPv6 address item (if any, NULL otherwise).
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
**/
static int
flow_tcf_validate_vxlan_decap_ipv6(const struct rte_flow_item *ipv6,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv6 *spec = ipv6->spec;
const struct rte_flow_item_ipv6 *mask = ipv6->mask;
if (!spec) {
/*
* Specification for IP addresses cannot be empty
* because it is required as decap parameter.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, ipv6,
"NULL outer ipv6 address"
" specification for vxlan"
" decapsulation");
}
if (!mask)
mask = &rte_flow_item_ipv6_mask;
if (memcmp(&mask->hdr.dst_addr,
&flow_tcf_mask_empty.ipv6.hdr.dst_addr,
IPV6_ADDR_LEN)) {
if (memcmp(&mask->hdr.dst_addr,
&rte_flow_item_ipv6_mask.hdr.dst_addr,
IPV6_ADDR_LEN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv6.hdr.dst_addr\" field");
/* More IP address validations can be put here. */
} else {
/*
* Kernel uses the destination IP address
* to determine the ingress network interface
* for traffic being decapsulated.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, ipv6,
"outer ipv6 destination address must be "
"specified for vxlan decapsulation");
}
/* Source IP address is optional for decap. */
if (memcmp(&mask->hdr.src_addr,
&flow_tcf_mask_empty.ipv6.hdr.src_addr,
IPV6_ADDR_LEN)) {
if (memcmp(&mask->hdr.src_addr,
&rte_flow_item_ipv6_mask.hdr.src_addr,
IPV6_ADDR_LEN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"ipv6.hdr.src_addr\" field");
}
return 0;
}
/**
* Validate RTE_FLOW_ITEM_TYPE_UDP item if VXLAN_DECAP action
* is present in actions list.
*
* @param[in] udp
* Outer UDP layer item (if any, NULL otherwise).
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
**/
static int
flow_tcf_validate_vxlan_decap_udp(const struct rte_flow_item *udp,
struct rte_flow_error *error)
{
const struct rte_flow_item_udp *spec = udp->spec;
const struct rte_flow_item_udp *mask = udp->mask;
if (!spec)
/*
* Specification for UDP ports cannot be empty
* because it is required as decap parameter.
*/
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, udp,
"NULL UDP port specification"
" for VXLAN decapsulation");
if (!mask)
mask = &rte_flow_item_udp_mask;
if (mask->hdr.dst_port != RTE_BE16(0x0000)) {
if (mask->hdr.dst_port != RTE_BE16(0xffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"udp.hdr.dst_port\" field");
if (!spec->hdr.dst_port)
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, udp,
"zero decap local UDP port");
} else {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, udp,
"outer UDP destination port must be "
"specified for vxlan decapsulation");
}
if (mask->hdr.src_port != RTE_BE16(0x0000)) {
if (mask->hdr.src_port != RTE_BE16(0xffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
"no support for partial mask on"
" \"udp.hdr.src_port\" field");
DRV_LOG(WARNING,
"outer UDP local port cannot be "
"forced for VXLAN encapsulation, "
"parameter ignored");
}
return 0;
}
/**
* Validate flow for E-Switch.
*
* @param[in] priv
* Pointer to the priv structure.
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_tcf_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
union {
const struct rte_flow_item_port_id *port_id;
const struct rte_flow_item_eth *eth;
const struct rte_flow_item_vlan *vlan;
const struct rte_flow_item_ipv4 *ipv4;
const struct rte_flow_item_ipv6 *ipv6;
const struct rte_flow_item_tcp *tcp;
const struct rte_flow_item_udp *udp;
const struct rte_flow_item_vxlan *vxlan;
} spec, mask;
union {
const struct rte_flow_action_port_id *port_id;
const struct rte_flow_action_jump *jump;
const struct rte_flow_action_of_push_vlan *of_push_vlan;
const struct rte_flow_action_of_set_vlan_vid *
of_set_vlan_vid;
const struct rte_flow_action_of_set_vlan_pcp *
of_set_vlan_pcp;
const struct rte_flow_action_vxlan_encap *vxlan_encap;
const struct rte_flow_action_set_ipv4 *set_ipv4;
const struct rte_flow_action_set_ipv6 *set_ipv6;
} conf;
uint64_t item_flags = 0;
uint64_t action_flags = 0;
uint8_t next_protocol = -1;
unsigned int tcm_ifindex = 0;
uint8_t pedit_validated = 0;
struct flow_tcf_ptoi ptoi[PTOI_TABLE_SZ_MAX(dev)];
struct rte_eth_dev *port_id_dev = NULL;
bool in_port_id_set;
int ret;
claim_nonzero(flow_tcf_build_ptoi_table(dev, ptoi,
PTOI_TABLE_SZ_MAX(dev)));
ret = flow_tcf_validate_attributes(attr, error);
if (ret < 0)
return ret;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
unsigned int i;
uint64_t current_action_flag = 0;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
current_action_flag = MLX5_FLOW_ACTION_PORT_ID;
if (!actions->conf)
break;
conf.port_id = actions->conf;
if (conf.port_id->original)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == conf.port_id->id)
break;
if (!ptoi[i].ifindex)
return rte_flow_error_set
(error, ENODEV,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
conf.port_id,
"missing data to convert port ID to"
" ifindex");
port_id_dev = &rte_eth_devices[conf.port_id->id];
break;
case RTE_FLOW_ACTION_TYPE_JUMP:
current_action_flag = MLX5_FLOW_ACTION_JUMP;
if (!actions->conf)
break;
conf.jump = actions->conf;
if (attr->group >= conf.jump->group)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"can jump only to a group forward");
break;
case RTE_FLOW_ACTION_TYPE_DROP:
current_action_flag = MLX5_FLOW_ACTION_DROP;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
current_action_flag = MLX5_FLOW_ACTION_OF_POP_VLAN;
break;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: {
rte_be16_t ethertype;
current_action_flag = MLX5_FLOW_ACTION_OF_PUSH_VLAN;
if (!actions->conf)
break;
conf.of_push_vlan = actions->conf;
ethertype = conf.of_push_vlan->ethertype;
if (ethertype != RTE_BE16(ETH_P_8021Q) &&
ethertype != RTE_BE16(ETH_P_8021AD))
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan push TPID must be "
"802.1Q or 802.1AD");
break;
}
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
if (!(action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan modify is not supported,"
" set action must follow push action");
current_action_flag = MLX5_FLOW_ACTION_OF_SET_VLAN_VID;
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
if (!(action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan modify is not supported,"
" set action must follow push action");
current_action_flag = MLX5_FLOW_ACTION_OF_SET_VLAN_PCP;
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
current_action_flag = MLX5_FLOW_ACTION_VXLAN_DECAP;
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
ret = flow_tcf_validate_vxlan_encap(actions, error);
if (ret < 0)
return ret;
current_action_flag = MLX5_FLOW_ACTION_VXLAN_ENCAP;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
current_action_flag = MLX5_FLOW_ACTION_SET_IPV4_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
current_action_flag = MLX5_FLOW_ACTION_SET_IPV4_DST;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
current_action_flag = MLX5_FLOW_ACTION_SET_IPV6_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
current_action_flag = MLX5_FLOW_ACTION_SET_IPV6_DST;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
current_action_flag = MLX5_FLOW_ACTION_SET_TP_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
current_action_flag = MLX5_FLOW_ACTION_SET_TP_DST;
break;
case RTE_FLOW_ACTION_TYPE_SET_TTL:
current_action_flag = MLX5_FLOW_ACTION_SET_TTL;
break;
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
current_action_flag = MLX5_FLOW_ACTION_DEC_TTL;
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
current_action_flag = MLX5_FLOW_ACTION_SET_MAC_SRC;
break;
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
current_action_flag = MLX5_FLOW_ACTION_SET_MAC_DST;
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
if (current_action_flag & MLX5_TCF_CONFIG_ACTIONS) {
if (!actions->conf)
return rte_flow_error_set
(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
actions,
"action configuration not set");
}
if ((current_action_flag & MLX5_TCF_PEDIT_ACTIONS) &&
pedit_validated)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"set actions should be "
"listed successively");
if ((current_action_flag & ~MLX5_TCF_PEDIT_ACTIONS) &&
(action_flags & MLX5_TCF_PEDIT_ACTIONS))
pedit_validated = 1;
if ((current_action_flag & MLX5_TCF_FATE_ACTIONS) &&
(action_flags & MLX5_TCF_FATE_ACTIONS))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"can't have multiple fate"
" actions");
if ((current_action_flag & MLX5_TCF_VXLAN_ACTIONS) &&
(action_flags & MLX5_TCF_VXLAN_ACTIONS))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"can't have multiple vxlan"
" actions");
if ((current_action_flag & MLX5_TCF_VXLAN_ACTIONS) &&
(action_flags & MLX5_TCF_VLAN_ACTIONS))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"can't have vxlan and vlan"
" actions in the same rule");
action_flags |= current_action_flag;
}
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
unsigned int i;
if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
items->type != RTE_FLOW_ITEM_TYPE_ETH)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
items,
"only L2 inner item"
" is supported");
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_PORT_ID:
mask.port_id = flow_tcf_item_mask
(items, &rte_flow_item_port_id_mask,
&flow_tcf_mask_supported.port_id,
&flow_tcf_mask_empty.port_id,
sizeof(flow_tcf_mask_supported.port_id),
error);
if (!mask.port_id)
return -rte_errno;
if (mask.port_id == &flow_tcf_mask_empty.port_id) {
in_port_id_set = 1;
break;
}
spec.port_id = items->spec;
if (mask.port_id->id && mask.port_id->id != 0xffffffff)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.port_id,
"no support for partial mask on"
" \"id\" field");
if (!mask.port_id->id)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == spec.port_id->id)
break;
if (!ptoi[i].ifindex)
return rte_flow_error_set
(error, ENODEV,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
spec.port_id,
"missing data to convert port ID to"
" ifindex");
if (in_port_id_set && ptoi[i].ifindex != tcm_ifindex)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
spec.port_id,
"cannot match traffic for"
" several port IDs through"
" a single flow rule");
tcm_ifindex = ptoi[i].ifindex;
in_port_id_set = 1;
break;
case RTE_FLOW_ITEM_TYPE_ETH:
ret = mlx5_flow_validate_item_eth(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= (item_flags & MLX5_FLOW_LAYER_TUNNEL) ?
MLX5_FLOW_LAYER_INNER_L2 :
MLX5_FLOW_LAYER_OUTER_L2;
/* TODO:
* Redundant check due to different supported mask.
* Same for the rest of items.
*/
mask.eth = flow_tcf_item_mask
(items, &rte_flow_item_eth_mask,
&flow_tcf_mask_supported.eth,
&flow_tcf_mask_empty.eth,
sizeof(flow_tcf_mask_supported.eth),
error);
if (!mask.eth)
return -rte_errno;
if (mask.eth->type && mask.eth->type !=
RTE_BE16(0xffff))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.eth,
"no support for partial mask on"
" \"type\" field");
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
ret = mlx5_flow_validate_item_vlan(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_VLAN;
mask.vlan = flow_tcf_item_mask
(items, &rte_flow_item_vlan_mask,
&flow_tcf_mask_supported.vlan,
&flow_tcf_mask_empty.vlan,
sizeof(flow_tcf_mask_supported.vlan),
error);
if (!mask.vlan)
return -rte_errno;
if ((mask.vlan->tci & RTE_BE16(0xe000) &&
(mask.vlan->tci & RTE_BE16(0xe000)) !=
RTE_BE16(0xe000)) ||
(mask.vlan->tci & RTE_BE16(0x0fff) &&
(mask.vlan->tci & RTE_BE16(0x0fff)) !=
RTE_BE16(0x0fff)) ||
(mask.vlan->inner_type &&
mask.vlan->inner_type != RTE_BE16(0xffff)))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.vlan,
"no support for partial masks on"
" \"tci\" (PCP and VID parts) and"
" \"inner_type\" fields");
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ret = mlx5_flow_validate_item_ipv4(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
mask.ipv4 = flow_tcf_item_mask
(items, &rte_flow_item_ipv4_mask,
&flow_tcf_mask_supported.ipv4,
&flow_tcf_mask_empty.ipv4,
sizeof(flow_tcf_mask_supported.ipv4),
error);
if (!mask.ipv4)
return -rte_errno;
if (mask.ipv4->hdr.next_proto_id &&
mask.ipv4->hdr.next_proto_id != 0xff)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.ipv4,
"no support for partial mask on"
" \"hdr.next_proto_id\" field");
else if (mask.ipv4->hdr.next_proto_id)
next_protocol =
((const struct rte_flow_item_ipv4 *)
(items->spec))->hdr.next_proto_id;
if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP) {
ret = flow_tcf_validate_vxlan_decap_ipv4
(items, error);
if (ret < 0)
return ret;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ret = mlx5_flow_validate_item_ipv6(items, item_flags,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
mask.ipv6 = flow_tcf_item_mask
(items, &rte_flow_item_ipv6_mask,
&flow_tcf_mask_supported.ipv6,
&flow_tcf_mask_empty.ipv6,
sizeof(flow_tcf_mask_supported.ipv6),
error);
if (!mask.ipv6)
return -rte_errno;
if (mask.ipv6->hdr.proto &&
mask.ipv6->hdr.proto != 0xff)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.ipv6,
"no support for partial mask on"
" \"hdr.proto\" field");
else if (mask.ipv6->hdr.proto)
next_protocol =
((const struct rte_flow_item_ipv6 *)
(items->spec))->hdr.proto;
if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP) {
ret = flow_tcf_validate_vxlan_decap_ipv6
(items, error);
if (ret < 0)
return ret;
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
ret = mlx5_flow_validate_item_udp(items, item_flags,
next_protocol, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
mask.udp = flow_tcf_item_mask
(items, &rte_flow_item_udp_mask,
&flow_tcf_mask_supported.udp,
&flow_tcf_mask_empty.udp,
sizeof(flow_tcf_mask_supported.udp),
error);
if (!mask.udp)
return -rte_errno;
if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP) {
ret = flow_tcf_validate_vxlan_decap_udp
(items, error);
if (ret < 0)
return ret;
}
break;
case RTE_FLOW_ITEM_TYPE_TCP:
ret = mlx5_flow_validate_item_tcp
(items, item_flags,
next_protocol,
&flow_tcf_mask_supported.tcp,
error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
mask.tcp = flow_tcf_item_mask
(items, &rte_flow_item_tcp_mask,
&flow_tcf_mask_supported.tcp,
&flow_tcf_mask_empty.tcp,
sizeof(flow_tcf_mask_supported.tcp),
error);
if (!mask.tcp)
return -rte_errno;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
if (!(action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP))
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
items,
"vni pattern should be followed by"
" vxlan decapsulation action");
ret = mlx5_flow_validate_item_vxlan(items,
item_flags, error);
if (ret < 0)
return ret;
item_flags |= MLX5_FLOW_LAYER_VXLAN;
mask.vxlan = flow_tcf_item_mask
(items, &rte_flow_item_vxlan_mask,
&flow_tcf_mask_supported.vxlan,
&flow_tcf_mask_empty.vxlan,
sizeof(flow_tcf_mask_supported.vxlan), error);
if (!mask.vxlan)
return -rte_errno;
if (mask.vxlan->vni[0] != 0xff ||
mask.vxlan->vni[1] != 0xff ||
mask.vxlan->vni[2] != 0xff)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
mask.vxlan,
"no support for partial or "
"empty mask on \"vxlan.vni\" field");
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
items, "item not supported");
}
}
if ((action_flags & MLX5_TCF_PEDIT_ACTIONS) &&
(action_flags & MLX5_FLOW_ACTION_DROP))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"set action is not compatible with "
"drop action");
if ((action_flags & MLX5_TCF_PEDIT_ACTIONS) &&
!(action_flags & MLX5_FLOW_ACTION_PORT_ID))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"set action must be followed by "
"port_id action");
if (action_flags &
(MLX5_FLOW_ACTION_SET_IPV4_SRC | MLX5_FLOW_ACTION_SET_IPV4_DST)) {
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV4))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"no ipv4 item found in"
" pattern");
}
if (action_flags &
(MLX5_FLOW_ACTION_SET_IPV6_SRC | MLX5_FLOW_ACTION_SET_IPV6_DST)) {
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV6))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"no ipv6 item found in"
" pattern");
}
if (action_flags &
(MLX5_FLOW_ACTION_SET_TP_SRC | MLX5_FLOW_ACTION_SET_TP_DST)) {
if (!(item_flags &
(MLX5_FLOW_LAYER_OUTER_L4_UDP |
MLX5_FLOW_LAYER_OUTER_L4_TCP)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"no TCP/UDP item found in"
" pattern");
}
/*
* FW syndrome (0xA9C090):
* set_flow_table_entry: push vlan action fte in fdb can ONLY be
* forward to the uplink.
