f-stack/dpdk/drivers/raw/ioat/rte_idxd_rawdev_fns.h

395 lines
12 KiB
C
Raw Normal View History

2022-09-06 04:00:10 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2021 Intel Corporation
*/
#ifndef _RTE_IDXD_RAWDEV_FNS_H_
#define _RTE_IDXD_RAWDEV_FNS_H_
/**
* @file
* This header file contains the implementation of the various ioat
* rawdev functions for DSA hardware. The API specification and key
* public structures are defined in "rte_ioat_rawdev.h".
*
* This file should not be included directly, but instead applications should
* include "rte_ioat_rawdev.h", which then includes this file - and the
* IOAT/CBDMA equivalent header - in turn.
*/
#include <stdint.h>
#include <rte_errno.h>
/*
* Defines used in the data path for interacting with IDXD hardware.
*/
#define IDXD_CMD_OP_SHIFT 24
enum rte_idxd_ops {
idxd_op_nop = 0,
idxd_op_batch,
idxd_op_drain,
idxd_op_memmove,
idxd_op_fill
};
#define IDXD_FLAG_FENCE (1 << 0)
#define IDXD_FLAG_COMPLETION_ADDR_VALID (1 << 2)
#define IDXD_FLAG_REQUEST_COMPLETION (1 << 3)
#define IDXD_FLAG_CACHE_CONTROL (1 << 8)
#define IOAT_COMP_UPDATE_SHIFT 3
#define IOAT_CMD_OP_SHIFT 24
enum rte_ioat_ops {
ioat_op_copy = 0, /* Standard DMA Operation */
ioat_op_fill /* Block Fill */
};
/**
* Hardware descriptor used by DSA hardware, for both bursts and
* for individual operations.
*/
struct rte_idxd_hw_desc {
uint32_t pasid;
uint32_t op_flags;
rte_iova_t completion;
RTE_STD_C11
union {
rte_iova_t src; /* source address for copy ops etc. */
rte_iova_t desc_addr; /* descriptor pointer for batch */
};
rte_iova_t dst;
uint32_t size; /* length of data for op, or batch size */
uint16_t intr_handle; /* completion interrupt handle */
/* remaining 26 bytes are reserved */
uint16_t __reserved[13];
} __rte_aligned(64);
/**
* Completion record structure written back by DSA
*/
struct rte_idxd_completion {
uint8_t status;
uint8_t result;
/* 16-bits pad here */
uint32_t completed_size; /* data length, or descriptors for batch */
rte_iova_t fault_address;
uint32_t invalid_flags;
} __rte_aligned(32);
/**
* structure used to save the "handles" provided by the user to be
* returned to the user on job completion.
*/
struct rte_idxd_user_hdl {
uint64_t src;
uint64_t dst;
};
/**
* @internal
* Structure representing an IDXD device instance
*/
struct rte_idxd_rawdev {
enum rte_ioat_dev_type type;
struct rte_ioat_xstats xstats;
void *portal; /* address to write the batch descriptor */
struct rte_ioat_rawdev_config cfg;
rte_iova_t desc_iova; /* base address of desc ring, needed for completions */
/* counters to track the batches */
unsigned short max_batches;
unsigned short batch_idx_read;
unsigned short batch_idx_write;
unsigned short *batch_idx_ring; /* store where each batch ends */
/* track descriptors and handles */
unsigned short desc_ring_mask;
unsigned short hdls_avail; /* handles for ops completed */
unsigned short hdls_read; /* the read pointer for hdls/desc rings */
unsigned short batch_start; /* start+size == write pointer for hdls/desc */
unsigned short batch_size;
struct rte_idxd_hw_desc *desc_ring;
struct rte_idxd_user_hdl *hdl_ring;
/* flags to indicate handle validity. Kept separate from ring, to avoid
* using 8 bytes per flag. Upper 8 bits holds error code if any.
