mirror of https://github.com/F-Stack/f-stack.git
1012 lines
31 KiB
C
1012 lines
31 KiB
C
|
/* SPDX-License-Identifier: BSD-3-Clause
|
||
|
* Copyright(c) 2016-2020 Intel Corporation
|
||
|
*/
|
||
|
|
||
|
#ifndef _RTE_CRYPTO_SYM_H_
|
||
|
#define _RTE_CRYPTO_SYM_H_
|
||
|
|
||
|
/**
|
||
|
* @file rte_crypto_sym.h
|
||
|
*
|
||
|
* RTE Definitions for Symmetric Cryptography
|
||
|
*
|
||
|
* Defines symmetric cipher and authentication algorithms and modes, as well
|
||
|
* as supported symmetric crypto operation combinations.
|
||
|
*/
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <rte_mbuf.h>
|
||
|
#include <rte_memory.h>
|
||
|
#include <rte_mempool.h>
|
||
|
#include <rte_common.h>
|
||
|
|
||
|
/**
|
||
|
* Crypto IO Vector (in analogy with struct iovec)
|
||
|
* Supposed be used to pass input/output data buffers for crypto data-path
|
||
|
* functions.
|
||
|
*/
|
||
|
struct rte_crypto_vec {
|
||
|
/** virtual address of the data buffer */
|
||
|
void *base;
|
||
|
/** IOVA of the data buffer */
|
||
|
rte_iova_t iova;
|
||
|
/** length of the data buffer */
|
||
|
uint32_t len;
|
||
|
/** total buffer length */
|
||
|
uint32_t tot_len;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Crypto scatter-gather list descriptor. Consists of a pointer to an array
|
||
|
* of Crypto IO vectors with its size.
|
||
|
*/
|
||
|
struct rte_crypto_sgl {
|
||
|
/** start of an array of vectors */
|
||
|
struct rte_crypto_vec *vec;
|
||
|
/** size of an array of vectors */
|
||
|
uint32_t num;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Crypto virtual and IOVA address descriptor, used to describe cryptographic
|
||
|
* data buffer without the length information. The length information is
|
||
|
* normally predefined during session creation.
|
||
|
*/
|
||
|
struct rte_crypto_va_iova_ptr {
|
||
|
void *va;
|
||
|
rte_iova_t iova;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Raw data operation descriptor.
|
||
|
* Supposed to be used with synchronous CPU crypto API call or asynchronous
|
||
|
* RAW data path API call.
|
||
|
*/
|
||
|
struct rte_crypto_sym_vec {
|
||
|
/** number of operations to perform */
|
||
|
uint32_t num;
|
||
|
/** array of SGL vectors */
|
||
|
struct rte_crypto_sgl *src_sgl;
|
||
|
/** array of SGL vectors for OOP, keep it NULL for inplace*/
|
||
|
struct rte_crypto_sgl *dest_sgl;
|
||
|
/** array of pointers to cipher IV */
|
||
|
struct rte_crypto_va_iova_ptr *iv;
|
||
|
/** array of pointers to digest */
|
||
|
struct rte_crypto_va_iova_ptr *digest;
|
||
|
|
||
|
__extension__
|
||
|
union {
|
||
|
/** array of pointers to auth IV, used for chain operation */
|
||
|
struct rte_crypto_va_iova_ptr *auth_iv;
|
||
|
/** array of pointers to AAD, used for AEAD operation */
|
||
|
struct rte_crypto_va_iova_ptr *aad;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* array of statuses for each operation:
|
||
|
* - 0 on success
|
||
|
* - errno on error
|
||
|
*/
|
||
|
int32_t *status;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* used for cpu_crypto_process_bulk() to specify head/tail offsets
|
||
|
* for auth/cipher processing.
|
||
|
*/
|
||
|
union rte_crypto_sym_ofs {
|
||
|
uint64_t raw;
|
||
|
struct {
|
||
|
struct {
|
||
|
uint16_t head;
|
||
|
uint16_t tail;
|
||
|
} auth, cipher;
|
||
|
} ofs;
|
||
|
};
|
||
|
|
||
|
/** Symmetric Cipher Algorithms
|
||
|
*
|
||
|
* Note, to avoid ABI breakage across releases
|
||
|
* - LIST_END should not be added to this enum
|
||
|
* - the order of enums should not be changed
|
||
|
* - new algorithms should only be added to the end
|
||
|
*/
|
||
|
enum rte_crypto_cipher_algorithm {
|
||
|
RTE_CRYPTO_CIPHER_NULL = 1,
|
||
|
/**< NULL cipher algorithm. No mode applies to the NULL algorithm. */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_3DES_CBC,
|
||
|
/**< Triple DES algorithm in CBC mode */
|
||
|
RTE_CRYPTO_CIPHER_3DES_CTR,
|
||
|
/**< Triple DES algorithm in CTR mode */
|
||
|
RTE_CRYPTO_CIPHER_3DES_ECB,
|
||
|
/**< Triple DES algorithm in ECB mode */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_AES_CBC,
|
||
|
/**< AES algorithm in CBC mode */
|
||
|
RTE_CRYPTO_CIPHER_AES_CTR,
|
||
|
/**< AES algorithm in Counter mode */
|
||
|
RTE_CRYPTO_CIPHER_AES_ECB,
|
||
|
/**< AES algorithm in ECB mode */
|
||
|
RTE_CRYPTO_CIPHER_AES_F8,
|
||
|
/**< AES algorithm in F8 mode */
|
||
|
RTE_CRYPTO_CIPHER_AES_XTS,
|
||
|
/**< AES algorithm in XTS mode */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_ARC4,
|
||
|
/**< (A)RC4 cipher algorithm */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_KASUMI_F8,
|
||
|
/**< KASUMI algorithm in F8 mode */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
|
||
|
/**< SNOW 3G algorithm in UEA2 mode */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_ZUC_EEA3,
|
||
|
/**< ZUC algorithm in EEA3 mode */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_DES_CBC,
|
||
|
/**< DES algorithm in CBC mode */
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_AES_DOCSISBPI,
|
||
|
/**< AES algorithm using modes required by
|
||
|
* DOCSIS Baseline Privacy Plus Spec.