*/
if ((action_flags & MLX5_FLOW_ACTION_OF_PUSH_VLAN) &&
(action_flags & MLX5_FLOW_ACTION_PORT_ID) &&
((struct priv *)port_id_dev->data->dev_private)->representor)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan push can only be applied"
" when forwarding to uplink port");
/*
* FW syndrome (0x294609):
* set_flow_table_entry: modify/pop/push actions in fdb flow table
* are supported only while forwarding to vport.
*/
if ((action_flags & MLX5_TCF_VLAN_ACTIONS) &&
!(action_flags & MLX5_FLOW_ACTION_PORT_ID))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"vlan actions are supported"
" only with port_id action");
if ((action_flags & MLX5_TCF_VXLAN_ACTIONS) &&
!(action_flags & MLX5_FLOW_ACTION_PORT_ID))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"vxlan actions are supported"
" only with port_id action");
if (!(action_flags & MLX5_TCF_FATE_ACTIONS))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"no fate action is found");
if (action_flags &
(MLX5_FLOW_ACTION_SET_TTL | MLX5_FLOW_ACTION_DEC_TTL)) {
if (!(item_flags &
(MLX5_FLOW_LAYER_OUTER_L3_IPV4 |
MLX5_FLOW_LAYER_OUTER_L3_IPV6)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"no IP found in pattern");
}
if (action_flags &
(MLX5_FLOW_ACTION_SET_MAC_SRC | MLX5_FLOW_ACTION_SET_MAC_DST)) {
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"no ethernet found in"
" pattern");
}
if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP) {
if (!(item_flags &
(MLX5_FLOW_LAYER_OUTER_L3_IPV4 |
MLX5_FLOW_LAYER_OUTER_L3_IPV6)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL,
"no outer IP pattern found"
" for vxlan decap action");
if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL,
"no outer UDP pattern found"
" for vxlan decap action");
if (!(item_flags & MLX5_FLOW_LAYER_VXLAN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL,
"no VNI pattern found"
" for vxlan decap action");
}
return 0;
}
/**
* Calculate maximum size of memory for flow items of Linux TC flower.
*
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
*
* @return
* Maximum size of memory for items.
*/
static int
flow_tcf_get_items_size(const struct rte_flow_attr *attr,
const struct rte_flow_item items[])
{
int size = 0;
size += SZ_NLATTR_STRZ_OF("flower") +
SZ_NLATTR_NEST + /* TCA_OPTIONS. */
SZ_NLATTR_TYPE_OF(uint32_t); /* TCA_CLS_FLAGS_SKIP_SW. */
if (attr->group > 0)
size += SZ_NLATTR_TYPE_OF(uint32_t); /* TCA_CHAIN. */
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_PORT_ID:
break;
case RTE_FLOW_ITEM_TYPE_ETH:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_DATA_OF(ETHER_ADDR_LEN) * 4;
/* dst/src MAC addr and mask. */
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_TYPE_OF(uint16_t) +
/* VLAN Ether type. */
SZ_NLATTR_TYPE_OF(uint8_t) + /* VLAN prio. */
SZ_NLATTR_TYPE_OF(uint16_t); /* VLAN ID. */
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_TYPE_OF(uint32_t) * 4;
/* dst/src IP addr and mask. */
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
size += SZ_NLATTR_TYPE_OF(uint16_t) + /* Ether type. */
SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN) * 4;
/* dst/src IP addr and mask. */
break;
case RTE_FLOW_ITEM_TYPE_UDP:
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_TYPE_OF(uint16_t) * 4;
/* dst/src port and mask. */
break;
case RTE_FLOW_ITEM_TYPE_TCP:
size += SZ_NLATTR_TYPE_OF(uint8_t) + /* IP proto. */
SZ_NLATTR_TYPE_OF(uint16_t) * 4;
/* dst/src port and mask. */
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
size += SZ_NLATTR_TYPE_OF(uint32_t);
break;
default:
DRV_LOG(WARNING,
"unsupported item %p type %d,"
" items must be validated before flow creation",
(const void *)items, items->type);
break;
}
}
return size;
}
/**
* Calculate size of memory to store the VXLAN encapsultion
* related items in the Netlink message buffer. Items list
* is specified by RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP action.
* The item list should be validated.
*
* @param[in] action
* RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP action object.
* List of pattern items to scan data from.
*
* @return
* The size the part of Netlink message buffer to store the
* VXLAN encapsulation item attributes.
*/
static int
flow_tcf_vxlan_encap_size(const struct rte_flow_action *action)
{
const struct rte_flow_item *items;
int size = 0;
assert(action->type == RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP);
assert(action->conf);
items = ((const struct rte_flow_action_vxlan_encap *)
action->conf)->definition;
assert(items);
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_ETH:
/* This item does not require message buffer. */
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
size += SZ_NLATTR_DATA_OF(IPV4_ADDR_LEN) * 2;
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
size += SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN) * 2;
break;
case RTE_FLOW_ITEM_TYPE_UDP: {
const struct rte_flow_item_udp *udp = items->mask;
size += SZ_NLATTR_TYPE_OF(uint16_t);
if (!udp || udp->hdr.src_port != RTE_BE16(0x0000))
size += SZ_NLATTR_TYPE_OF(uint16_t);
break;
}
case RTE_FLOW_ITEM_TYPE_VXLAN:
size += SZ_NLATTR_TYPE_OF(uint32_t);
break;
default:
assert(false);
DRV_LOG(WARNING,
"unsupported item %p type %d,"
" items must be validated"
" before flow creation",
(const void *)items, items->type);
return 0;
}
}
return size;
}
/**
* Calculate maximum size of memory for flow actions of Linux TC flower and
* extract specified actions.
*
* @param[in] actions
* Pointer to the list of actions.
* @param[out] action_flags
* Pointer to the detected actions.
*
* @return
* Maximum size of memory for actions.
*/
static int
flow_tcf_get_actions_and_size(const struct rte_flow_action actions[],
uint64_t *action_flags)
{
int size = 0;
uint64_t flags = 0;
size += SZ_NLATTR_NEST; /* TCA_FLOWER_ACT. */
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("mirred") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(struct tc_mirred);
flags |= MLX5_FLOW_ACTION_PORT_ID;
break;
case RTE_FLOW_ACTION_TYPE_JUMP:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("gact") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(struct tc_gact);
flags |= MLX5_FLOW_ACTION_JUMP;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("gact") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(struct tc_gact);
flags |= MLX5_FLOW_ACTION_DROP;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
flags |= MLX5_FLOW_ACTION_OF_POP_VLAN;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
flags |= MLX5_FLOW_ACTION_OF_PUSH_VLAN;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_VID;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
flags |= MLX5_FLOW_ACTION_OF_SET_VLAN_PCP;
goto action_of_vlan;
action_of_vlan:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("vlan") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(struct tc_vlan) +
SZ_NLATTR_TYPE_OF(uint16_t) +
/* VLAN protocol. */
SZ_NLATTR_TYPE_OF(uint16_t) + /* VLAN ID. */
SZ_NLATTR_TYPE_OF(uint8_t); /* VLAN prio. */
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("tunnel_key") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(uint8_t);
size += SZ_NLATTR_TYPE_OF(struct tc_tunnel_key);
size += flow_tcf_vxlan_encap_size(actions) +
RTE_ALIGN_CEIL /* preceding encap params. */
(sizeof(struct flow_tcf_vxlan_encap),
MNL_ALIGNTO);
flags |= MLX5_FLOW_ACTION_VXLAN_ENCAP;
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
size += SZ_NLATTR_NEST + /* na_act_index. */
SZ_NLATTR_STRZ_OF("tunnel_key") +
SZ_NLATTR_NEST + /* TCA_ACT_OPTIONS. */
SZ_NLATTR_TYPE_OF(uint8_t);
size += SZ_NLATTR_TYPE_OF(struct tc_tunnel_key);
size += RTE_ALIGN_CEIL /* preceding decap params. */
(sizeof(struct flow_tcf_vxlan_decap),
MNL_ALIGNTO);
flags |= MLX5_FLOW_ACTION_VXLAN_DECAP;
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
case RTE_FLOW_ACTION_TYPE_SET_TTL:
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
size += flow_tcf_get_pedit_actions_size(&actions,
&flags);
break;
default:
DRV_LOG(WARNING,
"unsupported action %p type %d,"
" items must be validated before flow creation",
(const void *)actions, actions->type);
break;
}
}
*action_flags = flags;
return size;
}
/**
* Brand rtnetlink buffer with unique handle.
*
* This handle should be unique for a given network interface to avoid
* collisions.
*
* @param nlh
* Pointer to Netlink message.
* @param handle
* Unique 32-bit handle to use.
*/
static void
flow_tcf_nl_brand(struct nlmsghdr *nlh, uint32_t handle)
{
struct tcmsg *tcm = mnl_nlmsg_get_payload(nlh);
tcm->tcm_handle = handle;
DRV_LOG(DEBUG, "Netlink msg %p is branded with handle %x",
(void *)nlh, handle);
}
/**
* Prepare a flow object for Linux TC flower. It calculates the maximum size of
* memory required, allocates the memory, initializes Netlink message headers
* and set unique TC message handle.
*
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* Pointer to mlx5_flow object on success,
* otherwise NULL and rte_ernno is set.
*/
static struct mlx5_flow *
flow_tcf_prepare(const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
size_t size = RTE_ALIGN_CEIL
(sizeof(struct mlx5_flow),
alignof(struct flow_tcf_tunnel_hdr)) +
MNL_ALIGN(sizeof(struct nlmsghdr)) +
MNL_ALIGN(sizeof(struct tcmsg));
struct mlx5_flow *dev_flow;
uint64_t action_flags = 0;
struct nlmsghdr *nlh;
struct tcmsg *tcm;
uint8_t *sp, *tun = NULL;
size += flow_tcf_get_items_size(attr, items);
size += flow_tcf_get_actions_and_size(actions, &action_flags);
dev_flow = rte_zmalloc(__func__, size, MNL_ALIGNTO);
if (!dev_flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"not enough memory to create E-Switch flow");
return NULL;
}
sp = (uint8_t *)(dev_flow + 1);
if (action_flags & MLX5_FLOW_ACTION_VXLAN_ENCAP) {
sp = RTE_PTR_ALIGN
(sp, alignof(struct flow_tcf_tunnel_hdr));
tun = sp;
sp += RTE_ALIGN_CEIL
(sizeof(struct flow_tcf_vxlan_encap),
MNL_ALIGNTO);
#ifndef NDEBUG
size -= RTE_ALIGN_CEIL
(sizeof(struct flow_tcf_vxlan_encap),
MNL_ALIGNTO);
#endif
} else if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP) {
sp = RTE_PTR_ALIGN
(sp, alignof(struct flow_tcf_tunnel_hdr));
tun = sp;
sp += RTE_ALIGN_CEIL
(sizeof(struct flow_tcf_vxlan_decap),
MNL_ALIGNTO);
#ifndef NDEBUG
size -= RTE_ALIGN_CEIL
(sizeof(struct flow_tcf_vxlan_decap),
MNL_ALIGNTO);
#endif
} else {
sp = RTE_PTR_ALIGN(sp, MNL_ALIGNTO);
}
nlh = mnl_nlmsg_put_header(sp);
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
*dev_flow = (struct mlx5_flow){
.tcf = (struct mlx5_flow_tcf){
#ifndef NDEBUG
.nlsize = size - RTE_ALIGN_CEIL
(sizeof(struct mlx5_flow),
alignof(struct flow_tcf_tunnel_hdr)),
#endif
.tunnel = (struct flow_tcf_tunnel_hdr *)tun,
.nlh = nlh,
.tcm = tcm,
},
};
if (action_flags & MLX5_FLOW_ACTION_VXLAN_DECAP)
dev_flow->tcf.tunnel->type = FLOW_TCF_TUNACT_VXLAN_DECAP;
else if (action_flags & MLX5_FLOW_ACTION_VXLAN_ENCAP)
dev_flow->tcf.tunnel->type = FLOW_TCF_TUNACT_VXLAN_ENCAP;
/*
* Generate a reasonably unique handle based on the address of the
* target buffer.
*
* This is straightforward on 32-bit systems where the flow pointer can
* be used directly. Otherwise, its least significant part is taken
* after shifting it by the previous power of two of the pointed buffer
* size.
*/
if (sizeof(dev_flow) <= 4)
flow_tcf_nl_brand(nlh, (uintptr_t)dev_flow);
else
flow_tcf_nl_brand(nlh, (uintptr_t)dev_flow >>
rte_log2_u32(rte_align32prevpow2(size)));
return dev_flow;
}
/**
* Make adjustments for supporting count actions.
*
* @param[in] dev
* Pointer to the Ethernet device structure.
* @param[in] dev_flow
* Pointer to mlx5_flow.
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 On success else a negative errno value is returned and rte_errno is set.
*/
static int
flow_tcf_translate_action_count(struct rte_eth_dev *dev __rte_unused,
struct mlx5_flow *dev_flow,
struct rte_flow_error *error)
{
struct rte_flow *flow = dev_flow->flow;
if (!flow->counter) {
flow->counter = flow_tcf_counter_new();
if (!flow->counter)
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL,
"cannot get counter"
" context.");
}
return 0;
}
/**
* Convert VXLAN VNI to 32-bit integer.
*
* @param[in] vni
* VXLAN VNI in 24-bit wire format.
*
* @return
* VXLAN VNI as a 32-bit integer value in network endian.
*/
static inline rte_be32_t
vxlan_vni_as_be32(const uint8_t vni[3])
{
union {
uint8_t vni[4];
rte_be32_t dword;
} ret = {
.vni = { 0, vni[0], vni[1], vni[2] },
};
return ret.dword;
}
/**
* Helper function to process RTE_FLOW_ITEM_TYPE_ETH entry in configuration
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the MAC address fields
* in the encapsulation parameters structure. The item must be prevalidated,
* no any validation checks performed by function.
*
* @param[in] spec
* RTE_FLOW_ITEM_TYPE_ETH entry specification.
* @param[in] mask
* RTE_FLOW_ITEM_TYPE_ETH entry mask.
* @param[out] encap
* Structure to fill the gathered MAC address data.
*/
static void
flow_tcf_parse_vxlan_encap_eth(const struct rte_flow_item_eth *spec,
const struct rte_flow_item_eth *mask,
struct flow_tcf_vxlan_encap *encap)
{
/* Item must be validated before. No redundant checks. */
assert(spec);
if (!mask || !memcmp(&mask->dst,
&rte_flow_item_eth_mask.dst,
sizeof(rte_flow_item_eth_mask.dst))) {
/*
* Ethernet addresses are not supported by
* tc as tunnel_key parameters. Destination
* address is needed to form encap packet
* header and retrieved by kernel from
* implicit sources (ARP table, etc),
* address masks are not supported at all.
*/
encap->eth.dst = spec->dst;
encap->mask |= FLOW_TCF_ENCAP_ETH_DST;
}
if (!mask || !memcmp(&mask->src,
&rte_flow_item_eth_mask.src,
sizeof(rte_flow_item_eth_mask.src))) {
/*
* Ethernet addresses are not supported by
* tc as tunnel_key parameters. Source ethernet
* address is ignored anyway.