*/
uint16_t *hdl_ring_flags;
};
#define RTE_IDXD_HDL_NORMAL 0
#define RTE_IDXD_HDL_INVALID (1 << 0) /* no handle stored for this element */
#define RTE_IDXD_HDL_OP_FAILED (1 << 1) /* return failure for this one */
#define RTE_IDXD_HDL_OP_SKIPPED (1 << 2) /* this op was skipped */
static __rte_always_inline uint16_t
__idxd_burst_capacity(int dev_id)
{
struct rte_idxd_rawdev *idxd =
(struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
uint16_t write_idx = idxd->batch_start + idxd->batch_size;
uint16_t used_space, free_space;
/* Check for space in the batch ring */
if ((idxd->batch_idx_read == 0 && idxd->batch_idx_write == idxd->max_batches) ||
idxd->batch_idx_write + 1 == idxd->batch_idx_read)
return 0;
/* for descriptors, check for wrap-around on write but not read */
if (idxd->hdls_read > write_idx)
write_idx += idxd->desc_ring_mask + 1;
used_space = write_idx - idxd->hdls_read;
/* Return amount of free space in the descriptor ring
* subtract 1 for space for batch descriptor and 1 for possible null desc
*/
free_space = idxd->desc_ring_mask - used_space;
if (free_space < 2)
return 0;
return free_space - 2;
}
static __rte_always_inline rte_iova_t
__desc_idx_to_iova(struct rte_idxd_rawdev *idxd, uint16_t n)
{
return idxd->desc_iova + (n * sizeof(struct rte_idxd_hw_desc));
}
static __rte_always_inline int
__idxd_write_desc(int dev_id,
const uint32_t op_flags,
const rte_iova_t src,
const rte_iova_t dst,
const uint32_t size,
const struct rte_idxd_user_hdl *hdl)
{
struct rte_idxd_rawdev *idxd =
(struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
uint16_t write_idx = idxd->batch_start + idxd->batch_size;
uint16_t mask = idxd->desc_ring_mask;
/* first check batch ring space then desc ring space */
if ((idxd->batch_idx_read == 0 && idxd->batch_idx_write == idxd->max_batches) ||
idxd->batch_idx_write + 1 == idxd->batch_idx_read)
goto failed;
/* for descriptor ring, we always need a slot for batch completion */
if (((write_idx + 2) & mask) == idxd->hdls_read ||
((write_idx + 1) & mask) == idxd->hdls_read)
goto failed;
/* write desc and handle. Note, descriptors don't wrap */
idxd->desc_ring[write_idx].pasid = 0;
idxd->desc_ring[write_idx].op_flags = op_flags | IDXD_FLAG_COMPLETION_ADDR_VALID;
idxd->desc_ring[write_idx].completion = __desc_idx_to_iova(idxd, write_idx & mask);
idxd->desc_ring[write_idx].src = src;
idxd->desc_ring[write_idx].dst = dst;
idxd->desc_ring[write_idx].size = size;
if (hdl == NULL)
idxd->hdl_ring_flags[write_idx & mask] = RTE_IDXD_HDL_INVALID;
else
idxd->hdl_ring[write_idx & mask] = *hdl;
idxd->batch_size++;
idxd->xstats.enqueued++;
rte_prefetch0_write(&idxd->desc_ring[write_idx + 1]);
return 1;
failed:
idxd->xstats.enqueue_failed++;
rte_errno = ENOSPC;
return 0;
}
static __rte_always_inline int
__idxd_enqueue_fill(int dev_id, uint64_t pattern, rte_iova_t dst,
unsigned int length, uintptr_t dst_hdl)
{
const struct rte_idxd_user_hdl hdl = {
.dst = dst_hdl
};
return __idxd_write_desc(dev_id,
(idxd_op_fill << IDXD_CMD_OP_SHIFT) | IDXD_FLAG_CACHE_CONTROL,
pattern, dst, length, &hdl);
}
static __rte_always_inline int
__idxd_enqueue_copy(int dev_id, rte_iova_t src, rte_iova_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
{
const struct rte_idxd_user_hdl hdl = {
.src = src_hdl,
.dst = dst_hdl
};
return __idxd_write_desc(dev_id,
(idxd_op_memmove << IDXD_CMD_OP_SHIFT) | IDXD_FLAG_CACHE_CONTROL,
src, dst, length, &hdl);
}
static __rte_always_inline int
__idxd_enqueue_nop(int dev_id)
{
/* only op field needs filling - zero src, dst and length */
return __idxd_write_desc(dev_id, idxd_op_nop << IDXD_CMD_OP_SHIFT,
0, 0, 0, NULL);
}
static __rte_always_inline int
__idxd_fence(int dev_id)
{
/* only op field needs filling - zero src, dst and length */
return __idxd_write_desc(dev_id, IDXD_FLAG_FENCE, 0, 0, 0, NULL);
}
static __rte_always_inline void
__idxd_movdir64b(volatile void *dst, const struct rte_idxd_hw_desc *src)
{
asm volatile (".byte 0x66, 0x0f, 0x38, 0xf8, 0x02"