|
||
|
* Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
|
||
|
* for m_src and m_dst in the rte_crypto_sym_op must be NULL.
|
||
|
*/
|
||
|
|
||
|
RTE_CRYPTO_CIPHER_DES_DOCSISBPI
|
||
|
/**< DES algorithm using modes required by
|
||
|
* DOCSIS Baseline Privacy Plus Spec.
|
||
|
* Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
|
||
|
* for m_src and m_dst in the rte_crypto_sym_op must be NULL.
|
||
|
*/
|
||
|
};
|
||
|
|
||
|
/** Cipher algorithm name strings */
|
||
|
extern const char *
|
||
|
rte_crypto_cipher_algorithm_strings[];
|
||
|
|
||
|
/** Symmetric Cipher Direction */
|
||
|
enum rte_crypto_cipher_operation {
|
||
|
RTE_CRYPTO_CIPHER_OP_ENCRYPT,
|
||
|
/**< Encrypt cipher operation */
|
||
|
RTE_CRYPTO_CIPHER_OP_DECRYPT
|
||
|
/**< Decrypt cipher operation */
|
||
|
};
|
||
|
|
||
|
/** Cipher operation name strings */
|
||
|
extern const char *
|
||
|
rte_crypto_cipher_operation_strings[];
|
||
|
|
||
|
/**
|
||
|
* Symmetric Cipher Setup Data.
|
||
|
*
|
||
|
* This structure contains data relating to Cipher (Encryption and Decryption)
|
||
|
* use to create a session.
|
||
|
*/
|
||
|
struct rte_crypto_cipher_xform {
|
||
|
enum rte_crypto_cipher_operation op;
|
||
|
/**< This parameter determines if the cipher operation is an encrypt or
|
||
|
* a decrypt operation. For the RC4 algorithm and the F8/CTR modes,
|
||
|
* only encrypt operations are valid.
|
||
|
*/
|
||
|
enum rte_crypto_cipher_algorithm algo;
|
||
|
/**< Cipher algorithm */
|
||
|
|
||
|
struct {
|
||
|
const uint8_t *data; /**< pointer to key data */
|
||
|
uint16_t length; /**< key length in bytes */
|
||
|
} key;
|
||
|
/**< Cipher key
|
||
|
*
|
||
|
* In case the PMD supports RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY, the
|
||
|
* original key data provided may be wrapped(encrypted) using key wrap
|
||
|
* algorithm such as AES key wrap (rfc3394) and hence length of the key
|
||
|
* may increase beyond the PMD advertised supported key size.
|
||
|
* PMD shall validate the key length and report EMSGSIZE error while
|
||
|
* configuring the session and application can skip checking the
|
||
|
* capability key length in such cases.
|
||
|
*
|
||
|
* For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will
|
||
|
* point to a concatenation of the AES encryption key followed by a
|
||
|
* keymask. As per RFC3711, the keymask should be padded with trailing
|
||
|
* bytes to match the length of the encryption key used.
|
||
|
*
|
||
|
* Cipher key length is in bytes. For AES it can be 128 bits (16 bytes),
|
||
|
* 192 bits (24 bytes) or 256 bits (32 bytes).
|
||
|
*
|
||
|
* For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length
|
||
|
* should be set to the combined length of the encryption key and the
|
||
|
* keymask. Since the keymask and the encryption key are the same size,
|
||
|
* key.length should be set to 2 x the AES encryption key length.
|
||
|
*
|
||
|
* For the AES-XTS mode of operation:
|
||
|
* - Two keys must be provided and key.length refers to total length of
|
||
|
* the two keys.
|
||
|
* - key.data must point to the two keys concatenated together
|
||
|
* (key1 || key2).
|
||
|
* - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes).
|
||
|
* - Both keys must have the same size.
|
||
|
**/
|
||
|
struct {
|
||
|
uint16_t offset;
|
||
|
/**< Starting point for Initialisation Vector or Counter,
|
||
|
* specified as number of bytes from start of crypto
|
||
|
* operation (rte_crypto_op).
|
||
|
*
|
||
|
* - For block ciphers in CBC or F8 mode, or for KASUMI
|
||
|
* in F8 mode, or for SNOW 3G in UEA2 mode, this is the
|
||
|
* Initialisation Vector (IV) value.
|
||
|
*
|
||
|
* - For block ciphers in CTR mode, this is the counter.