*/
encap->eth.src = spec->src;
encap->mask |= FLOW_TCF_ENCAP_ETH_SRC;
}
}
/**
* Helper function to process RTE_FLOW_ITEM_TYPE_IPV4 entry in configuration
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the IPV4 address fields
* in the encapsulation parameters structure. The item must be prevalidated,
* no any validation checks performed by function.
*
* @param[in] spec
* RTE_FLOW_ITEM_TYPE_IPV4 entry specification.
* @param[out] encap
* Structure to fill the gathered IPV4 address data.
*/
static void
flow_tcf_parse_vxlan_encap_ipv4(const struct rte_flow_item_ipv4 *spec,
struct flow_tcf_vxlan_encap *encap)
{
/* Item must be validated before. No redundant checks. */
assert(spec);
encap->ipv4.dst = spec->hdr.dst_addr;
encap->ipv4.src = spec->hdr.src_addr;
encap->mask |= FLOW_TCF_ENCAP_IPV4_SRC |
FLOW_TCF_ENCAP_IPV4_DST;
}
/**
* Helper function to process RTE_FLOW_ITEM_TYPE_IPV6 entry in configuration
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the IPV6 address fields
* in the encapsulation parameters structure. The item must be prevalidated,
* no any validation checks performed by function.
*
* @param[in] spec
* RTE_FLOW_ITEM_TYPE_IPV6 entry specification.
* @param[out] encap
* Structure to fill the gathered IPV6 address data.
*/
static void
flow_tcf_parse_vxlan_encap_ipv6(const struct rte_flow_item_ipv6 *spec,
struct flow_tcf_vxlan_encap *encap)
{
/* Item must be validated before. No redundant checks. */
assert(spec);
memcpy(encap->ipv6.dst, spec->hdr.dst_addr, IPV6_ADDR_LEN);
memcpy(encap->ipv6.src, spec->hdr.src_addr, IPV6_ADDR_LEN);
encap->mask |= FLOW_TCF_ENCAP_IPV6_SRC |
FLOW_TCF_ENCAP_IPV6_DST;
}
/**
* Helper function to process RTE_FLOW_ITEM_TYPE_UDP entry in configuration
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the UDP port fields
* in the encapsulation parameters structure. The item must be prevalidated,
* no any validation checks performed by function.
*
* @param[in] spec
* RTE_FLOW_ITEM_TYPE_UDP entry specification.
* @param[in] mask
* RTE_FLOW_ITEM_TYPE_UDP entry mask.
* @param[out] encap
* Structure to fill the gathered UDP port data.
*/
static void
flow_tcf_parse_vxlan_encap_udp(const struct rte_flow_item_udp *spec,
const struct rte_flow_item_udp *mask,
struct flow_tcf_vxlan_encap *encap)
{
assert(spec);
encap->udp.dst = spec->hdr.dst_port;
encap->mask |= FLOW_TCF_ENCAP_UDP_DST;
if (!mask || mask->hdr.src_port != RTE_BE16(0x0000)) {
encap->udp.src = spec->hdr.src_port;
encap->mask |= FLOW_TCF_ENCAP_IPV4_SRC;
}
}
/**
* Helper function to process RTE_FLOW_ITEM_TYPE_VXLAN entry in configuration
* of action RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. Fills the VNI fields
* in the encapsulation parameters structure. The item must be prevalidated,
* no any validation checks performed by function.
*
* @param[in] spec
* RTE_FLOW_ITEM_TYPE_VXLAN entry specification.
* @param[out] encap
* Structure to fill the gathered VNI address data.
*/
static void
flow_tcf_parse_vxlan_encap_vni(const struct rte_flow_item_vxlan *spec,
struct flow_tcf_vxlan_encap *encap)
{
/* Item must be validated before. Do not redundant checks. */
assert(spec);
memcpy(encap->vxlan.vni, spec->vni, sizeof(encap->vxlan.vni));
encap->mask |= FLOW_TCF_ENCAP_VXLAN_VNI;
}
/**
* Populate consolidated encapsulation object from list of pattern items.
*
* Helper function to process configuration of action such as
* RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP. The item list should be
* validated, there is no way to return an meaningful error.
*
* @param[in] action
* RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP action object.
* List of pattern items to gather data from.
* @param[out] src
* Structure to fill gathered data.
*/
static void
flow_tcf_vxlan_encap_parse(const struct rte_flow_action *action,
struct flow_tcf_vxlan_encap *encap)
{
union {
const struct rte_flow_item_eth *eth;
const struct rte_flow_item_ipv4 *ipv4;
const struct rte_flow_item_ipv6 *ipv6;
const struct rte_flow_item_udp *udp;
const struct rte_flow_item_vxlan *vxlan;
} spec, mask;
const struct rte_flow_item *items;
assert(action->type == RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP);
assert(action->conf);
items = ((const struct rte_flow_action_vxlan_encap *)
action->conf)->definition;
assert(items);
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_ETH:
mask.eth = items->mask;
spec.eth = items->spec;
flow_tcf_parse_vxlan_encap_eth(spec.eth, mask.eth,
encap);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
spec.ipv4 = items->spec;
flow_tcf_parse_vxlan_encap_ipv4(spec.ipv4, encap);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
spec.ipv6 = items->spec;
flow_tcf_parse_vxlan_encap_ipv6(spec.ipv6, encap);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
mask.udp = items->mask;
spec.udp = items->spec;
flow_tcf_parse_vxlan_encap_udp(spec.udp, mask.udp,
encap);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
spec.vxlan = items->spec;
flow_tcf_parse_vxlan_encap_vni(spec.vxlan, encap);
break;
default:
assert(false);
DRV_LOG(WARNING,
"unsupported item %p type %d,"
" items must be validated"
" before flow creation",
(const void *)items, items->type);
encap->mask = 0;
return;
}
}
}
/**
* Translate flow for Linux TC flower and construct Netlink message.
*
* @param[in] priv
* Pointer to the priv structure.
* @param[in, out] flow
* Pointer to the sub flow.
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_tcf_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
union {
const struct rte_flow_item_port_id *port_id;
const struct rte_flow_item_eth *eth;
const struct rte_flow_item_vlan *vlan;
const struct rte_flow_item_ipv4 *ipv4;
const struct rte_flow_item_ipv6 *ipv6;
const struct rte_flow_item_tcp *tcp;
const struct rte_flow_item_udp *udp;
const struct rte_flow_item_vxlan *vxlan;
} spec, mask;
union {
const struct rte_flow_action_port_id *port_id;
const struct rte_flow_action_jump *jump;
const struct rte_flow_action_of_push_vlan *of_push_vlan;
const struct rte_flow_action_of_set_vlan_vid *
of_set_vlan_vid;
const struct rte_flow_action_of_set_vlan_pcp *
of_set_vlan_pcp;
} conf;
union {
struct flow_tcf_tunnel_hdr *hdr;
struct flow_tcf_vxlan_decap *vxlan;
} decap = {
.hdr = NULL,
};
union {
struct flow_tcf_tunnel_hdr *hdr;
struct flow_tcf_vxlan_encap *vxlan;
} encap = {
.hdr = NULL,
};
struct flow_tcf_ptoi ptoi[PTOI_TABLE_SZ_MAX(dev)];
struct nlmsghdr *nlh = dev_flow->tcf.nlh;
struct tcmsg *tcm = dev_flow->tcf.tcm;
uint32_t na_act_index_cur;
bool eth_type_set = 0;
bool vlan_present = 0;
bool vlan_eth_type_set = 0;
bool ip_proto_set = 0;
struct nlattr *na_flower;
struct nlattr *na_flower_act;
struct nlattr *na_vlan_id = NULL;
struct nlattr *na_vlan_priority = NULL;
uint64_t item_flags = 0;
int ret;
claim_nonzero(flow_tcf_build_ptoi_table(dev, ptoi,
PTOI_TABLE_SZ_MAX(dev)));
if (dev_flow->tcf.tunnel) {
switch (dev_flow->tcf.tunnel->type) {
case FLOW_TCF_TUNACT_VXLAN_DECAP:
decap.vxlan = dev_flow->tcf.vxlan_decap;
break;
case FLOW_TCF_TUNACT_VXLAN_ENCAP:
encap.vxlan = dev_flow->tcf.vxlan_encap;
break;
/* New tunnel actions can be added here. */
default:
assert(false);
break;
}
}
nlh = dev_flow->tcf.nlh;
tcm = dev_flow->tcf.tcm;
/* Prepare API must have been called beforehand. */
assert(nlh != NULL && tcm != NULL);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm_ifindex = ptoi[0].ifindex;
tcm->tcm_parent = TC_H_MAKE(TC_H_INGRESS, TC_H_MIN_INGRESS);
/*
* Priority cannot be zero to prevent the kernel from picking one
* automatically.
*/
tcm->tcm_info = TC_H_MAKE((attr->priority + 1) << 16,
RTE_BE16(ETH_P_ALL));
if (attr->group > 0)
mnl_attr_put_u32(nlh, TCA_CHAIN, attr->group);
mnl_attr_put_strz(nlh, TCA_KIND, "flower");
na_flower = mnl_attr_nest_start(nlh, TCA_OPTIONS);
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
unsigned int i;
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_PORT_ID:
mask.port_id = flow_tcf_item_mask
(items, &rte_flow_item_port_id_mask,
&flow_tcf_mask_supported.port_id,
&flow_tcf_mask_empty.port_id,
sizeof(flow_tcf_mask_supported.port_id),
error);
assert(mask.port_id);
if (mask.port_id == &flow_tcf_mask_empty.port_id)
break;
spec.port_id = items->spec;
if (!mask.port_id->id)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == spec.port_id->id)
break;
assert(ptoi[i].ifindex);
tcm->tcm_ifindex = ptoi[i].ifindex;
break;
case RTE_FLOW_ITEM_TYPE_ETH:
item_flags |= (item_flags & MLX5_FLOW_LAYER_VXLAN) ?
MLX5_FLOW_LAYER_INNER_L2 :
MLX5_FLOW_LAYER_OUTER_L2;
mask.eth = flow_tcf_item_mask
(items, &rte_flow_item_eth_mask,
&flow_tcf_mask_supported.eth,
&flow_tcf_mask_empty.eth,
sizeof(flow_tcf_mask_supported.eth),
error);
assert(mask.eth);
if (mask.eth == &flow_tcf_mask_empty.eth)
break;
spec.eth = items->spec;
if (decap.vxlan &&
!(item_flags & MLX5_FLOW_LAYER_VXLAN)) {
DRV_LOG(WARNING,
"outer L2 addresses cannot be forced"
" for vxlan decapsulation, parameter"
" ignored");
break;
}
if (mask.eth->type) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_ETH_TYPE,
spec.eth->type);
eth_type_set = 1;
}
if (!is_zero_ether_addr(&mask.eth->dst)) {
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_DST,
ETHER_ADDR_LEN,
spec.eth->dst.addr_bytes);
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_DST_MASK,
ETHER_ADDR_LEN,
mask.eth->dst.addr_bytes);
}
if (!is_zero_ether_addr(&mask.eth->src)) {
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_SRC,
ETHER_ADDR_LEN,
spec.eth->src.addr_bytes);
mnl_attr_put(nlh, TCA_FLOWER_KEY_ETH_SRC_MASK,
ETHER_ADDR_LEN,
mask.eth->src.addr_bytes);
}
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
assert(!encap.hdr);
assert(!decap.hdr);
item_flags |= MLX5_FLOW_LAYER_OUTER_VLAN;
mask.vlan = flow_tcf_item_mask
(items, &rte_flow_item_vlan_mask,
&flow_tcf_mask_supported.vlan,
&flow_tcf_mask_empty.vlan,
sizeof(flow_tcf_mask_supported.vlan),
error);
assert(mask.vlan);
if (!eth_type_set)
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_ETH_TYPE,
RTE_BE16(ETH_P_8021Q));
eth_type_set = 1;
vlan_present = 1;
if (mask.vlan == &flow_tcf_mask_empty.vlan)
break;
spec.vlan = items->spec;
if (mask.vlan->inner_type) {
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_VLAN_ETH_TYPE,
spec.vlan->inner_type);
vlan_eth_type_set = 1;
}
if (mask.vlan->tci & RTE_BE16(0xe000))
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_VLAN_PRIO,
(rte_be_to_cpu_16
(spec.vlan->tci) >> 13) & 0x7);
if (mask.vlan->tci & RTE_BE16(0x0fff))
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_VLAN_ID,
rte_be_to_cpu_16
(spec.vlan->tci &
RTE_BE16(0x0fff)));
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
mask.ipv4 = flow_tcf_item_mask
(items, &rte_flow_item_ipv4_mask,
&flow_tcf_mask_supported.ipv4,
&flow_tcf_mask_empty.ipv4,
sizeof(flow_tcf_mask_supported.ipv4),
error);
assert(mask.ipv4);
spec.ipv4 = items->spec;
if (!decap.vxlan) {
if (!eth_type_set ||
(!vlan_eth_type_set && vlan_present))
mnl_attr_put_u16
(nlh,
vlan_present ?
TCA_FLOWER_KEY_VLAN_ETH_TYPE :
TCA_FLOWER_KEY_ETH_TYPE,
RTE_BE16(ETH_P_IP));
eth_type_set = 1;
vlan_eth_type_set = 1;
if (mask.ipv4 == &flow_tcf_mask_empty.ipv4)
break;
if (mask.ipv4->hdr.next_proto_id) {
mnl_attr_put_u8
(nlh, TCA_FLOWER_KEY_IP_PROTO,
spec.ipv4->hdr.next_proto_id);
ip_proto_set = 1;
}
} else {
assert(mask.ipv4 != &flow_tcf_mask_empty.ipv4);
}
if (mask.ipv4->hdr.src_addr) {
mnl_attr_put_u32
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV4_SRC :
TCA_FLOWER_KEY_IPV4_SRC,
spec.ipv4->hdr.src_addr);
mnl_attr_put_u32
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK :
TCA_FLOWER_KEY_IPV4_SRC_MASK,
mask.ipv4->hdr.src_addr);
}
if (mask.ipv4->hdr.dst_addr) {
mnl_attr_put_u32
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV4_DST :
TCA_FLOWER_KEY_IPV4_DST,
spec.ipv4->hdr.dst_addr);
mnl_attr_put_u32
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV4_DST_MASK :
TCA_FLOWER_KEY_IPV4_DST_MASK,
mask.ipv4->hdr.dst_addr);
}
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
item_flags |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
mask.ipv6 = flow_tcf_item_mask
(items, &rte_flow_item_ipv6_mask,
&flow_tcf_mask_supported.ipv6,
&flow_tcf_mask_empty.ipv6,
sizeof(flow_tcf_mask_supported.ipv6),
error);
assert(mask.ipv6);
spec.ipv6 = items->spec;
if (!decap.vxlan) {
if (!eth_type_set ||
(!vlan_eth_type_set && vlan_present))
mnl_attr_put_u16
(nlh,
vlan_present ?
TCA_FLOWER_KEY_VLAN_ETH_TYPE :
TCA_FLOWER_KEY_ETH_TYPE,
RTE_BE16(ETH_P_IPV6));
eth_type_set = 1;
vlan_eth_type_set = 1;
if (mask.ipv6 == &flow_tcf_mask_empty.ipv6)
break;
if (mask.ipv6->hdr.proto) {
mnl_attr_put_u8
(nlh, TCA_FLOWER_KEY_IP_PROTO,
spec.ipv6->hdr.proto);
ip_proto_set = 1;
}
} else {
assert(mask.ipv6 != &flow_tcf_mask_empty.ipv6);
}
if (!IN6_IS_ADDR_UNSPECIFIED(mask.ipv6->hdr.src_addr)) {
mnl_attr_put(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV6_SRC :
TCA_FLOWER_KEY_IPV6_SRC,
IPV6_ADDR_LEN,
spec.ipv6->hdr.src_addr);
mnl_attr_put(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK :
TCA_FLOWER_KEY_IPV6_SRC_MASK,
IPV6_ADDR_LEN,
mask.ipv6->hdr.src_addr);
}
if (!IN6_IS_ADDR_UNSPECIFIED(mask.ipv6->hdr.dst_addr)) {
mnl_attr_put(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV6_DST :
TCA_FLOWER_KEY_IPV6_DST,
IPV6_ADDR_LEN,
spec.ipv6->hdr.dst_addr);
mnl_attr_put(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_IPV6_DST_MASK :
TCA_FLOWER_KEY_IPV6_DST_MASK,
IPV6_ADDR_LEN,
mask.ipv6->hdr.dst_addr);
}
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
mask.udp = flow_tcf_item_mask
(items, &rte_flow_item_udp_mask,
&flow_tcf_mask_supported.udp,
&flow_tcf_mask_empty.udp,
sizeof(flow_tcf_mask_supported.udp),
error);
assert(mask.udp);
spec.udp = items->spec;
if (!decap.vxlan) {
if (!ip_proto_set)
mnl_attr_put_u8
(nlh, TCA_FLOWER_KEY_IP_PROTO,
IPPROTO_UDP);
if (mask.udp == &flow_tcf_mask_empty.udp)
break;
} else {
assert(mask.udp != &flow_tcf_mask_empty.udp);
decap.vxlan->udp_port =
rte_be_to_cpu_16
(spec.udp->hdr.dst_port);
}
if (mask.udp->hdr.src_port) {
mnl_attr_put_u16
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT :
TCA_FLOWER_KEY_UDP_SRC,
spec.udp->hdr.src_port);
mnl_attr_put_u16
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK :
TCA_FLOWER_KEY_UDP_SRC_MASK,
mask.udp->hdr.src_port);
}
if (mask.udp->hdr.dst_port) {
mnl_attr_put_u16
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_UDP_DST_PORT :
TCA_FLOWER_KEY_UDP_DST,
spec.udp->hdr.dst_port);
mnl_attr_put_u16
(nlh, decap.vxlan ?
TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK :
TCA_FLOWER_KEY_UDP_DST_MASK,
mask.udp->hdr.dst_port);
}
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
item_flags |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
mask.tcp = flow_tcf_item_mask
(items, &rte_flow_item_tcp_mask,
&flow_tcf_mask_supported.tcp,
&flow_tcf_mask_empty.tcp,
sizeof(flow_tcf_mask_supported.tcp),
error);
assert(mask.tcp);
if (!ip_proto_set)
mnl_attr_put_u8(nlh, TCA_FLOWER_KEY_IP_PROTO,
IPPROTO_TCP);
if (mask.tcp == &flow_tcf_mask_empty.tcp)
break;
spec.tcp = items->spec;
if (mask.tcp->hdr.src_port) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_TCP_SRC,
spec.tcp->hdr.src_port);
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_TCP_SRC_MASK,
mask.tcp->hdr.src_port);
}
if (mask.tcp->hdr.dst_port) {
mnl_attr_put_u16(nlh, TCA_FLOWER_KEY_TCP_DST,
spec.tcp->hdr.dst_port);
mnl_attr_put_u16(nlh,
TCA_FLOWER_KEY_TCP_DST_MASK,
mask.tcp->hdr.dst_port);
}
if (mask.tcp->hdr.tcp_flags) {
mnl_attr_put_u16
(nlh,
TCA_FLOWER_KEY_TCP_FLAGS,
rte_cpu_to_be_16
(spec.tcp->hdr.tcp_flags));
mnl_attr_put_u16
(nlh,
TCA_FLOWER_KEY_TCP_FLAGS_MASK,
rte_cpu_to_be_16
(mask.tcp->hdr.tcp_flags));
}
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
assert(decap.vxlan);
item_flags |= MLX5_FLOW_LAYER_VXLAN;
spec.vxlan = items->spec;
mnl_attr_put_u32(nlh,
TCA_FLOWER_KEY_ENC_KEY_ID,
vxlan_vni_as_be32(spec.vxlan->vni));
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "item not supported");
}
}
na_flower_act = mnl_attr_nest_start(nlh, TCA_FLOWER_ACT);
na_act_index_cur = 1;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
struct nlattr *na_act_index;
struct nlattr *na_act;
unsigned int vlan_act;
unsigned int i;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
conf.port_id = actions->conf;
if (conf.port_id->original)
i = 0;
else
for (i = 0; ptoi[i].ifindex; ++i)
if (ptoi[i].port_id == conf.port_id->id)
break;
assert(ptoi[i].ifindex);
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "mirred");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
if (encap.hdr) {
assert(dev_flow->tcf.tunnel);
dev_flow->tcf.tunnel->ifindex_ptr =
&((struct tc_mirred *)
mnl_attr_get_payload
(mnl_nlmsg_get_payload_tail
(nlh)))->ifindex;
}
mnl_attr_put(nlh, TCA_MIRRED_PARMS,
sizeof(struct tc_mirred),
&(struct tc_mirred){
.action = TC_ACT_STOLEN,
.eaction = TCA_EGRESS_REDIR,
.ifindex = ptoi[i].ifindex,
});
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
break;
case RTE_FLOW_ACTION_TYPE_JUMP:
conf.jump = actions->conf;
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "gact");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_GACT_PARMS,
sizeof(struct tc_gact),
&(struct tc_gact){
.action = TC_ACT_GOTO_CHAIN |
conf.jump->group,
});
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
break;
case RTE_FLOW_ACTION_TYPE_DROP:
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "gact");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_GACT_PARMS,
sizeof(struct tc_gact),
&(struct tc_gact){
.action = TC_ACT_SHOT,
});
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
/*
* Driver adds the count action implicitly for
* each rule it creates.
*/
ret = flow_tcf_translate_action_count(dev,
dev_flow, error);
if (ret < 0)
return ret;
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
conf.of_push_vlan = NULL;
vlan_act = TCA_VLAN_ACT_POP;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
conf.of_push_vlan = actions->conf;
vlan_act = TCA_VLAN_ACT_PUSH;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
conf.of_set_vlan_vid = actions->conf;
if (na_vlan_id)
goto override_na_vlan_id;
vlan_act = TCA_VLAN_ACT_MODIFY;
goto action_of_vlan;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
conf.of_set_vlan_pcp = actions->conf;
if (na_vlan_priority)
goto override_na_vlan_priority;
vlan_act = TCA_VLAN_ACT_MODIFY;
goto action_of_vlan;
action_of_vlan:
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "vlan");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_VLAN_PARMS,
sizeof(struct tc_vlan),
&(struct tc_vlan){
.action = TC_ACT_PIPE,
.v_action = vlan_act,
});
if (vlan_act == TCA_VLAN_ACT_POP) {
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
break;
}
if (vlan_act == TCA_VLAN_ACT_PUSH)
mnl_attr_put_u16(nlh,
TCA_VLAN_PUSH_VLAN_PROTOCOL,
conf.of_push_vlan->ethertype);
na_vlan_id = mnl_nlmsg_get_payload_tail(nlh);
mnl_attr_put_u16(nlh, TCA_VLAN_PAD, 0);
na_vlan_priority = mnl_nlmsg_get_payload_tail(nlh);
mnl_attr_put_u8(nlh, TCA_VLAN_PAD, 0);
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
if (actions->type ==
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID) {
override_na_vlan_id:
na_vlan_id->nla_type = TCA_VLAN_PUSH_VLAN_ID;
*(uint16_t *)mnl_attr_get_payload(na_vlan_id) =
rte_be_to_cpu_16
(conf.of_set_vlan_vid->vlan_vid);
} else if (actions->type ==
RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP) {
override_na_vlan_priority:
na_vlan_priority->nla_type =
TCA_VLAN_PUSH_VLAN_PRIORITY;
*(uint8_t *)mnl_attr_get_payload
(na_vlan_priority) =
conf.of_set_vlan_pcp->vlan_pcp;
}
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
assert(decap.vxlan);
assert(dev_flow->tcf.tunnel);
dev_flow->tcf.tunnel->ifindex_ptr =
(unsigned int *)&tcm->tcm_ifindex;
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "tunnel_key");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_TUNNEL_KEY_PARMS,
sizeof(struct tc_tunnel_key),
&(struct tc_tunnel_key){
.action = TC_ACT_PIPE,
.t_action = TCA_TUNNEL_KEY_ACT_RELEASE,
});
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
assert(encap.vxlan);
flow_tcf_vxlan_encap_parse(actions, encap.vxlan);
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
assert(na_act_index);
mnl_attr_put_strz(nlh, TCA_ACT_KIND, "tunnel_key");
na_act = mnl_attr_nest_start(nlh, TCA_ACT_OPTIONS);
assert(na_act);
mnl_attr_put(nlh, TCA_TUNNEL_KEY_PARMS,
sizeof(struct tc_tunnel_key),
&(struct tc_tunnel_key){
.action = TC_ACT_PIPE,
.t_action = TCA_TUNNEL_KEY_ACT_SET,
});
if (encap.vxlan->mask & FLOW_TCF_ENCAP_UDP_DST)
mnl_attr_put_u16(nlh,
TCA_TUNNEL_KEY_ENC_DST_PORT,
encap.vxlan->udp.dst);
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV4_SRC)
mnl_attr_put_u32(nlh,
TCA_TUNNEL_KEY_ENC_IPV4_SRC,
encap.vxlan->ipv4.src);
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV4_DST)
mnl_attr_put_u32(nlh,
TCA_TUNNEL_KEY_ENC_IPV4_DST,
encap.vxlan->ipv4.dst);
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV6_SRC)
mnl_attr_put(nlh,
TCA_TUNNEL_KEY_ENC_IPV6_SRC,
sizeof(encap.vxlan->ipv6.src),
&encap.vxlan->ipv6.src);
if (encap.vxlan->mask & FLOW_TCF_ENCAP_IPV6_DST)
mnl_attr_put(nlh,
TCA_TUNNEL_KEY_ENC_IPV6_DST,
sizeof(encap.vxlan->ipv6.dst),
&encap.vxlan->ipv6.dst);
if (encap.vxlan->mask & FLOW_TCF_ENCAP_VXLAN_VNI)
mnl_attr_put_u32(nlh,
TCA_TUNNEL_KEY_ENC_KEY_ID,
vxlan_vni_as_be32
(encap.vxlan->vxlan.vni));
mnl_attr_put_u8(nlh, TCA_TUNNEL_KEY_NO_CSUM, 0);
mnl_attr_nest_end(nlh, na_act);
mnl_attr_nest_end(nlh, na_act_index);
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
break;
case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
case RTE_FLOW_ACTION_TYPE_SET_TTL:
case RTE_FLOW_ACTION_TYPE_DEC_TTL:
case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
na_act_index =
mnl_attr_nest_start(nlh, na_act_index_cur++);
flow_tcf_create_pedit_mnl_msg(nlh,
&actions, item_flags);
mnl_attr_nest_end(nlh, na_act_index);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
}
assert(na_flower);
assert(na_flower_act);
mnl_attr_nest_end(nlh, na_flower_act);
dev_flow->tcf.ptc_flags = mnl_attr_get_payload
(mnl_nlmsg_get_payload_tail(nlh));
mnl_attr_put_u32(nlh, TCA_FLOWER_FLAGS, decap.vxlan ?
0 : TCA_CLS_FLAGS_SKIP_SW);
mnl_attr_nest_end(nlh, na_flower);
if (dev_flow->tcf.tunnel && dev_flow->tcf.tunnel->ifindex_ptr)
dev_flow->tcf.tunnel->ifindex_org =
*dev_flow->tcf.tunnel->ifindex_ptr;
assert(dev_flow->tcf.nlsize >= nlh->nlmsg_len);
return 0;
}
/**
* Send Netlink message with acknowledgment.
*
* @param tcf
* Flow context to use.
* @param nlh
* Message to send. This function always raises the NLM_F_ACK flag before
* sending.
* @param[in] cb
* Callback handler for received message.
* @param[in] arg
* Context pointer for callback handler.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_nl_ack(struct mlx5_flow_tcf_context *tcf,
struct nlmsghdr *nlh,
mnl_cb_t cb, void *arg)
{
unsigned int portid = mnl_socket_get_portid(tcf->nl);
uint32_t seq = tcf->seq++;
int ret, err = 0;
assert(tcf->nl);
assert(tcf->buf);
if (!seq) {
/* seq 0 is reserved for kernel event-driven notifications. */
seq = tcf->seq++;
}
nlh->nlmsg_seq = seq;
nlh->nlmsg_flags |= NLM_F_ACK;
ret = mnl_socket_sendto(tcf->nl, nlh, nlh->nlmsg_len);
if (ret <= 0) {
/* Message send error occurres. */
rte_errno = errno;
return -rte_errno;
}
nlh = (struct nlmsghdr *)(tcf->buf);
/*
* The following loop postpones non-fatal errors until multipart
* messages are complete.
*/
while (true) {
ret = mnl_socket_recvfrom(tcf->nl, tcf->buf, tcf->buf_size);
if (ret < 0) {
err = errno;
/*
* In case of overflow Will receive till
* end of multipart message. We may lost part
* of reply messages but mark and return an error.
*/
if (err != ENOSPC ||
!(nlh->nlmsg_flags & NLM_F_MULTI) ||
nlh->nlmsg_type == NLMSG_DONE)
break;
} else {
ret = mnl_cb_run(nlh, ret, seq, portid, cb, arg);
if (!ret) {
/*
* libmnl returns 0 if DONE or
* success ACK message found.
*/
break;
}
if (ret < 0) {
/*
* ACK message with error found
* or some error occurred.
*/
err = errno;
break;
}
/* We should continue receiving. */
}
}
if (!err)
return 0;
rte_errno = err;
return -err;
}
#define MNL_BUF_EXTRA_SPACE 16
#define MNL_REQUEST_SIZE_MIN 256
#define MNL_REQUEST_SIZE_MAX 2048
#define MNL_REQUEST_SIZE RTE_MIN(RTE_MAX(sysconf(_SC_PAGESIZE), \
MNL_REQUEST_SIZE_MIN), MNL_REQUEST_SIZE_MAX)
/* Data structures used by flow_tcf_xxx_cb() routines. */
struct tcf_nlcb_buf {
LIST_ENTRY(tcf_nlcb_buf) next;
uint32_t size;
alignas(struct nlmsghdr)
uint8_t msg[]; /**< Netlink message data. */
};
struct tcf_nlcb_context {
unsigned int ifindex; /**< Base interface index. */
uint32_t bufsize;
LIST_HEAD(, tcf_nlcb_buf) nlbuf;
};
/**
* Allocate space for netlink command in buffer list
*
* @param[in, out] ctx
* Pointer to callback context with command buffers list.
* @param[in] size
* Required size of data buffer to be allocated.
*
* @return
* Pointer to allocated memory, aligned as message header.
* NULL if some error occurred.
*/
static struct nlmsghdr *
flow_tcf_alloc_nlcmd(struct tcf_nlcb_context *ctx, uint32_t size)
{
struct tcf_nlcb_buf *buf;
struct nlmsghdr *nlh;
size = NLMSG_ALIGN(size);
buf = LIST_FIRST(&ctx->nlbuf);
if (buf && (buf->size + size) <= ctx->bufsize) {
nlh = (struct nlmsghdr *)&buf->msg[buf->size];
buf->size += size;
return nlh;
}
if (size > ctx->bufsize) {
DRV_LOG(WARNING, "netlink: too long command buffer requested");
return NULL;
}
buf = rte_malloc(__func__,
ctx->bufsize + sizeof(struct tcf_nlcb_buf),
alignof(struct tcf_nlcb_buf));
if (!buf) {
DRV_LOG(WARNING, "netlink: no memory for command buffer");
return NULL;
}
LIST_INSERT_HEAD(&ctx->nlbuf, buf, next);
buf->size = size;
nlh = (struct nlmsghdr *)&buf->msg[0];
return nlh;
}
/**
* Send the buffers with prepared netlink commands. Scans the list and
* sends all found buffers. Buffers are sent and freed anyway in order
* to prevent memory leakage if some every message in received packet.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in, out] ctx
* Pointer to callback context with command buffers list.