|
||
|
*
|
||
|
* - For CCM mode, the first byte is reserved, and the
|
||
|
* nonce should be written starting at &iv[1] (to allow
|
||
|
* space for the implementation to write in the flags
|
||
|
* in the first byte). Note that a full 16 bytes should
|
||
|
* be allocated, even though the length field will
|
||
|
* have a value less than this. Note that the PMDs may
|
||
|
* modify the memory reserved (the first byte and the
|
||
|
* final padding)
|
||
|
*
|
||
|
* - For AES-XTS, this is the 128bit tweak, i, from
|
||
|
* IEEE Std 1619-2007.
|
||
|
*
|
||
|
* For optimum performance, the data pointed to SHOULD
|
||
|
* be 8-byte aligned.
|
||
|
*/
|
||
|
uint16_t length;
|
||
|
/**< Length of valid IV data.
|
||
|
*
|
||
|
* - For block ciphers in CBC or F8 mode, or for KASUMI
|
||
|
* in F8 mode, or for SNOW 3G in UEA2 mode, this is the
|
||
|
* length of the IV (which must be the same as the
|
||
|
* block length of the cipher).
|
||
|
*
|
||
|
* - For block ciphers in CTR mode, this is the length
|
||
|
* of the counter (which must be the same as the block
|
||
|
* length of the cipher).
|
||
|
*
|
||
|
* - For CCM mode, this is the length of the nonce,
|
||
|
* which can be in the range 7 to 13 inclusive.
|
||
|
*/
|
||
|
} iv; /**< Initialisation vector parameters */
|
||
|
|
||
|
uint32_t dataunit_len;
|
||
|
/**< When RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS is enabled,
|
||
|
* this is the data-unit length of the algorithm,
|
||
|
* otherwise or when the value is 0, use the operation length.
|
||
|
* The value should be in the range defined by the dataunit_set field
|
||
|
* in the cipher capability.
|
||
|
*
|
||
|
* - For AES-XTS it is the size of data-unit, from IEEE Std 1619-2007.
|
||
|
* For-each data-unit in the operation, the tweak (IV) value is
|
||
|
* assigned consecutively starting from the operation assigned IV.
|
||
|
*/
|
||
|
};
|
||
|
|
||
|
/** Symmetric Authentication / Hash Algorithms
|
||
|
*
|
||
|
* Note, to avoid ABI breakage across releases
|
||
|
* - LIST_END should not be added to this enum
|
||
|
* - the order of enums should not be changed
|
||
|
* - new algorithms should only be added to the end
|
||
|
*/
|
||
|
enum rte_crypto_auth_algorithm {
|
||
|
RTE_CRYPTO_AUTH_NULL = 1,
|
||
|
/**< NULL hash algorithm. */
|
||
|
|
||
|
RTE_CRYPTO_AUTH_AES_CBC_MAC,
|
||
|
/**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */
|
||
|
RTE_CRYPTO_AUTH_AES_CMAC,
|
||
|
/**< AES CMAC algorithm. */
|
||
|
RTE_CRYPTO_AUTH_AES_GMAC,
|
||
|
/**< AES GMAC algorithm. */
|
||
|
RTE_CRYPTO_AUTH_AES_XCBC_MAC,
|
||
|
/**< AES XCBC algorithm. */
|
||
|
|
||
|
RTE_CRYPTO_AUTH_KASUMI_F9,
|
||
|
/**< KASUMI algorithm in F9 mode. */
|
||
|
|
||
|
RTE_CRYPTO_AUTH_MD5,
|
||
|
/**< MD5 algorithm */
|
||
|
RTE_CRYPTO_AUTH_MD5_HMAC,
|
||
|
/**< HMAC using MD5 algorithm */
|
||
|
|
||
|
RTE_CRYPTO_AUTH_SHA1,
|
||
|
/**< 160 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA1_HMAC,
|
||
|
/**< HMAC using 160 bit SHA algorithm.
|
||
|
* HMAC-SHA-1-96 can be generated by setting
|
||
|
* digest_length to 12 bytes in auth/aead xforms.
|
||
|
*/
|
||
|
RTE_CRYPTO_AUTH_SHA224,
|
||
|
/**< 224 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA224_HMAC,
|
||
|
/**< HMAC using 224 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA256,
|
||
|
/**< 256 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA256_HMAC,
|
||
|
/**< HMAC using 256 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA384,
|
||
|
/**< 384 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA384_HMAC,
|
||
|
/**< HMAC using 384 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA512,
|
||
|
/**< 512 bit SHA algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA512_HMAC,
|
||
|
/**< HMAC using 512 bit SHA algorithm. */
|
||
|
|
||
|
RTE_CRYPTO_AUTH_SNOW3G_UIA2,
|
||
|
/**< SNOW 3G algorithm in UIA2 mode. */
|
||
|
|
||
|
RTE_CRYPTO_AUTH_ZUC_EIA3,
|
||
|
/**< ZUC algorithm in EIA3 mode */
|
||
|
|
||
|
RTE_CRYPTO_AUTH_SHA3_224,
|
||
|
/**< 224 bit SHA3 algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA3_224_HMAC,
|
||
|
/**< HMAC using 224 bit SHA3 algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA3_256,
|
||
|
/**< 256 bit SHA3 algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA3_256_HMAC,
|
||
|
/**< HMAC using 256 bit SHA3 algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA3_384,
|
||
|
/**< 384 bit SHA3 algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA3_384_HMAC,
|
||
|
/**< HMAC using 384 bit SHA3 algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA3_512,
|
||
|
/**< 512 bit SHA3 algorithm. */
|
||
|
RTE_CRYPTO_AUTH_SHA3_512_HMAC
|
||
|
/**< HMAC using 512 bit SHA3 algorithm. */
|
||
|
};
|
||
|
|
||
|
/** Authentication algorithm name strings */
|
||
|
extern const char *
|
||
|
rte_crypto_auth_algorithm_strings[];
|
||
|
|
||
|
/** Symmetric Authentication / Hash Operations */
|
||
|
enum rte_crypto_auth_operation {
|
||
|
RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */
|
||
|
RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */
|
||
|
};
|
||
|
|
||
|
/** Authentication operation name strings */
|
||
|
extern const char *
|
||
|
rte_crypto_auth_operation_strings[];
|
||
|
|
||
|
/**
|
||
|
* Authentication / Hash transform data.