*
* @return
* Zero value on success, negative errno value otherwise
* and rte_errno is set.
*/
static int
flow_tcf_send_nlcmd(struct mlx5_flow_tcf_context *tcf,
struct tcf_nlcb_context *ctx)
{
struct tcf_nlcb_buf *bc = LIST_FIRST(&ctx->nlbuf);
int ret = 0;
while (bc) {
struct tcf_nlcb_buf *bn = LIST_NEXT(bc, next);
struct nlmsghdr *nlh;
uint32_t msg = 0;
int rc;
while (msg < bc->size) {
/*
* Send Netlink commands from buffer in one by one
* fashion. If we send multiple rule deletion commands
* in one Netlink message and some error occurs it may
* cause multiple ACK error messages and break sequence
* numbers of Netlink communication, because we expect
* the only one ACK reply.
*/
assert((bc->size - msg) >= sizeof(struct nlmsghdr));
nlh = (struct nlmsghdr *)&bc->msg[msg];
assert((bc->size - msg) >= nlh->nlmsg_len);
msg += nlh->nlmsg_len;
rc = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
if (rc) {
DRV_LOG(WARNING,
"netlink: cleanup error %d", rc);
if (!ret)
ret = rc;
}
}
rte_free(bc);
bc = bn;
}
LIST_INIT(&ctx->nlbuf);
return ret;
}
/**
* Collect local IP address rules with scope link attribute on specified
* network device. This is callback routine called by libmnl mnl_cb_run()
* in loop for every message in received packet.
*
* @param[in] nlh
* Pointer to reply header.
* @param[in, out] arg
* Opaque data pointer for this callback.
*
* @return
* A positive, nonzero value on success, negative errno value otherwise
* and rte_errno is set.
*/
static int
flow_tcf_collect_local_cb(const struct nlmsghdr *nlh, void *arg)
{
struct tcf_nlcb_context *ctx = arg;
struct nlmsghdr *cmd;
struct ifaddrmsg *ifa;
struct nlattr *na;
struct nlattr *na_local = NULL;
struct nlattr *na_peer = NULL;
unsigned char family;
uint32_t size;
if (nlh->nlmsg_type != RTM_NEWADDR) {
rte_errno = EINVAL;
return -rte_errno;
}
ifa = mnl_nlmsg_get_payload(nlh);
family = ifa->ifa_family;
if (ifa->ifa_index != ctx->ifindex ||
ifa->ifa_scope != RT_SCOPE_LINK ||
!(ifa->ifa_flags & IFA_F_PERMANENT) ||
(family != AF_INET && family != AF_INET6))
return 1;
mnl_attr_for_each(na, nlh, sizeof(*ifa)) {
switch (mnl_attr_get_type(na)) {
case IFA_LOCAL:
na_local = na;
break;
case IFA_ADDRESS:
na_peer = na;
break;
}
if (na_local && na_peer)
break;
}
if (!na_local || !na_peer)
return 1;
/* Local rule found with scope link, permanent and assigned peer. */
size = MNL_ALIGN(sizeof(struct nlmsghdr)) +
MNL_ALIGN(sizeof(struct ifaddrmsg)) +
(family == AF_INET6 ? 2 * SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN)
: 2 * SZ_NLATTR_TYPE_OF(uint32_t));
cmd = flow_tcf_alloc_nlcmd(ctx, size);
if (!cmd) {
rte_errno = ENOMEM;
return -rte_errno;
}
cmd = mnl_nlmsg_put_header(cmd);
cmd->nlmsg_type = RTM_DELADDR;
cmd->nlmsg_flags = NLM_F_REQUEST;
ifa = mnl_nlmsg_put_extra_header(cmd, sizeof(*ifa));
ifa->ifa_flags = IFA_F_PERMANENT;
ifa->ifa_scope = RT_SCOPE_LINK;
ifa->ifa_index = ctx->ifindex;
if (family == AF_INET) {
ifa->ifa_family = AF_INET;
ifa->ifa_prefixlen = 32;
mnl_attr_put_u32(cmd, IFA_LOCAL, mnl_attr_get_u32(na_local));
mnl_attr_put_u32(cmd, IFA_ADDRESS, mnl_attr_get_u32(na_peer));
} else {
ifa->ifa_family = AF_INET6;
ifa->ifa_prefixlen = 128;
mnl_attr_put(cmd, IFA_LOCAL, IPV6_ADDR_LEN,
mnl_attr_get_payload(na_local));
mnl_attr_put(cmd, IFA_ADDRESS, IPV6_ADDR_LEN,
mnl_attr_get_payload(na_peer));
}
assert(size == cmd->nlmsg_len);
return 1;
}
/**
* Cleanup the local IP addresses on outer interface.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] ifindex
* Network inferface index to perform cleanup.
*/
static void
flow_tcf_encap_local_cleanup(struct mlx5_flow_tcf_context *tcf,
unsigned int ifindex)
{
struct nlmsghdr *nlh;
struct ifaddrmsg *ifa;
struct tcf_nlcb_context ctx = {
.ifindex = ifindex,
.bufsize = MNL_REQUEST_SIZE,
.nlbuf = LIST_HEAD_INITIALIZER(),
};
int ret;
assert(ifindex);
/*
* Seek and destroy leftovers of local IP addresses with
* matching properties "scope link".
*/
nlh = mnl_nlmsg_put_header(tcf->buf);
nlh->nlmsg_type = RTM_GETADDR;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
ifa = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifa));
ifa->ifa_family = AF_UNSPEC;
ifa->ifa_index = ifindex;
ifa->ifa_scope = RT_SCOPE_LINK;
ret = flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_local_cb, &ctx);
if (ret)
DRV_LOG(WARNING, "netlink: query device list error %d", ret);
ret = flow_tcf_send_nlcmd(tcf, &ctx);
if (ret)
DRV_LOG(WARNING, "netlink: device delete error %d", ret);
}
/**
* Collect neigh permament rules on specified network device.
* This is callback routine called by libmnl mnl_cb_run() in loop for
* every message in received packet.
*
* @param[in] nlh
* Pointer to reply header.
* @param[in, out] arg
* Opaque data pointer for this callback.
*
* @return
* A positive, nonzero value on success, negative errno value otherwise
* and rte_errno is set.
*/
static int
flow_tcf_collect_neigh_cb(const struct nlmsghdr *nlh, void *arg)
{
struct tcf_nlcb_context *ctx = arg;
struct nlmsghdr *cmd;
struct ndmsg *ndm;
struct nlattr *na;
struct nlattr *na_ip = NULL;
struct nlattr *na_mac = NULL;
unsigned char family;
uint32_t size;
if (nlh->nlmsg_type != RTM_NEWNEIGH) {
rte_errno = EINVAL;
return -rte_errno;
}
ndm = mnl_nlmsg_get_payload(nlh);
family = ndm->ndm_family;
if (ndm->ndm_ifindex != (int)ctx->ifindex ||
!(ndm->ndm_state & NUD_PERMANENT) ||
(family != AF_INET && family != AF_INET6))
return 1;
mnl_attr_for_each(na, nlh, sizeof(*ndm)) {
switch (mnl_attr_get_type(na)) {
case NDA_DST:
na_ip = na;
break;
case NDA_LLADDR:
na_mac = na;
break;
}
if (na_mac && na_ip)
break;
}
if (!na_mac || !na_ip)
return 1;
/* Neigh rule with permenent attribute found. */
size = MNL_ALIGN(sizeof(struct nlmsghdr)) +
MNL_ALIGN(sizeof(struct ndmsg)) +
SZ_NLATTR_DATA_OF(ETHER_ADDR_LEN) +
(family == AF_INET6 ? SZ_NLATTR_DATA_OF(IPV6_ADDR_LEN)
: SZ_NLATTR_TYPE_OF(uint32_t));
cmd = flow_tcf_alloc_nlcmd(ctx, size);
if (!cmd) {
rte_errno = ENOMEM;
return -rte_errno;
}
cmd = mnl_nlmsg_put_header(cmd);
cmd->nlmsg_type = RTM_DELNEIGH;
cmd->nlmsg_flags = NLM_F_REQUEST;
ndm = mnl_nlmsg_put_extra_header(cmd, sizeof(*ndm));
ndm->ndm_ifindex = ctx->ifindex;
ndm->ndm_state = NUD_PERMANENT;
ndm->ndm_flags = 0;
ndm->ndm_type = 0;
if (family == AF_INET) {
ndm->ndm_family = AF_INET;
mnl_attr_put_u32(cmd, NDA_DST, mnl_attr_get_u32(na_ip));
} else {
ndm->ndm_family = AF_INET6;
mnl_attr_put(cmd, NDA_DST, IPV6_ADDR_LEN,
mnl_attr_get_payload(na_ip));
}
mnl_attr_put(cmd, NDA_LLADDR, ETHER_ADDR_LEN,
mnl_attr_get_payload(na_mac));
assert(size == cmd->nlmsg_len);
return 1;
}
/**
* Cleanup the neigh rules on outer interface.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] ifindex
* Network inferface index to perform cleanup.
*/
static void
flow_tcf_encap_neigh_cleanup(struct mlx5_flow_tcf_context *tcf,
unsigned int ifindex)
{
struct nlmsghdr *nlh;
struct ndmsg *ndm;
struct tcf_nlcb_context ctx = {
.ifindex = ifindex,
.bufsize = MNL_REQUEST_SIZE,
.nlbuf = LIST_HEAD_INITIALIZER(),
};
int ret;
assert(ifindex);
/* Seek and destroy leftovers of neigh rules. */
nlh = mnl_nlmsg_put_header(tcf->buf);
nlh->nlmsg_type = RTM_GETNEIGH;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
ndm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ndm));
ndm->ndm_family = AF_UNSPEC;
ndm->ndm_ifindex = ifindex;
ndm->ndm_state = NUD_PERMANENT;
ret = flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_neigh_cb, &ctx);
if (ret)
DRV_LOG(WARNING, "netlink: query device list error %d", ret);
ret = flow_tcf_send_nlcmd(tcf, &ctx);
if (ret)
DRV_LOG(WARNING, "netlink: device delete error %d", ret);
}
/**
* Collect indices of VXLAN encap/decap interfaces associated with device.
* This is callback routine called by libmnl mnl_cb_run() in loop for
* every message in received packet.
*
* @param[in] nlh
* Pointer to reply header.
* @param[in, out] arg
* Opaque data pointer for this callback.
*
* @return
* A positive, nonzero value on success, negative errno value otherwise
* and rte_errno is set.
*/
static int
flow_tcf_collect_vxlan_cb(const struct nlmsghdr *nlh, void *arg)
{
struct tcf_nlcb_context *ctx = arg;
struct nlmsghdr *cmd;
struct ifinfomsg *ifm;
struct nlattr *na;
struct nlattr *na_info = NULL;
struct nlattr *na_vxlan = NULL;
bool found = false;
unsigned int vxindex;
uint32_t size;
if (nlh->nlmsg_type != RTM_NEWLINK) {
rte_errno = EINVAL;
return -rte_errno;
}
ifm = mnl_nlmsg_get_payload(nlh);
if (!ifm->ifi_index) {
rte_errno = EINVAL;
return -rte_errno;
}
mnl_attr_for_each(na, nlh, sizeof(*ifm))
if (mnl_attr_get_type(na) == IFLA_LINKINFO) {
na_info = na;
break;
}
if (!na_info)
return 1;
mnl_attr_for_each_nested(na, na_info) {
switch (mnl_attr_get_type(na)) {
case IFLA_INFO_KIND:
if (!strncmp("vxlan", mnl_attr_get_str(na),
mnl_attr_get_len(na)))
found = true;
break;
case IFLA_INFO_DATA:
na_vxlan = na;
break;
}
if (found && na_vxlan)
break;
}
if (!found || !na_vxlan)
return 1;
found = false;
mnl_attr_for_each_nested(na, na_vxlan) {
if (mnl_attr_get_type(na) == IFLA_VXLAN_LINK &&
mnl_attr_get_u32(na) == ctx->ifindex) {
found = true;
break;
}
}
if (!found)
return 1;
/* Attached VXLAN device found, store the command to delete. */
vxindex = ifm->ifi_index;
size = MNL_ALIGN(sizeof(struct nlmsghdr)) +
MNL_ALIGN(sizeof(struct ifinfomsg));
cmd = flow_tcf_alloc_nlcmd(ctx, size);
if (!cmd) {
rte_errno = ENOMEM;
return -rte_errno;
}
cmd = mnl_nlmsg_put_header(cmd);
cmd->nlmsg_type = RTM_DELLINK;
cmd->nlmsg_flags = NLM_F_REQUEST;
ifm = mnl_nlmsg_put_extra_header(cmd, sizeof(*ifm));
ifm->ifi_family = AF_UNSPEC;
ifm->ifi_index = vxindex;
assert(size == cmd->nlmsg_len);
return 1;
}
/**
* Cleanup the outer interface. Removes all found vxlan devices
* attached to specified index, flushes the meigh and local IP
* datavase.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] ifindex
* Network inferface index to perform cleanup.
*/
static void
flow_tcf_encap_iface_cleanup(struct mlx5_flow_tcf_context *tcf,
unsigned int ifindex)
{
struct nlmsghdr *nlh;
struct ifinfomsg *ifm;
struct tcf_nlcb_context ctx = {
.ifindex = ifindex,
.bufsize = MNL_REQUEST_SIZE,
.nlbuf = LIST_HEAD_INITIALIZER(),
};
int ret;
assert(ifindex);
/*
* Seek and destroy leftover VXLAN encap/decap interfaces with
* matching properties.
*/
nlh = mnl_nlmsg_put_header(tcf->buf);
nlh->nlmsg_type = RTM_GETLINK;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
ifm->ifi_family = AF_UNSPEC;
ret = flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_vxlan_cb, &ctx);
if (ret)
DRV_LOG(WARNING, "netlink: query device list error %d", ret);
ret = flow_tcf_send_nlcmd(tcf, &ctx);
if (ret)
DRV_LOG(WARNING, "netlink: device delete error %d", ret);
}
/**
* Emit Netlink message to add/remove local address to the outer device.
* The address being added is visible within the link only (scope link).
*
* Note that an implicit route is maintained by the kernel due to the
* presence of a peer address (IFA_ADDRESS).
*
* These rules are used for encapsultion only and allow to assign
* the outer tunnel source IP address.
*
* @param[in] tcf
* Libmnl socket context object.
* @param[in] encap
* Encapsulation properties (source address and its peer).
* @param[in] ifindex
* Network interface to apply rule.
* @param[in] enable
* Toggle between add and remove.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_rule_local(struct mlx5_flow_tcf_context *tcf,
const struct flow_tcf_vxlan_encap *encap,
unsigned int ifindex,
bool enable,
struct rte_flow_error *error)
{
struct nlmsghdr *nlh;
struct ifaddrmsg *ifa;
alignas(struct nlmsghdr)
uint8_t buf[mnl_nlmsg_size(sizeof(*ifa) + 128)];
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = enable ? RTM_NEWADDR : RTM_DELADDR;
nlh->nlmsg_flags =
NLM_F_REQUEST | (enable ? NLM_F_CREATE | NLM_F_REPLACE : 0);
nlh->nlmsg_seq = 0;
ifa = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifa));
ifa->ifa_flags = IFA_F_PERMANENT;
ifa->ifa_scope = RT_SCOPE_LINK;
ifa->ifa_index = ifindex;
if (encap->mask & FLOW_TCF_ENCAP_IPV4_SRC) {
ifa->ifa_family = AF_INET;
ifa->ifa_prefixlen = 32;
mnl_attr_put_u32(nlh, IFA_LOCAL, encap->ipv4.src);
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST)
mnl_attr_put_u32(nlh, IFA_ADDRESS,
encap->ipv4.dst);
} else {
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_SRC);
ifa->ifa_family = AF_INET6;
ifa->ifa_prefixlen = 128;
mnl_attr_put(nlh, IFA_LOCAL,
sizeof(encap->ipv6.src),
&encap->ipv6.src);
if (encap->mask & FLOW_TCF_ENCAP_IPV6_DST)
mnl_attr_put(nlh, IFA_ADDRESS,
sizeof(encap->ipv6.dst),
&encap->ipv6.dst);
}
if (!flow_tcf_nl_ack(tcf, nlh, NULL, NULL))
return 0;
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: cannot complete IFA request"
" (ip addr add)");
}
/**
* Emit Netlink message to add/remove neighbor.
*
* @param[in] tcf
* Libmnl socket context object.
* @param[in] encap
* Encapsulation properties (destination address).
* @param[in] ifindex
* Network interface.
* @param[in] enable
* Toggle between add and remove.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_rule_neigh(struct mlx5_flow_tcf_context *tcf,
const struct flow_tcf_vxlan_encap *encap,
unsigned int ifindex,
bool enable,
struct rte_flow_error *error)
{
struct nlmsghdr *nlh;
struct ndmsg *ndm;
alignas(struct nlmsghdr)
uint8_t buf[mnl_nlmsg_size(sizeof(*ndm) + 128)];
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = enable ? RTM_NEWNEIGH : RTM_DELNEIGH;
nlh->nlmsg_flags =
NLM_F_REQUEST | (enable ? NLM_F_CREATE | NLM_F_REPLACE : 0);
nlh->nlmsg_seq = 0;
ndm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ndm));
ndm->ndm_ifindex = ifindex;
ndm->ndm_state = NUD_PERMANENT;
ndm->ndm_flags = 0;
ndm->ndm_type = 0;
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST) {
ndm->ndm_family = AF_INET;
mnl_attr_put_u32(nlh, NDA_DST, encap->ipv4.dst);
} else {
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_DST);
ndm->ndm_family = AF_INET6;
mnl_attr_put(nlh, NDA_DST, sizeof(encap->ipv6.dst),
&encap->ipv6.dst);
}
if (encap->mask & FLOW_TCF_ENCAP_ETH_SRC && enable)
DRV_LOG(WARNING,
"outer ethernet source address cannot be "
"forced for VXLAN encapsulation");
if (encap->mask & FLOW_TCF_ENCAP_ETH_DST)
mnl_attr_put(nlh, NDA_LLADDR, sizeof(encap->eth.dst),
&encap->eth.dst);
if (!flow_tcf_nl_ack(tcf, nlh, NULL, NULL))
return 0;
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: cannot complete ND request"
" (ip neigh)");
}
/**
* Manage the local IP addresses and their peers IP addresses on the
* outer interface for encapsulation purposes. The kernel searches the
* appropriate device for tunnel egress traffic using the outer source
* IP, this IP should be assigned to the outer network device, otherwise
* kernel rejects the rule.
*
* Adds or removes the addresses using the Netlink command like this:
* ip addr add <src_ip> peer <dst_ip> scope link dev <ifouter>
*
* The addresses are local to the netdev ("scope link"), this reduces
* the risk of conflicts. Note that an implicit route is maintained by
* the kernel due to the presence of a peer address (IFA_ADDRESS).
*
* @param[in] tcf
* Libmnl socket context object.
* @param[in] vtep
* VTEP object, contains rule database and ifouter index.
* @param[in] dev_flow
* Flow object, contains the tunnel parameters (for encap only).
* @param[in] enable
* Toggle between add and remove.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_encap_local(struct mlx5_flow_tcf_context *tcf,
struct tcf_vtep *vtep,
struct mlx5_flow *dev_flow,
bool enable,
struct rte_flow_error *error)
{
const struct flow_tcf_vxlan_encap *encap = dev_flow->tcf.vxlan_encap;
struct tcf_local_rule *rule;
bool found = false;
int ret;
assert(encap);
assert(encap->hdr.type == FLOW_TCF_TUNACT_VXLAN_ENCAP);
if (encap->mask & FLOW_TCF_ENCAP_IPV4_SRC) {
assert(encap->mask & FLOW_TCF_ENCAP_IPV4_DST);
LIST_FOREACH(rule, &vtep->local, next) {
if (rule->mask & FLOW_TCF_ENCAP_IPV4_SRC &&
encap->ipv4.src == rule->ipv4.src &&
encap->ipv4.dst == rule->ipv4.dst) {
found = true;
break;
}
}
} else {
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_SRC);
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_DST);
LIST_FOREACH(rule, &vtep->local, next) {
if (rule->mask & FLOW_TCF_ENCAP_IPV6_SRC &&
!memcmp(&encap->ipv6.src, &rule->ipv6.src,
sizeof(encap->ipv6.src)) &&
!memcmp(&encap->ipv6.dst, &rule->ipv6.dst,
sizeof(encap->ipv6.dst))) {
found = true;
break;
}
}
}
if (found) {
if (enable) {
rule->refcnt++;
return 0;
}
if (!rule->refcnt || !--rule->refcnt) {
LIST_REMOVE(rule, next);
return flow_tcf_rule_local(tcf, encap,
vtep->ifouter, false, error);
}
return 0;
}
if (!enable) {
DRV_LOG(WARNING, "disabling not existing local rule");
rte_flow_error_set(error, ENOENT,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"disabling not existing local rule");
return -ENOENT;
}
rule = rte_zmalloc(__func__, sizeof(struct tcf_local_rule),
alignof(struct tcf_local_rule));
if (!rule) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unable to allocate memory for local rule");
return -rte_errno;
}
*rule = (struct tcf_local_rule){.refcnt = 0,
.mask = 0,
};
if (encap->mask & FLOW_TCF_ENCAP_IPV4_SRC) {
rule->mask = FLOW_TCF_ENCAP_IPV4_SRC
| FLOW_TCF_ENCAP_IPV4_DST;
rule->ipv4.src = encap->ipv4.src;
rule->ipv4.dst = encap->ipv4.dst;
} else {
rule->mask = FLOW_TCF_ENCAP_IPV6_SRC
| FLOW_TCF_ENCAP_IPV6_DST;
memcpy(&rule->ipv6.src, &encap->ipv6.src, IPV6_ADDR_LEN);
memcpy(&rule->ipv6.dst, &encap->ipv6.dst, IPV6_ADDR_LEN);
}
ret = flow_tcf_rule_local(tcf, encap, vtep->ifouter, true, error);
if (ret) {
rte_free(rule);
return ret;
}
rule->refcnt++;
LIST_INSERT_HEAD(&vtep->local, rule, next);
return 0;
}
/**
* Manage the destination MAC/IP addresses neigh database, kernel uses
* this one to determine the destination MAC address within encapsulation
* header. Adds or removes the entries using the Netlink command like this:
* ip neigh add dev <ifouter> lladdr <dst_mac> to <dst_ip> nud permanent
*
* @param[in] tcf
* Libmnl socket context object.
* @param[in] vtep
* VTEP object, contains rule database and ifouter index.
* @param[in] dev_flow
* Flow object, contains the tunnel parameters (for encap only).
* @param[in] enable
* Toggle between add and remove.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_encap_neigh(struct mlx5_flow_tcf_context *tcf,
struct tcf_vtep *vtep,
struct mlx5_flow *dev_flow,
bool enable,
struct rte_flow_error *error)
{
const struct flow_tcf_vxlan_encap *encap = dev_flow->tcf.vxlan_encap;
struct tcf_neigh_rule *rule;
bool found = false;
int ret;
assert(encap);
assert(encap->hdr.type == FLOW_TCF_TUNACT_VXLAN_ENCAP);
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST) {
assert(encap->mask & FLOW_TCF_ENCAP_IPV4_SRC);
LIST_FOREACH(rule, &vtep->neigh, next) {
if (rule->mask & FLOW_TCF_ENCAP_IPV4_DST &&
encap->ipv4.dst == rule->ipv4.dst) {
found = true;
break;
}
}
} else {
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_SRC);
assert(encap->mask & FLOW_TCF_ENCAP_IPV6_DST);
LIST_FOREACH(rule, &vtep->neigh, next) {
if (rule->mask & FLOW_TCF_ENCAP_IPV6_DST &&
!memcmp(&encap->ipv6.dst, &rule->ipv6.dst,
sizeof(encap->ipv6.dst))) {
found = true;
break;
}
}
}
if (found) {
if (memcmp(&encap->eth.dst, &rule->eth,
sizeof(encap->eth.dst))) {
DRV_LOG(WARNING, "Destination MAC differs"
" in neigh rule");
rte_flow_error_set(error, EEXIST,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "Different MAC address"
" neigh rule for the same"
" destination IP");
return -EEXIST;
}
if (enable) {
rule->refcnt++;
return 0;
}
if (!rule->refcnt || !--rule->refcnt) {
LIST_REMOVE(rule, next);
return flow_tcf_rule_neigh(tcf, encap,
vtep->ifouter,
false, error);
}
return 0;
}
if (!enable) {
DRV_LOG(WARNING, "Disabling not existing neigh rule");
rte_flow_error_set(error, ENOENT,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unable to allocate memory for neigh rule");
return -ENOENT;
}
rule = rte_zmalloc(__func__, sizeof(struct tcf_neigh_rule),
alignof(struct tcf_neigh_rule));
if (!rule) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unable to allocate memory for neigh rule");
return -rte_errno;
}
*rule = (struct tcf_neigh_rule){.refcnt = 0,
.mask = 0,
};
if (encap->mask & FLOW_TCF_ENCAP_IPV4_DST) {
rule->mask = FLOW_TCF_ENCAP_IPV4_DST;
rule->ipv4.dst = encap->ipv4.dst;
} else {
rule->mask = FLOW_TCF_ENCAP_IPV6_DST;
memcpy(&rule->ipv6.dst, &encap->ipv6.dst, IPV6_ADDR_LEN);
}
memcpy(&rule->eth, &encap->eth.dst, sizeof(rule->eth));
ret = flow_tcf_rule_neigh(tcf, encap, vtep->ifouter, true, error);
if (ret) {
rte_free(rule);
return ret;
}
rule->refcnt++;
LIST_INSERT_HEAD(&vtep->neigh, rule, next);
return 0;
}
/* VTEP device list is shared between PMD port instances. */
static LIST_HEAD(, tcf_vtep) vtep_list_vxlan = LIST_HEAD_INITIALIZER();
static pthread_mutex_t vtep_list_mutex = PTHREAD_MUTEX_INITIALIZER;
/**
* Deletes VTEP network device.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] vtep
* Object represinting the network device to delete. Memory
* allocated for this object is freed by routine.
*/
static void
flow_tcf_vtep_delete(struct mlx5_flow_tcf_context *tcf,
struct tcf_vtep *vtep)
{
struct nlmsghdr *nlh;
struct ifinfomsg *ifm;
alignas(struct nlmsghdr)
uint8_t buf[mnl_nlmsg_size(MNL_ALIGN(sizeof(*ifm))) +
MNL_BUF_EXTRA_SPACE];
int ret;
assert(!vtep->refcnt);
/* Delete only ifaces those we actually created. */
if (vtep->created && vtep->ifindex) {
DRV_LOG(INFO, "VTEP delete (%d)", vtep->ifindex);
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = RTM_DELLINK;
nlh->nlmsg_flags = NLM_F_REQUEST;
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
ifm->ifi_family = AF_UNSPEC;
ifm->ifi_index = vtep->ifindex;
assert(sizeof(buf) >= nlh->nlmsg_len);
ret = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
if (ret)
DRV_LOG(WARNING, "netlink: error deleting vxlan"
" encap/decap ifindex %u",
ifm->ifi_index);
}
rte_free(vtep);
}
/**
* Creates VTEP network device.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] ifouter
* Outer interface to attach new-created VXLAN device
* If zero the VXLAN device will not be attached to any device.
* These VTEPs are used for decapsulation and can be precreated
* and shared between processes.
* @param[in] port
* UDP port of created VTEP device.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* Pointer to created device structure on success,
* NULL otherwise and rte_errno is set.
*/
#ifdef HAVE_IFLA_VXLAN_COLLECT_METADATA
static struct tcf_vtep*
flow_tcf_vtep_create(struct mlx5_flow_tcf_context *tcf,
unsigned int ifouter,
uint16_t port, struct rte_flow_error *error)
{
struct tcf_vtep *vtep;
struct nlmsghdr *nlh;
struct ifinfomsg *ifm;
char name[sizeof(MLX5_VXLAN_DEVICE_PFX) + 24];
alignas(struct nlmsghdr)
uint8_t buf[mnl_nlmsg_size(sizeof(*ifm)) +
SZ_NLATTR_DATA_OF(sizeof(name)) +
SZ_NLATTR_NEST * 2 +
SZ_NLATTR_STRZ_OF("vxlan") +
SZ_NLATTR_DATA_OF(sizeof(uint32_t)) +
SZ_NLATTR_DATA_OF(sizeof(uint16_t)) +
SZ_NLATTR_DATA_OF(sizeof(uint8_t)) * 3 +
MNL_BUF_EXTRA_SPACE];
struct nlattr *na_info;
struct nlattr *na_vxlan;
rte_be16_t vxlan_port = rte_cpu_to_be_16(port);
int ret;
vtep = rte_zmalloc(__func__, sizeof(*vtep), alignof(struct tcf_vtep));
if (!vtep) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unable to allocate memory for VTEP");
return NULL;
}
*vtep = (struct tcf_vtep){
.port = port,
.local = LIST_HEAD_INITIALIZER(),
.neigh = LIST_HEAD_INITIALIZER(),
};
memset(buf, 0, sizeof(buf));
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = RTM_NEWLINK;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
ifm->ifi_family = AF_UNSPEC;
ifm->ifi_type = 0;
ifm->ifi_index = 0;
ifm->ifi_flags = IFF_UP;
ifm->ifi_change = 0xffffffff;
snprintf(name, sizeof(name), "%s%u", MLX5_VXLAN_DEVICE_PFX, port);
mnl_attr_put_strz(nlh, IFLA_IFNAME, name);
na_info = mnl_attr_nest_start(nlh, IFLA_LINKINFO);
assert(na_info);
mnl_attr_put_strz(nlh, IFLA_INFO_KIND, "vxlan");
na_vxlan = mnl_attr_nest_start(nlh, IFLA_INFO_DATA);
if (ifouter)
mnl_attr_put_u32(nlh, IFLA_VXLAN_LINK, ifouter);
assert(na_vxlan);
mnl_attr_put_u8(nlh, IFLA_VXLAN_COLLECT_METADATA, 1);
mnl_attr_put_u8(nlh, IFLA_VXLAN_UDP_ZERO_CSUM6_RX, 1);
mnl_attr_put_u8(nlh, IFLA_VXLAN_LEARNING, 0);
mnl_attr_put_u16(nlh, IFLA_VXLAN_PORT, vxlan_port);
mnl_attr_nest_end(nlh, na_vxlan);
mnl_attr_nest_end(nlh, na_info);
assert(sizeof(buf) >= nlh->nlmsg_len);
ret = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
if (ret) {
DRV_LOG(WARNING,
"netlink: VTEP %s create failure (%d)",
name, rte_errno);
if (rte_errno != EEXIST || ifouter)
/*
* Some unhandled error occurred or device is
* for encapsulation and cannot be shared.
*/
goto error;
} else {
/*
* Mark device we actually created.
* We should explicitly delete
* when we do not need it anymore.