|
||
|
*
|
||
|
* This structure contains data relating to an authentication/hash crypto
|
||
|
* transforms. The fields op, algo and digest_length are common to all
|
||
|
* authentication transforms and MUST be set.
|
||
|
*/
|
||
|
struct rte_crypto_auth_xform {
|
||
|
enum rte_crypto_auth_operation op;
|
||
|
/**< Authentication operation type */
|
||
|
enum rte_crypto_auth_algorithm algo;
|
||
|
/**< Authentication algorithm selection */
|
||
|
|
||
|
struct {
|
||
|
const uint8_t *data; /**< pointer to key data */
|
||
|
uint16_t length; /**< key length in bytes */
|
||
|
} key;
|
||
|
/**< Authentication key data.
|
||
|
* The authentication key length MUST be less than or equal to the
|
||
|
* block size of the algorithm. It is the callers responsibility to
|
||
|
* ensure that the key length is compliant with the standard being used
|
||
|
* (for example RFC 2104, FIPS 198a).
|
||
|
*/
|
||
|
|
||
|
struct {
|
||
|
uint16_t offset;
|
||
|
/**< Starting point for Initialisation Vector or Counter,
|
||
|
* specified as number of bytes from start of crypto
|
||
|
* operation (rte_crypto_op).
|
||
|
*
|
||
|
* - For SNOW 3G in UIA2 mode, for ZUC in EIA3 mode
|
||
|
* this is the authentication Initialisation Vector
|
||
|
* (IV) value. For AES-GMAC IV description please refer
|
||
|
* to the field `length` in iv struct.
|
||
|
*
|
||
|
* - For KASUMI in F9 mode and other authentication
|
||
|
* algorithms, this field is not used.
|
||
|
*
|
||
|
* For optimum performance, the data pointed to SHOULD
|
||
|
* be 8-byte aligned.
|
||
|
*/
|
||
|
uint16_t length;
|
||
|
/**< Length of valid IV data.
|
||
|
*
|
||
|
* - For SNOW3G in UIA2 mode, for ZUC in EIA3 mode and
|
||
|
* for AES-GMAC, this is the length of the IV.
|
||
|
*
|
||
|
* - For KASUMI in F9 mode and other authentication
|
||
|
* algorithms, this field is not used.
|
||
|
*
|
||
|
* - For GMAC mode, this is either:
|
||
|
* 1) Number greater or equal to one, which means that IV
|
||
|
* is used and J0 will be computed internally, a minimum
|
||
|
* of 16 bytes must be allocated.
|
||
|
* 2) Zero, in which case data points to J0. In this case
|
||
|
* 16 bytes of J0 should be passed where J0 is defined
|
||
|
* by NIST SP800-38D.
|
||
|
*
|
||
|
*/
|
||
|
} iv; /**< Initialisation vector parameters */
|
||
|
|
||
|
uint16_t digest_length;
|
||
|
/**< Length of the digest to be returned. If the verify option is set,
|
||
|
* this specifies the length of the digest to be compared for the
|
||
|
* session.
|
||
|
*
|
||
|
* It is the caller's responsibility to ensure that the
|
||
|
* digest length is compliant with the hash algorithm being used.
|
||
|
* If the value is less than the maximum length allowed by the hash,
|
||
|
* the result shall be truncated.
|
||
|
*/
|
||
|
};
|
||
|
|
||
|
|
||
|
/** Symmetric AEAD Algorithms
|
||
|
*
|
||
|
* Note, to avoid ABI breakage across releases
|
||
|
* - LIST_END should not be added to this enum
|
||
|
* - the order of enums should not be changed
|
||
|
* - new algorithms should only be added to the end
|
||
|
*/
|
||
|
enum rte_crypto_aead_algorithm {
|
||
|
RTE_CRYPTO_AEAD_AES_CCM = 1,
|
||
|
/**< AES algorithm in CCM mode. */
|
||
|
RTE_CRYPTO_AEAD_AES_GCM,
|
||
|
/**< AES algorithm in GCM mode. */
|
||
|
RTE_CRYPTO_AEAD_CHACHA20_POLY1305
|
||
|
/**< Chacha20 cipher with poly1305 authenticator */
|
||
|
};
|
||
|
|
||
|
/** AEAD algorithm name strings */
|
||
|
extern const char *
|
||
|
rte_crypto_aead_algorithm_strings[];
|
||
|
|
||
|
/** Symmetric AEAD Operations */
|
||
|
enum rte_crypto_aead_operation {
|
||
|
RTE_CRYPTO_AEAD_OP_ENCRYPT,
|
||
|
/**< Encrypt and generate digest */
|
||
|
RTE_CRYPTO_AEAD_OP_DECRYPT
|
||
|
/**< Verify digest and decrypt */
|
||
|
};
|
||
|
|
||
|
/** Authentication operation name strings */
|
||
|
extern const char *
|
||
|
rte_crypto_aead_operation_strings[];
|
||
|
|
||
|
struct rte_crypto_aead_xform {
|
||
|
enum rte_crypto_aead_operation op;
|
||
|
/**< AEAD operation type */
|
||
|
enum rte_crypto_aead_algorithm algo;
|
||
|
/**< AEAD algorithm selection */
|
||
|
|
||
|
struct {
|
||
|
const uint8_t *data; /**< pointer to key data */
|
||
|
uint16_t length; /**< key length in bytes */
|
||
|
} key;
|
||
|
|
||
|
struct {
|
||
|
uint16_t offset;
|
||
|
/**< Starting point for Initialisation Vector or Counter,
|
||
|
* specified as number of bytes from start of crypto
|
||
|
* operation (rte_crypto_op).