*/
vtep->created = 1;
}
/* Try to get ifindex of created of pre-existing device. */
ret = if_nametoindex(name);
if (!ret) {
DRV_LOG(WARNING,
"VTEP %s failed to get index (%d)", name, errno);
rte_flow_error_set
(error, -errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to retrieve VTEP ifindex");
goto error;
}
vtep->ifindex = ret;
vtep->ifouter = ifouter;
memset(buf, 0, sizeof(buf));
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = RTM_NEWLINK;
nlh->nlmsg_flags = NLM_F_REQUEST;
ifm = mnl_nlmsg_put_extra_header(nlh, sizeof(*ifm));
ifm->ifi_family = AF_UNSPEC;
ifm->ifi_type = 0;
ifm->ifi_index = vtep->ifindex;
ifm->ifi_flags = IFF_UP;
ifm->ifi_change = IFF_UP;
ret = flow_tcf_nl_ack(tcf, nlh, NULL, NULL);
if (ret) {
rte_flow_error_set(error, -errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to set VTEP link up");
DRV_LOG(WARNING, "netlink: VTEP %s set link up failure (%d)",
name, rte_errno);
goto clean;
}
ret = mlx5_flow_tcf_init(tcf, vtep->ifindex, error);
if (ret) {
DRV_LOG(WARNING, "VTEP %s init failure (%d)", name, rte_errno);
goto clean;
}
DRV_LOG(INFO, "VTEP create (%d, %d)", vtep->port, vtep->ifindex);
vtep->refcnt = 1;
return vtep;
clean:
flow_tcf_vtep_delete(tcf, vtep);
return NULL;
error:
rte_free(vtep);
return NULL;
}
#else
static struct tcf_vtep*
flow_tcf_vtep_create(struct mlx5_flow_tcf_context *tcf __rte_unused,
unsigned int ifouter __rte_unused,
uint16_t port __rte_unused,
struct rte_flow_error *error)
{
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to create VTEP, "
"vxlan metadata are not supported by kernel");
return NULL;
}
#endif /* HAVE_IFLA_VXLAN_COLLECT_METADATA */
/**
* Acquire target interface index for VXLAN tunneling decapsulation.
* In order to share the UDP port within the other interfaces the
* VXLAN device created as not attached to any interface (if created).
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] dev_flow
* Flow tcf object with tunnel structure pointer set.
* @param[out] error
* Perform verbose error reporting if not NULL.
* @return
* Interface descriptor pointer on success,
* NULL otherwise and rte_errno is set.
*/
static struct tcf_vtep*
flow_tcf_decap_vtep_acquire(struct mlx5_flow_tcf_context *tcf,
struct mlx5_flow *dev_flow,
struct rte_flow_error *error)
{
struct tcf_vtep *vtep;
uint16_t port = dev_flow->tcf.vxlan_decap->udp_port;
LIST_FOREACH(vtep, &vtep_list_vxlan, next) {
if (vtep->port == port)
break;
}
if (vtep && vtep->ifouter) {
rte_flow_error_set(error, -errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Failed to create decap VTEP with specified"
" UDP port, atatched device exists");
return NULL;
}
if (vtep) {
/* Device exists, just increment the reference counter. */
vtep->refcnt++;
assert(vtep->ifindex);
return vtep;
}
/* No decapsulation device exists, try to create the new one. */
vtep = flow_tcf_vtep_create(tcf, 0, port, error);
if (vtep)
LIST_INSERT_HEAD(&vtep_list_vxlan, vtep, next);
return vtep;
}
/**
* Aqcuire target interface index for VXLAN tunneling encapsulation.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] ifouter
* Network interface index to attach VXLAN encap device to.
* @param[in] dev_flow
* Flow tcf object with tunnel structure pointer set.
* @param[out] error
* Perform verbose error reporting if not NULL.
* @return
* Interface descriptor pointer on success,
* NULL otherwise and rte_errno is set.
*/
static struct tcf_vtep*
flow_tcf_encap_vtep_acquire(struct mlx5_flow_tcf_context *tcf,
unsigned int ifouter,
struct mlx5_flow *dev_flow __rte_unused,
struct rte_flow_error *error)
{
static uint16_t encap_port = MLX5_VXLAN_PORT_MIN - 1;
struct tcf_vtep *vtep;
int ret;
assert(ifouter);
/* Look whether the attached VTEP for encap is created. */
LIST_FOREACH(vtep, &vtep_list_vxlan, next) {
if (vtep->ifouter == ifouter)
break;
}
if (vtep) {
/* VTEP already exists, just increment the reference. */
vtep->refcnt++;
} else {
uint16_t pcnt;
/* Not found, we should create the new attached VTEP. */
flow_tcf_encap_iface_cleanup(tcf, ifouter);
flow_tcf_encap_local_cleanup(tcf, ifouter);
flow_tcf_encap_neigh_cleanup(tcf, ifouter);
for (pcnt = 0; pcnt <= (MLX5_VXLAN_PORT_MAX
- MLX5_VXLAN_PORT_MIN); pcnt++) {
encap_port++;
/* Wraparound the UDP port index. */
if (encap_port < MLX5_VXLAN_PORT_MIN ||
encap_port > MLX5_VXLAN_PORT_MAX)
encap_port = MLX5_VXLAN_PORT_MIN;
/* Check whether UDP port is in already in use. */
LIST_FOREACH(vtep, &vtep_list_vxlan, next) {
if (vtep->port == encap_port)
break;
}
if (vtep) {
/* Port is in use, try the next one. */
vtep = NULL;
continue;
}
vtep = flow_tcf_vtep_create(tcf, ifouter,
encap_port, error);
if (vtep) {
LIST_INSERT_HEAD(&vtep_list_vxlan, vtep, next);
break;
}
if (rte_errno != EEXIST)
break;
}
if (!vtep)
return NULL;
}
assert(vtep->ifouter == ifouter);
assert(vtep->ifindex);
/* Create local ipaddr with peer to specify the outer IPs. */
ret = flow_tcf_encap_local(tcf, vtep, dev_flow, true, error);
if (!ret) {
/* Create neigh rule to specify outer destination MAC. */
ret = flow_tcf_encap_neigh(tcf, vtep, dev_flow, true, error);
if (ret)
flow_tcf_encap_local(tcf, vtep,
dev_flow, false, error);
}
if (ret) {
if (--vtep->refcnt == 0)
flow_tcf_vtep_delete(tcf, vtep);
return NULL;
}
return vtep;
}
/**
* Acquires target interface index for tunneling of any type.
* Creates the new VTEP if needed.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] ifouter
* Network interface index to attach VXLAN encap device to.
* @param[in] dev_flow
* Flow tcf object with tunnel structure pointer set.
* @param[out] error
* Perform verbose error reporting if not NULL.
* @return
* Interface descriptor pointer on success,
* NULL otherwise and rte_errno is set.
*/
static struct tcf_vtep*
flow_tcf_vtep_acquire(struct mlx5_flow_tcf_context *tcf,
unsigned int ifouter,
struct mlx5_flow *dev_flow,
struct rte_flow_error *error)
{
struct tcf_vtep *vtep = NULL;
assert(dev_flow->tcf.tunnel);
pthread_mutex_lock(&vtep_list_mutex);
switch (dev_flow->tcf.tunnel->type) {
case FLOW_TCF_TUNACT_VXLAN_ENCAP:
vtep = flow_tcf_encap_vtep_acquire(tcf, ifouter,
dev_flow, error);
break;
case FLOW_TCF_TUNACT_VXLAN_DECAP:
vtep = flow_tcf_decap_vtep_acquire(tcf, dev_flow, error);
break;
default:
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unsupported tunnel type");
break;
}
pthread_mutex_unlock(&vtep_list_mutex);
return vtep;
}
/**
* Release tunneling interface by ifindex. Decrements reference
* counter and actually removes the device if counter is zero.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] vtep
* VTEP device descriptor structure.
* @param[in] dev_flow
* Flow tcf object with tunnel structure pointer set.
*/
static void
flow_tcf_vtep_release(struct mlx5_flow_tcf_context *tcf,
struct tcf_vtep *vtep,
struct mlx5_flow *dev_flow)
{
assert(dev_flow->tcf.tunnel);
pthread_mutex_lock(&vtep_list_mutex);
switch (dev_flow->tcf.tunnel->type) {
case FLOW_TCF_TUNACT_VXLAN_DECAP:
break;
case FLOW_TCF_TUNACT_VXLAN_ENCAP:
/* Remove the encap ancillary rules first. */
flow_tcf_encap_neigh(tcf, vtep, dev_flow, false, NULL);
flow_tcf_encap_local(tcf, vtep, dev_flow, false, NULL);
break;
default:
assert(false);
DRV_LOG(WARNING, "Unsupported tunnel type");
break;
}
assert(vtep->refcnt);
if (--vtep->refcnt == 0) {
LIST_REMOVE(vtep, next);
flow_tcf_vtep_delete(tcf, vtep);
}
pthread_mutex_unlock(&vtep_list_mutex);
}
struct tcf_nlcb_query {
uint32_t handle;
uint32_t tc_flags;
uint32_t flags_valid:1;
};
/**
* Collect queried rule attributes. This is callback routine called by
* libmnl mnl_cb_run() in loop for every message in received packet.
* Current implementation collects the flower flags only.
*
* @param[in] nlh
* Pointer to reply header.
* @param[in, out] arg
* Context pointer for this callback.
*
* @return
* A positive, nonzero value on success (required by libmnl
* to continue messages processing).
*/
static int
flow_tcf_collect_query_cb(const struct nlmsghdr *nlh, void *arg)
{
struct tcf_nlcb_query *query = arg;
struct tcmsg *tcm = mnl_nlmsg_get_payload(nlh);
struct nlattr *na, *na_opt;
bool flower = false;
if (nlh->nlmsg_type != RTM_NEWTFILTER ||
tcm->tcm_handle != query->handle)
return 1;
mnl_attr_for_each(na, nlh, sizeof(*tcm)) {
switch (mnl_attr_get_type(na)) {
case TCA_KIND:
if (strcmp(mnl_attr_get_payload(na), "flower")) {
/* Not flower filter, drop entire message. */
return 1;
}
flower = true;
break;
case TCA_OPTIONS:
if (!flower) {
/* Not flower options, drop entire message. */
return 1;
}
/* Check nested flower options. */
mnl_attr_for_each_nested(na_opt, na) {
switch (mnl_attr_get_type(na_opt)) {
case TCA_FLOWER_FLAGS:
query->flags_valid = 1;
query->tc_flags =
mnl_attr_get_u32(na_opt);
break;
}
}
break;
}
}
return 1;
}
/**
* Query a TC flower rule flags via netlink.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] dev_flow
* Pointer to the flow.
* @param[out] pflags
* pointer to the data retrieved by the query.
*
* @return
* 0 on success, a negative errno value otherwise.
*/
static int
flow_tcf_query_flags(struct mlx5_flow_tcf_context *tcf,
struct mlx5_flow *dev_flow,
uint32_t *pflags)
{
struct nlmsghdr *nlh;
struct tcmsg *tcm;
struct tcf_nlcb_query query = {
.handle = dev_flow->tcf.tcm->tcm_handle,
};
nlh = mnl_nlmsg_put_header(tcf->buf);
nlh->nlmsg_type = RTM_GETTFILTER;
nlh->nlmsg_flags = NLM_F_REQUEST;
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
memcpy(tcm, dev_flow->tcf.tcm, sizeof(*tcm));
/*
* Ignore Netlink error for filter query operations.
* The reply length is sent by kernel as errno.
* Just check we got the flags option.
*/
flow_tcf_nl_ack(tcf, nlh, flow_tcf_collect_query_cb, &query);
if (!query.flags_valid) {
*pflags = 0;
return -ENOENT;
}
*pflags = query.tc_flags;
return 0;
}
/**
* Query and check the in_hw set for specified rule.
*
* @param[in] tcf
* Context object initialized by mlx5_flow_tcf_context_create().
* @param[in] dev_flow
* Pointer to the flow to check.
*
* @return
* 0 on success, a negative errno value otherwise.
*/
static int
flow_tcf_check_inhw(struct mlx5_flow_tcf_context *tcf,
struct mlx5_flow *dev_flow)
{
uint32_t flags;
int ret;
ret = flow_tcf_query_flags(tcf, dev_flow, &flags);
if (ret)
return ret;
return (flags & TCA_CLS_FLAGS_IN_HW) ? 0 : -ENOENT;
}
/**
* Remove flow from E-Switch by sending Netlink message.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to the sub flow.
*/
static void
flow_tcf_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_tcf_context *ctx = priv->tcf_context;
struct mlx5_flow *dev_flow;
struct nlmsghdr *nlh;
if (!flow)
return;
dev_flow = LIST_FIRST(&flow->dev_flows);
if (!dev_flow)
return;
/* E-Switch flow can't be expanded. */
assert(!LIST_NEXT(dev_flow, next));
if (dev_flow->tcf.applied) {
nlh = dev_flow->tcf.nlh;
nlh->nlmsg_type = RTM_DELTFILTER;
nlh->nlmsg_flags = NLM_F_REQUEST;
flow_tcf_nl_ack(ctx, nlh, NULL, NULL);
if (dev_flow->tcf.tunnel) {
assert(dev_flow->tcf.tunnel->vtep);
flow_tcf_vtep_release(ctx,
dev_flow->tcf.tunnel->vtep,
dev_flow);
dev_flow->tcf.tunnel->vtep = NULL;
}
dev_flow->tcf.applied = 0;
}
}
/**
* Apply flow to E-Switch by sending Netlink message.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to the sub flow.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_tcf_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_tcf_context *ctx = priv->tcf_context;
struct mlx5_flow *dev_flow;
struct nlmsghdr *nlh;
dev_flow = LIST_FIRST(&flow->dev_flows);
/* E-Switch flow can't be expanded. */
assert(!LIST_NEXT(dev_flow, next));
if (dev_flow->tcf.applied)
return 0;
nlh = dev_flow->tcf.nlh;
nlh->nlmsg_type = RTM_NEWTFILTER;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
if (dev_flow->tcf.tunnel) {
/*
* Replace the interface index, target for
* encapsulation, source for decapsulation.
*/
assert(!dev_flow->tcf.tunnel->vtep);
assert(dev_flow->tcf.tunnel->ifindex_ptr);
/* Acquire actual VTEP device when rule is being applied. */
dev_flow->tcf.tunnel->vtep =
flow_tcf_vtep_acquire(ctx,
dev_flow->tcf.tunnel->ifindex_org,
dev_flow, error);
if (!dev_flow->tcf.tunnel->vtep)
return -rte_errno;
DRV_LOG(INFO, "Replace ifindex: %d->%d",
dev_flow->tcf.tunnel->vtep->ifindex,
dev_flow->tcf.tunnel->ifindex_org);
*dev_flow->tcf.tunnel->ifindex_ptr =
dev_flow->tcf.tunnel->vtep->ifindex;
}
if (!flow_tcf_nl_ack(ctx, nlh, NULL, NULL)) {
dev_flow->tcf.applied = 1;
if (*dev_flow->tcf.ptc_flags & TCA_CLS_FLAGS_SKIP_SW)
return 0;
/*
* Rule was applied without skip_sw flag set.
* We should check whether the rule was acctually
* accepted by hardware (have look at in_hw flag).
*/
if (flow_tcf_check_inhw(ctx, dev_flow)) {
flow_tcf_remove(dev, flow);
return rte_flow_error_set
(error, ENOENT,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: rule has no in_hw flag set");
}
return 0;
}
if (dev_flow->tcf.tunnel) {
/* Rollback the VTEP configuration if rule apply failed. */
assert(dev_flow->tcf.tunnel->vtep);
flow_tcf_vtep_release(ctx, dev_flow->tcf.tunnel->vtep,
dev_flow);
dev_flow->tcf.tunnel->vtep = NULL;
}
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to create TC flow rule");
}
/**
* Remove flow from E-Switch and release resources of the device flow.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to the sub flow.
*/
static void
flow_tcf_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct mlx5_flow *dev_flow;
if (!flow)
return;
flow_tcf_remove(dev, flow);
if (flow->counter) {
if (--flow->counter->ref_cnt == 0) {
rte_free(flow->counter);
flow->counter = NULL;
}
}
dev_flow = LIST_FIRST(&flow->dev_flows);
if (!dev_flow)
return;
/* E-Switch flow can't be expanded. */
assert(!LIST_NEXT(dev_flow, next));
LIST_REMOVE(dev_flow, next);
rte_free(dev_flow);
}
/**
* Helper routine for figuring the space size required for a parse buffer.
*
* @param array
* array of values to use.
* @param idx
* Current location in array.
* @param value
* Value to compare with.
*
* @return
* The maximum between the given value and the array value on index.