|
||
|
*
|
||
|
* - For CCM mode, the first byte is reserved, and the
|
||
|
* nonce should be written starting at &iv[1] (to allow
|
||
|
* space for the implementation to write in the flags
|
||
|
* in the first byte). Note that a full 16 bytes should
|
||
|
* be allocated, even though the length field will
|
||
|
* have a value less than this.
|
||
|
*
|
||
|
* - For Chacha20-Poly1305 it is 96-bit nonce.
|
||
|
* PMD sets initial counter for Poly1305 key generation
|
||
|
* part to 0 and for Chacha20 encryption to 1 as per
|
||
|
* rfc8439 2.8. AEAD construction.
|
||
|
*
|
||
|
* For optimum performance, the data pointed to SHOULD
|
||
|
* be 8-byte aligned.
|
||
|
*/
|
||
|
uint16_t length;
|
||
|
/**< Length of valid IV data.
|
||
|
*
|
||
|
* - For GCM mode, this is either:
|
||
|
* 1) Number greater or equal to one, which means that IV
|
||
|
* is used and J0 will be computed internally, a minimum
|
||
|
* of 16 bytes must be allocated.
|
||
|
* 2) Zero, in which case data points to J0. In this case
|
||
|
* 16 bytes of J0 should be passed where J0 is defined
|
||
|
* by NIST SP800-38D.
|
||
|
*
|
||
|
* - For CCM mode, this is the length of the nonce,
|
||
|
* which can be in the range 7 to 13 inclusive.
|
||
|
*
|
||
|
* - For Chacha20-Poly1305 this field is always 12.
|
||
|
*/
|
||
|
} iv; /**< Initialisation vector parameters */
|
||
|
|
||
|
uint16_t digest_length;
|
||
|
|
||
|
uint16_t aad_length;
|
||
|
/**< The length of the additional authenticated data (AAD) in bytes.
|
||
|
* For CCM mode, this is the length of the actual AAD, even though
|
||
|
* it is required to reserve 18 bytes before the AAD and padding
|
||
|
* at the end of it, so a multiple of 16 bytes is allocated.
|
||
|
*/
|
||
|
};
|
||
|
|
||
|
/** Crypto transformation types */
|
||
|
enum rte_crypto_sym_xform_type {
|
||
|
RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */
|
||
|
RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */
|
||
|
RTE_CRYPTO_SYM_XFORM_CIPHER, /**< Cipher xform */
|
||
|
RTE_CRYPTO_SYM_XFORM_AEAD /**< AEAD xform */
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Symmetric crypto transform structure.
|
||
|
*
|
||
|
* This is used to specify the crypto transforms required, multiple transforms
|
||
|
* can be chained together to specify a chain transforms such as authentication
|
||
|
* then cipher, or cipher then authentication. Each transform structure can
|
||
|
* hold a single transform, the type field is used to specify which transform
|
||
|
* is contained within the union
|
||
|
*/
|
||
|
struct rte_crypto_sym_xform {
|
||
|
struct rte_crypto_sym_xform *next;
|
||
|
/**< next xform in chain */
|
||
|
enum rte_crypto_sym_xform_type type
|
||
|
; /**< xform type */
|
||
|
RTE_STD_C11
|
||
|
union {
|
||
|
struct rte_crypto_auth_xform auth;
|
||
|
/**< Authentication / hash xform */
|
||
|
struct rte_crypto_cipher_xform cipher;
|
||
|
/**< Cipher xform */
|
||
|
struct rte_crypto_aead_xform aead;
|
||
|
/**< AEAD xform */
|
||
|
};
|
||
|
};
|
||
|
|
||
|
struct rte_cryptodev_sym_session;
|
||
|
|
||
|
/**
|
||
|
* Symmetric Cryptographic Operation.
|
||
|
*
|
||
|
* This structure contains data relating to performing symmetric cryptographic
|
||
|
* processing on a referenced mbuf data buffer.
|
||
|
*
|
||
|
* When a symmetric crypto operation is enqueued with the device for processing
|
||
|
* it must have a valid *rte_mbuf* structure attached, via m_src parameter,
|
||
|
* which contains the source data which the crypto operation is to be performed
|
||
|
* on.
|
||
|
* While the mbuf is in use by a crypto operation no part of the mbuf should be
|
||
|
* changed by the application as the device may read or write to any part of the
|
||
|
* mbuf. In the case of hardware crypto devices some or all of the mbuf
|
||
|
* may be DMAed in and out of the device, so writing over the original data,
|
||
|
* though only the part specified by the rte_crypto_sym_op for transformation
|
||
|
* will be changed.
|
||
|
* Out-of-place (OOP) operation, where the source mbuf is different to the
|
||
|
* destination mbuf, is a special case. Data will be copied from m_src to m_dst.
|
||
|
* The part copied includes all the parts of the source mbuf that will be
|
||
|
* operated on, based on the cipher.data.offset+cipher.data.length and
|
||
|
* auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part
|
||
|
* indicated by the cipher parameters will be transformed, any extra data around
|
||
|
* this indicated by the auth parameters will be copied unchanged from source to
|
||
|
* destination mbuf.
|
||
|
* Also in OOP operation the cipher.data.offset and auth.data.offset apply to
|
||
|
* both source and destination mbufs. As these offsets are relative to the
|
||
|
* data_off parameter in each mbuf this can result in the data written to the
|
||
|
* destination buffer being at a different alignment, relative to buffer start,
|
||
|
* to the data in the source buffer.
|
||
|
*/
|
||
|
struct rte_crypto_sym_op {
|
||
|
struct rte_mbuf *m_src; /**< source mbuf */
|
||
|
struct rte_mbuf *m_dst; /**< destination mbuf */
|
||
|
|
||
|
RTE_STD_C11
|
||
|
union {
|
||
|
struct rte_cryptodev_sym_session *session;
|
||
|
/**< Handle for the initialised session context */
|
||
|
struct rte_crypto_sym_xform *xform;
|
||
|
/**< Session-less API crypto operation parameters */
|
||
|
struct rte_security_session *sec_session;
|
||
|
/**< Handle for the initialised security session context */
|
||
|
};
|
||
|
|
||
|
RTE_STD_C11
|
||
|
union {
|
||
|
struct {
|
||
|
struct {
|
||
|
uint32_t offset;
|
||
|
/**< Starting point for AEAD processing, specified as
|
||
|
* number of bytes from start of packet in source
|
||
|
* buffer.
|
||
|
*/
|
||
|
uint32_t length;
|
||
|
/**< The message length, in bytes, of the source buffer
|
||
|
* on which the cryptographic operation will be
|
||
|
* computed. This must be a multiple of the block size
|
||
|
*/
|
||
|
} data; /**< Data offsets and length for AEAD */
|
||
|
struct {
|
||
|
uint8_t *data;
|
||
|
/**< This points to the location where the digest result
|
||
|
* should be inserted (in the case of digest generation)
|
||
|
* or where the purported digest exists (in the case of
|
||
|
* digest verification).
|
||
|
*
|
||
|
* At session creation time, the client specified the
|
||
|
* digest result length with the digest_length member
|
||
|
* of the @ref rte_crypto_auth_xform structure. For
|
||
|
* physical crypto devices the caller must allocate at
|
||
|
* least digest_length of physically contiguous memory
|
||
|
* at this location.
|
||
|
*
|
||
|
* For digest generation, the digest result will
|
||
|
* overwrite any data at this location.
|
||
|
*
|
||
|
* @note
|
||
|
* For GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), for
|
||
|
* "digest result" read "authentication tag T".
|
||
|
*/
|
||
|
rte_iova_t phys_addr;
|
||
|
/**< Physical address of digest */
|
||
|
} digest; /**< Digest parameters */
|
||
|
struct {
|
||
|
uint8_t *data;
|
||
|
/**< Pointer to Additional Authenticated Data (AAD)
|
||
|
* needed for authenticated cipher mechanisms (CCM and
|
||
|
* GCM)
|
||
|
*
|
||
|
* Specifically for CCM (@ref RTE_CRYPTO_AEAD_AES_CCM),
|
||
|
* the caller should setup this field as follows:
|
||
|
*
|
||
|
* - the additional authentication data itself should
|
||
|
* be written starting at an offset of 18 bytes into
|
||
|
* the array, leaving room for the first block (16 bytes)
|
||
|
* and the length encoding in the first two bytes of the
|
||
|
* second block.
|
||
|
*
|
||
|
* - the array should be big enough to hold the above
|
||
|
* fields, plus any padding to round this up to the
|
||
|
* nearest multiple of the block size (16 bytes).
|
||
|
* Padding will be added by the implementation.
|
||
|
*
|
||
|
* - Note that PMDs may modify the memory reserved
|
||
|
* (first 18 bytes and the final padding).
|
||
|
*
|
||
|
* Finally, for GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), the
|
||
|
* caller should setup this field as follows:
|
||
|
*
|
||
|
* - the AAD is written in starting at byte 0
|
||
|
* - the array must be big enough to hold the AAD, plus
|
||
|
* any space to round this up to the nearest multiple
|
||
|
* of the block size (16 bytes).
|
||
|
*
|
||
|
*/
|
||
|
rte_iova_t phys_addr; /**< physical address */
|
||
|
} aad;
|
||
|
/**< Additional authentication parameters */
|
||
|
} aead;
|
||
|
|
||
|
struct {
|
||
|
struct {
|
||
|
struct {
|
||
|
uint32_t offset;
|
||
|
/**< Starting point for cipher processing,
|
||
|
* specified as number of bytes from start
|
||
|
* of data in the source buffer.
|
||
|
* The result of the cipher operation will be
|
||
|
* written back into the output buffer
|
||
|
* starting at this location.