*/
static uint16_t
flow_tcf_arr_val_max(uint16_t array[], int idx, uint16_t value)
{
return idx < 0 ? (value) : RTE_MAX((array)[idx], value);
}
/**
* Parse rtnetlink message attributes filling the attribute table with the info
* retrieved.
*
* @param tb
* Attribute table to be filled.
* @param[out] max
* Maxinum entry in the attribute table.
* @param rte
* The attributes section in the message to be parsed.
* @param len
* The length of the attributes section in the message.
*/
static void
flow_tcf_nl_parse_rtattr(struct rtattr *tb[], int max,
struct rtattr *rta, int len)
{
unsigned short type;
memset(tb, 0, sizeof(struct rtattr *) * (max + 1));
while (RTA_OK(rta, len)) {
type = rta->rta_type;
if (type <= max && !tb[type])
tb[type] = rta;
rta = RTA_NEXT(rta, len);
}
}
/**
* Extract flow counters from flower action.
*
* @param rta
* flower action stats properties in the Netlink message received.
* @param rta_type
* The backward sequence of rta_types, as written in the attribute table,
* we need to traverse in order to get to the requested object.
* @param idx
* Current location in rta_type table.
* @param[out] data
* data holding the count statistics of the rte_flow retrieved from
* the message.
*
* @return
* 0 if data was found and retrieved, -1 otherwise.
*/
static int
flow_tcf_nl_action_stats_parse_and_get(struct rtattr *rta,
uint16_t rta_type[], int idx,
struct gnet_stats_basic *data)
{
int tca_stats_max = flow_tcf_arr_val_max(rta_type, idx,
TCA_STATS_BASIC);
struct rtattr *tbs[tca_stats_max + 1];
if (rta == NULL || idx < 0)
return -1;
flow_tcf_nl_parse_rtattr(tbs, tca_stats_max,
RTA_DATA(rta), RTA_PAYLOAD(rta));
switch (rta_type[idx]) {
case TCA_STATS_BASIC:
if (tbs[TCA_STATS_BASIC]) {
memcpy(data, RTA_DATA(tbs[TCA_STATS_BASIC]),
RTE_MIN(RTA_PAYLOAD(tbs[TCA_STATS_BASIC]),
sizeof(*data)));
return 0;
}
break;
default:
break;
}
return -1;
}
/**
* Parse flower single action retrieving the requested action attribute,
* if found.
*
* @param arg
* flower action properties in the Netlink message received.
* @param rta_type
* The backward sequence of rta_types, as written in the attribute table,
* we need to traverse in order to get to the requested object.
* @param idx
* Current location in rta_type table.
* @param[out] data
* Count statistics retrieved from the message query.
*
* @return
* 0 if data was found and retrieved, -1 otherwise.
*/
static int
flow_tcf_nl_parse_one_action_and_get(struct rtattr *arg,
uint16_t rta_type[], int idx, void *data)
{
int tca_act_max = flow_tcf_arr_val_max(rta_type, idx, TCA_ACT_STATS);
struct rtattr *tb[tca_act_max + 1];
if (arg == NULL || idx < 0)
return -1;
flow_tcf_nl_parse_rtattr(tb, tca_act_max,
RTA_DATA(arg), RTA_PAYLOAD(arg));
if (tb[TCA_ACT_KIND] == NULL)
return -1;
switch (rta_type[idx]) {
case TCA_ACT_STATS:
if (tb[TCA_ACT_STATS])
return flow_tcf_nl_action_stats_parse_and_get
(tb[TCA_ACT_STATS],
rta_type, --idx,
(struct gnet_stats_basic *)data);
break;
default:
break;
}
return -1;
}
/**
* Parse flower action section in the message retrieving the requested
* attribute from the first action that provides it.
*
* @param opt
* flower section in the Netlink message received.
* @param rta_type
* The backward sequence of rta_types, as written in the attribute table,
* we need to traverse in order to get to the requested object.
* @param idx
* Current location in rta_type table.
* @param[out] data
* data retrieved from the message query.
*
* @return
* 0 if data was found and retrieved, -1 otherwise.
*/
static int
flow_tcf_nl_action_parse_and_get(struct rtattr *arg,
uint16_t rta_type[], int idx, void *data)
{
struct rtattr *tb[TCA_ACT_MAX_PRIO + 1];
int i;
if (arg == NULL || idx < 0)
return -1;
flow_tcf_nl_parse_rtattr(tb, TCA_ACT_MAX_PRIO,
RTA_DATA(arg), RTA_PAYLOAD(arg));
switch (rta_type[idx]) {
/*
* flow counters are stored in the actions defined by the flow
* and not in the flow itself, therefore we need to traverse the
* flower chain of actions in search for them.
*
* Note that the index is not decremented here.
*/
case TCA_ACT_STATS:
for (i = 0; i <= TCA_ACT_MAX_PRIO; i++) {
if (tb[i] &&
!flow_tcf_nl_parse_one_action_and_get(tb[i],
rta_type,
idx, data))
return 0;
}
break;
default:
break;
}
return -1;
}
/**
* Parse flower classifier options in the message, retrieving the requested
* attribute if found.
*
* @param opt
* flower section in the Netlink message received.
* @param rta_type
* The backward sequence of rta_types, as written in the attribute table,
* we need to traverse in order to get to the requested object.
* @param idx
* Current location in rta_type table.
* @param[out] data
* data retrieved from the message query.
*
* @return
* 0 if data was found and retrieved, -1 otherwise.
*/
static int
flow_tcf_nl_opts_parse_and_get(struct rtattr *opt,
uint16_t rta_type[], int idx, void *data)
{
int tca_flower_max = flow_tcf_arr_val_max(rta_type, idx,
TCA_FLOWER_ACT);
struct rtattr *tb[tca_flower_max + 1];
if (!opt || idx < 0)
return -1;
flow_tcf_nl_parse_rtattr(tb, tca_flower_max,
RTA_DATA(opt), RTA_PAYLOAD(opt));
switch (rta_type[idx]) {
case TCA_FLOWER_ACT:
if (tb[TCA_FLOWER_ACT])
return flow_tcf_nl_action_parse_and_get
(tb[TCA_FLOWER_ACT],
rta_type, --idx, data);
break;
default:
break;
}
return -1;
}
/**
* Parse Netlink reply on filter query, retrieving the flow counters.
*
* @param nlh
* Message received from Netlink.
* @param rta_type
* The backward sequence of rta_types, as written in the attribute table,
* we need to traverse in order to get to the requested object.
* @param idx
* Current location in rta_type table.
* @param[out] data
* data retrieved from the message query.
*
* @return
* 0 if data was found and retrieved, -1 otherwise.
*/
static int
flow_tcf_nl_filter_parse_and_get(struct nlmsghdr *cnlh,
uint16_t rta_type[], int idx, void *data)
{
struct nlmsghdr *nlh = cnlh;
struct tcmsg *t = NLMSG_DATA(nlh);
int len = nlh->nlmsg_len;
int tca_max = flow_tcf_arr_val_max(rta_type, idx, TCA_OPTIONS);
struct rtattr *tb[tca_max + 1];
if (idx < 0)
return -1;
if (nlh->nlmsg_type != RTM_NEWTFILTER &&
nlh->nlmsg_type != RTM_GETTFILTER &&
nlh->nlmsg_type != RTM_DELTFILTER)
return -1;
len -= NLMSG_LENGTH(sizeof(*t));
if (len < 0)
return -1;
flow_tcf_nl_parse_rtattr(tb, tca_max, TCA_RTA(t), len);
/* Not a TC flower flow - bail out */
if (!tb[TCA_KIND] ||
strcmp(RTA_DATA(tb[TCA_KIND]), "flower"))
return -1;
switch (rta_type[idx]) {
case TCA_OPTIONS:
if (tb[TCA_OPTIONS])
return flow_tcf_nl_opts_parse_and_get(tb[TCA_OPTIONS],
rta_type,
--idx, data);
break;
default:
break;
}
return -1;
}
/**
* A callback to parse Netlink reply on TC flower query.
*
* @param nlh
* Message received from Netlink.
* @param[out] data
* Pointer to data area to be filled by the parsing routine.
* assumed to be a pointer to struct flow_tcf_stats_basic.
*
* @return
* MNL_CB_OK value.
*/
static int
flow_tcf_nl_message_get_stats_basic(const struct nlmsghdr *nlh, void *data)
{
/*
* The backward sequence of rta_types to pass in order to get
* to the counters.
*/
uint16_t rta_type[] = { TCA_STATS_BASIC, TCA_ACT_STATS,
TCA_FLOWER_ACT, TCA_OPTIONS };
struct flow_tcf_stats_basic *sb_data = data;
union {
const struct nlmsghdr *c;
struct nlmsghdr *nc;
} tnlh = { .c = nlh };
if (!flow_tcf_nl_filter_parse_and_get(tnlh.nc, rta_type,
RTE_DIM(rta_type) - 1,
(void *)&sb_data->counters))
sb_data->valid = true;
return MNL_CB_OK;
}
/**
* Query a TC flower rule for its statistics via netlink.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in] flow
* Pointer to the sub flow.
* @param[out] data
* data retrieved by the query.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_tcf_query_count(struct rte_eth_dev *dev,
struct rte_flow *flow,
void *data,
struct rte_flow_error *error)
{
struct flow_tcf_stats_basic sb_data;
struct rte_flow_query_count *qc = data;
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_tcf_context *ctx = priv->tcf_context;
struct mnl_socket *nl = ctx->nl;
struct mlx5_flow *dev_flow;
struct nlmsghdr *nlh;
uint32_t seq = priv->tcf_context->seq++;
ssize_t ret;
assert(qc);
memset(&sb_data, 0, sizeof(sb_data));
dev_flow = LIST_FIRST(&flow->dev_flows);
/* E-Switch flow can't be expanded. */
assert(!LIST_NEXT(dev_flow, next));
if (!dev_flow->flow->counter)
goto notsup_exit;
nlh = dev_flow->tcf.nlh;
nlh->nlmsg_type = RTM_GETTFILTER;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_ECHO;
nlh->nlmsg_seq = seq;
if (mnl_socket_sendto(nl, nlh, nlh->nlmsg_len) == -1)
goto error_exit;
do {
ret = mnl_socket_recvfrom(nl, ctx->buf, ctx->buf_size);
if (ret <= 0)
break;
ret = mnl_cb_run(ctx->buf, ret, seq,
mnl_socket_get_portid(nl),
flow_tcf_nl_message_get_stats_basic,
(void *)&sb_data);
} while (ret > 0);
/* Return the delta from last reset. */
if (sb_data.valid) {
/* Return the delta from last reset. */
qc->hits_set = 1;
qc->bytes_set = 1;
qc->hits = sb_data.counters.packets - flow->counter->hits;
qc->bytes = sb_data.counters.bytes - flow->counter->bytes;
if (qc->reset) {
flow->counter->hits = sb_data.counters.packets;
flow->counter->bytes = sb_data.counters.bytes;
}
return 0;
}
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"flow does not have counter");
error_exit:
return rte_flow_error_set
(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "netlink: failed to read flow rule counters");
notsup_exit:
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "counters are not available.");
}
/**
* Query a flow.
*
* @see rte_flow_query()
* @see rte_flow_ops
*/
static int
flow_tcf_query(struct rte_eth_dev *dev,
struct rte_flow *flow,
const struct rte_flow_action *actions,
void *data,
struct rte_flow_error *error)
{
int ret = -EINVAL;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
ret = flow_tcf_query_count(dev, flow, data, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
}
return ret;
}
const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops = {
.validate = flow_tcf_validate,
.prepare = flow_tcf_prepare,
.translate = flow_tcf_translate,
.apply = flow_tcf_apply,
.remove = flow_tcf_remove,
.destroy = flow_tcf_destroy,
.query = flow_tcf_query,
};
/**
* Create and configure a libmnl socket for Netlink flow rules.
*
* @return
* A valid libmnl socket object pointer on success, NULL otherwise and
* rte_errno is set.
*/
static struct mnl_socket *
flow_tcf_mnl_socket_create(void)
{
struct mnl_socket *nl = mnl_socket_open(NETLINK_ROUTE);
if (nl) {
mnl_socket_setsockopt(nl, NETLINK_CAP_ACK, &(int){ 1 },
sizeof(int));
if (!mnl_socket_bind(nl, 0, MNL_SOCKET_AUTOPID))
return nl;
}
rte_errno = errno;
if (nl)
mnl_socket_close(nl);
return NULL;
}
/**
* Destroy a libmnl socket.
*
* @param nl
* Libmnl socket of the @p NETLINK_ROUTE kind.
*/
static void
flow_tcf_mnl_socket_destroy(struct mnl_socket *nl)
{
if (nl)
mnl_socket_close(nl);
}
/**
* Initialize ingress qdisc of a given network interface.
*
* @param ctx
* Pointer to tc-flower context to use.
* @param ifindex
* Index of network interface to initialize.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_flow_tcf_init(struct mlx5_flow_tcf_context *ctx,
unsigned int ifindex, struct rte_flow_error *error)
{
struct nlmsghdr *nlh;
struct tcmsg *tcm;
alignas(struct nlmsghdr)
uint8_t buf[mnl_nlmsg_size(sizeof(*tcm)) +
SZ_NLATTR_STRZ_OF("ingress") +
MNL_BUF_EXTRA_SPACE];
/* Destroy existing ingress qdisc and everything attached to it. */
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = RTM_DELQDISC;
nlh->nlmsg_flags = NLM_F_REQUEST;
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
tcm->tcm_family = AF_UNSPEC;
tcm->tcm_ifindex = ifindex;
tcm->tcm_handle = TC_H_MAKE(TC_H_INGRESS, 0);
tcm->tcm_parent = TC_H_INGRESS;
assert(sizeof(buf) >= nlh->nlmsg_len);
/* Ignore errors when qdisc is already absent. */
if (flow_tcf_nl_ack(ctx, nlh, NULL, NULL) &&
rte_errno != EINVAL && rte_errno != ENOENT)
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to remove ingress"
" qdisc");
/* Create fresh ingress qdisc. */
nlh = mnl_nlmsg_put_header(buf);
nlh->nlmsg_type = RTM_NEWQDISC;
nlh->nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
tcm = mnl_nlmsg_put_extra_header(nlh, sizeof(*tcm));
tcm->tcm_family = AF_UNSPEC;
tcm->tcm_ifindex = ifindex;
tcm->tcm_handle = TC_H_MAKE(TC_H_INGRESS, 0);
tcm->tcm_parent = TC_H_INGRESS;
mnl_attr_put_strz_check(nlh, sizeof(buf), TCA_KIND, "ingress");
assert(sizeof(buf) >= nlh->nlmsg_len);
if (flow_tcf_nl_ack(ctx, nlh, NULL, NULL))
return rte_flow_error_set(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"netlink: failed to create ingress"
" qdisc");
return 0;
}
/**
* Create libmnl context for Netlink flow rules.
*
* @return
* A valid libmnl socket object pointer on success, NULL otherwise and
* rte_errno is set.
*/
struct mlx5_flow_tcf_context *
mlx5_flow_tcf_context_create(void)
{
struct mlx5_flow_tcf_context *ctx = rte_zmalloc(__func__,
sizeof(*ctx),
sizeof(uint32_t));
if (!ctx)
goto error;
ctx->nl = flow_tcf_mnl_socket_create();
if (!ctx->nl)
goto error;
ctx->buf_size = MNL_SOCKET_BUFFER_SIZE;
ctx->buf = rte_zmalloc(__func__,
ctx->buf_size, sizeof(uint32_t));
if (!ctx->buf)
goto error;
ctx->seq = random();
return ctx;
error:
mlx5_flow_tcf_context_destroy(ctx);
return NULL;
}
/**
* Destroy a libmnl context.
*
* @param ctx
* Libmnl socket of the @p NETLINK_ROUTE kind.
*/
void
mlx5_flow_tcf_context_destroy(struct mlx5_flow_tcf_context *ctx)
{
if (!ctx)
return;
flow_tcf_mnl_socket_destroy(ctx->nl);
rte_free(ctx->buf);
rte_free(ctx);
}