|
||
|
*
|
||
|
* @note
|
||
|
* For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
|
||
|
* KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
|
||
|
* and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
|
||
|
* this field should be in bits. For
|
||
|
* digest-encrypted cases this must be
|
||
|
* an 8-bit multiple.
|
||
|
*/
|
||
|
uint32_t length;
|
||
|
/**< The message length, in bytes, of the
|
||
|
* source buffer on which the cryptographic
|
||
|
* operation will be computed.
|
||
|
* This is also the same as the result length.
|
||
|
* This must be a multiple of the block size
|
||
|
* or a multiple of data-unit length
|
||
|
* as described in xform.
|
||
|
*
|
||
|
* @note
|
||
|
* For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2,
|
||
|
* KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
|
||
|
* and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
|
||
|
* this field should be in bits. For
|
||
|
* digest-encrypted cases this must be
|
||
|
* an 8-bit multiple.
|
||
|
*/
|
||
|
} data; /**< Data offsets and length for ciphering */
|
||
|
} cipher;
|
||
|
|
||
|
struct {
|
||
|
struct {
|
||
|
uint32_t offset;
|
||
|
/**< Starting point for hash processing,
|
||
|
* specified as number of bytes from start of
|
||
|
* packet in source buffer.
|
||
|
*
|
||
|
* @note
|
||
|
* For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
|
||
|
* KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
|
||
|
* and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
|
||
|
* this field should be in bits. For
|
||
|
* digest-encrypted cases this must be
|
||
|
* an 8-bit multiple.
|
||
|
*
|
||
|
* @note
|
||
|
* For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
|
||
|
* this offset should be such that
|
||
|
* data to authenticate starts at COUNT.
|
||
|
*
|
||
|
* @note
|
||
|
* For DOCSIS security protocol, this
|
||
|
* offset is the DOCSIS header length
|
||
|
* and, therefore, also the CRC offset
|
||
|
* i.e. the number of bytes into the
|
||
|
* packet at which CRC calculation
|
||
|
* should begin.
|
||
|
*/
|
||
|
uint32_t length;
|
||
|
/**< The message length, in bytes, of the source
|
||
|
* buffer that the hash will be computed on.
|
||
|
*
|
||
|
* @note
|
||
|
* For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
|
||
|
* KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
|
||
|
* and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
|
||
|
* this field should be in bits. For
|
||
|
* digest-encrypted cases this must be
|
||
|
* an 8-bit multiple.
|
||
|
*
|
||
|
* @note
|
||
|
* For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
|
||
|
* the length should include the COUNT,
|
||
|
* FRESH, message, direction bit and padding
|
||
|
* (to be multiple of 8 bits).
|
||
|
*
|
||
|
* @note
|
||
|
* For DOCSIS security protocol, this
|
||
|
* is the CRC length i.e. the number of
|
||
|
* bytes in the packet over which the
|
||
|
* CRC should be calculated
|
||
|
*/
|
||
|
} data;
|
||
|
/**< Data offsets and length for authentication */
|
||
|
|
||
|
struct {
|
||
|
uint8_t *data;
|
||
|
/**< This points to the location where
|
||
|
* the digest result should be inserted
|
||
|
* (in the case of digest generation)
|
||
|
* or where the purported digest exists
|
||
|
* (in the case of digest verification).
|
||
|
*
|
||
|
* At session creation time, the client
|
||
|
* specified the digest result length with
|
||
|
* the digest_length member of the
|
||
|
* @ref rte_crypto_auth_xform structure.
|
||
|
* For physical crypto devices the caller
|
||
|
* must allocate at least digest_length of
|
||
|
* physically contiguous memory at this
|
||
|
* location.
|
||
|
*
|
||
|
* For digest generation, the digest result
|
||
|
* will overwrite any data at this location.
|
||
|
*
|
||
|
* @note
|
||
|
* Digest-encrypted case.
|
||
|
* Digest can be generated, appended to
|
||
|
* the end of raw data and encrypted
|
||
|
* together using chained digest
|
||
|
* generation
|
||
|
* (@ref RTE_CRYPTO_AUTH_OP_GENERATE)
|
||
|
* and encryption
|
||
|
* (@ref RTE_CRYPTO_CIPHER_OP_ENCRYPT)
|
||
|
* xforms. Similarly, authentication
|
||
|
* of the raw data against appended,
|
||
|
* decrypted digest, can be performed
|
||
|
* using decryption
|
||
|
* (@ref RTE_CRYPTO_CIPHER_OP_DECRYPT)
|
||
|
* and digest verification
|
||
|
* (@ref RTE_CRYPTO_AUTH_OP_VERIFY)
|
||
|
* chained xforms.
|
||
|
* To perform those operations, a few
|
||
|
* additional conditions must be met:
|
||
|
* - caller must allocate at least
|
||
|
* digest_length of memory at the end of
|
||
|
* source and (in case of out-of-place
|
||
|
* operations) destination buffer; those
|
||
|
* buffers can be linear or split using
|
||
|
* scatter-gather lists,
|
||
|
* - digest data pointer must point to
|
||
|
* the end of source or (in case of
|
||
|
* out-of-place operations) destination
|
||
|
* data, which is pointer to the
|
||
|
* data buffer + auth.data.offset +
|
||
|
* auth.data.length,
|
||
|
* - cipher.data.offset +
|
||
|
* cipher.data.length must be greater
|
||
|
* than auth.data.offset +
|
||
|
* auth.data.length and is typically
|
||
|
* equal to auth.data.offset +
|
||
|
* auth.data.length + digest_length.
|
||
|
* - for wireless algorithms, i.e.
|
||
|
* SNOW 3G, KASUMI and ZUC, as the
|
||
|
* cipher.data.length,
|
||
|
* cipher.data.offset,
|
||
|
* auth.data.length and
|
||
|
* auth.data.offset are in bits, they
|
||
|
* must be 8-bit multiples.
|
||
|
*
|
||
|
* Note, that for security reasons, it
|
||
|
* is PMDs' responsibility to not
|
||
|
* leave an unencrypted digest in any
|
||
|
* buffer after performing auth-cipher
|
||
|
* operations.
|
||
|
*
|
||
|
*/
|
||
|
rte_iova_t phys_addr;
|
||
|
/**< Physical address of digest */
|
||
|
} digest; /**< Digest parameters */
|
||
|
} auth;
|
||
|
};
|
||
|
};
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Reset the fields of a symmetric operation to their default values.
|
||
|
*
|
||
|
* @param op The crypto operation to be reset.
|
||
|
*/
|
||
|
static inline void
|
||
|
__rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op)
|
||
|
{
|
||
|
memset(op, 0, sizeof(*op));
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Allocate space for symmetric crypto xforms in the private data space of the
|
||
|
* crypto operation. This also defaults the crypto xform type to
|
||
|
* RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms
|
||
|
* in the crypto operation
|
||
|
*
|
||
|
* @return
|
||
|
* - On success returns pointer to first crypto xform in crypto operations chain
|
||
|
* - On failure returns NULL
|
||
|
*/
|
||
|
static inline struct rte_crypto_sym_xform *
|
||
|
__rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op,
|
||
|
void *priv_data, uint8_t nb_xforms)
|
||
|
{
|
||
|
struct rte_crypto_sym_xform *xform;
|
||
|
|
||
|
sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data;
|
||
|
|
||
|
do {
|
||
|
xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED;
|
||
|
xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL;
|
||
|
} while (xform);
|
||
|
|
||
|
return sym_op->xform;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Attach a session to a symmetric crypto operation
|
||
|
*
|
||
|
* @param sym_op crypto operation
|
||
|
* @param sess cryptodev session
|
||
|
*/
|
||
|
static inline int
|
||
|
__rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op,
|
||
|
struct rte_cryptodev_sym_session *sess)
|
||
|
{
|
||
|
sym_op->session = sess;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Converts portion of mbuf data into a vector representation.
|
||
|
* Each segment will be represented as a separate entry in *vec* array.
|
||
|
* Expects that provided *ofs* + *len* not to exceed mbuf's *pkt_len*.
|
||
|
* @param mb
|
||
|
* Pointer to the *rte_mbuf* object.
|
||
|
* @param ofs
|
||
|
* Offset within mbuf data to start with.
|
||
|
* @param len
|
||
|
* Length of data to represent.
|
||
|
* @param vec
|
||
|
* Pointer to an output array of IO vectors.
|
||
|
* @param num
|
||
|
* Size of an output array.
|
||
|
* @return
|
||
|
* - number of successfully filled entries in *vec* array.
|
||
|
* - negative number of elements in *vec* array required.
|
||
|
*/
|
||
|
__rte_experimental
|
||
|
static inline int
|
||
|
rte_crypto_mbuf_to_vec(const struct rte_mbuf *mb, uint32_t ofs, uint32_t len,
|
||
|
struct rte_crypto_vec vec[], uint32_t num)
|
||
|
{
|
||
|
uint32_t i;
|
||
|
struct rte_mbuf *nseg;
|
||
|
uint32_t left;
|
||
|
uint32_t seglen;
|
||
|
|
||
|
/* assuming that requested data starts in the first segment */
|
||
|
RTE_ASSERT(mb->data_len > ofs);
|
||
|
|
||
|
if (mb->nb_segs > num)
|
||
|
return -mb->nb_segs;
|
||
|
|
||
|
vec[0].base = rte_pktmbuf_mtod_offset(mb, void *, ofs);
|
||
|
vec[0].iova = rte_pktmbuf_iova_offset(mb, ofs);
|
||
|
vec[0].tot_len = mb->buf_len - rte_pktmbuf_headroom(mb) - ofs;
|
||
|
|
||
|
/* whole data lies in the first segment */
|
||
|
seglen = mb->data_len - ofs;
|
||
|
if (len <= seglen) {
|
||
|
vec[0].len = len;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* data spread across segments */
|
||
|
vec[0].len = seglen;
|
||
|
left = len - seglen;
|
||
|
for (i = 1, nseg = mb->next; nseg != NULL; nseg = nseg->next, i++) {
|
||
|
|
||
|
vec[i].base = rte_pktmbuf_mtod(nseg, void *);
|
||
|
vec[i].iova = rte_pktmbuf_iova(nseg);
|
||
|
vec[i].tot_len = mb->buf_len - rte_pktmbuf_headroom(mb) - ofs;
|
||
|
|
||
|
seglen = nseg->data_len;
|
||
|
if (left <= seglen) {
|
||
|
/* whole requested data is completed */
|
||
|
vec[i].len = left;
|
||
|
left = 0;
|
||
|
i++;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* use whole segment */
|
||
|
vec[i].len = seglen;
|
||
|
left -= seglen;
|
||
|
}
|
||
|
|
||
|
RTE_ASSERT(left == 0);
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif /* _RTE_CRYPTO_SYM_H_ */
|