:
: "a" (dst), "d" (src)
: "memory");
}
static __rte_always_inline int
__idxd_perform_ops(int dev_id)
{
struct rte_idxd_rawdev *idxd =
(struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
if (!idxd->cfg.no_prefetch_completions)
rte_prefetch1(&idxd->desc_ring[idxd->batch_idx_ring[idxd->batch_idx_read]]);
if (idxd->batch_size == 0)
return 0;
if (idxd->batch_size == 1)
/* use a NOP as a null descriptor, so batch_size >= 2 */
if (__idxd_enqueue_nop(dev_id) != 1)
return -1;
/* write completion beyond last desc in the batch */
uint16_t comp_idx = (idxd->batch_start + idxd->batch_size) & idxd->desc_ring_mask;
*((uint64_t *)&idxd->desc_ring[comp_idx]) = 0; /* zero start of desc */
idxd->hdl_ring_flags[comp_idx] = RTE_IDXD_HDL_INVALID;
const struct rte_idxd_hw_desc batch_desc = {
.op_flags = (idxd_op_batch << IDXD_CMD_OP_SHIFT) |
IDXD_FLAG_COMPLETION_ADDR_VALID |
IDXD_FLAG_REQUEST_COMPLETION,
.desc_addr = __desc_idx_to_iova(idxd, idxd->batch_start),
.completion = __desc_idx_to_iova(idxd, comp_idx),
.size = idxd->batch_size,
};
_mm_sfence(); /* fence before writing desc to device */
__idxd_movdir64b(idxd->portal, &batch_desc);
idxd->xstats.started += idxd->batch_size;
idxd->batch_start += idxd->batch_size + 1;
idxd->batch_start &= idxd->desc_ring_mask;
idxd->batch_size = 0;
idxd->batch_idx_ring[idxd->batch_idx_write++] = comp_idx;
if (idxd->batch_idx_write > idxd->max_batches)
idxd->batch_idx_write = 0;
return 0;
}
static __rte_always_inline int
__idxd_completed_ops(int dev_id, uint8_t max_ops, uint32_t *status, uint8_t *num_unsuccessful,
uintptr_t *src_hdls, uintptr_t *dst_hdls)
{
struct rte_idxd_rawdev *idxd =
(struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
unsigned short n, h_idx;
while (idxd->batch_idx_read != idxd->batch_idx_write) {
uint16_t idx_to_chk = idxd->batch_idx_ring[idxd->batch_idx_read];
volatile struct rte_idxd_completion *comp_to_chk =
(struct rte_idxd_completion *)&idxd->desc_ring[idx_to_chk];
uint8_t batch_status = comp_to_chk->status;
if (batch_status == 0)
break;
comp_to_chk->status = 0;
if (unlikely(batch_status > 1)) {
/* error occurred somewhere in batch, start where last checked */
uint16_t desc_count = comp_to_chk->completed_size;
uint16_t batch_start = idxd->hdls_avail;
uint16_t batch_end = idx_to_chk;
if (batch_start > batch_end)
batch_end += idxd->desc_ring_mask + 1;
/* go through each batch entry and see status */
for (n = 0; n < desc_count; n++) {
uint16_t idx = (batch_start + n) & idxd->desc_ring_mask;
volatile struct rte_idxd_completion *comp =
(struct rte_idxd_completion *)&idxd->desc_ring[idx];
if (comp->status != 0 &&
idxd->hdl_ring_flags[idx] == RTE_IDXD_HDL_NORMAL) {
idxd->hdl_ring_flags[idx] = RTE_IDXD_HDL_OP_FAILED;
idxd->hdl_ring_flags[idx] |= (comp->status << 8);
comp->status = 0; /* clear error for next time */
}
}
/* if batch is incomplete, mark rest as skipped */
for ( ; n < batch_end - batch_start; n++) {
uint16_t idx = (batch_start + n) & idxd->desc_ring_mask;
if (idxd->hdl_ring_flags[idx] == RTE_IDXD_HDL_NORMAL)
idxd->hdl_ring_flags[idx] = RTE_IDXD_HDL_OP_SKIPPED;
}
}
/* avail points to one after the last one written */
idxd->hdls_avail = (idx_to_chk + 1) & idxd->desc_ring_mask;
idxd->batch_idx_read++;
if (idxd->batch_idx_read > idxd->max_batches)
idxd->batch_idx_read = 0;
}
n = 0;
h_idx = idxd->hdls_read;
while (h_idx != idxd->hdls_avail) {
uint16_t flag = idxd->hdl_ring_flags[h_idx];
if (flag != RTE_IDXD_HDL_INVALID) {
if (!idxd->cfg.hdls_disable) {
src_hdls[n] = idxd->hdl_ring[h_idx].src;
dst_hdls[n] = idxd->hdl_ring[h_idx].dst;
}
if (unlikely(flag != RTE_IDXD_HDL_NORMAL)) {
if (status != NULL)
status[n] = flag == RTE_IDXD_HDL_OP_SKIPPED ?
RTE_IOAT_OP_SKIPPED :
/* failure case, return err code */
idxd->hdl_ring_flags[h_idx] >> 8;
if (num_unsuccessful != NULL)
*num_unsuccessful += 1;
}
n++;
}
idxd->hdl_ring_flags[h_idx] = RTE_IDXD_HDL_NORMAL;
if (++h_idx > idxd->desc_ring_mask)
h_idx = 0;
if (n >= max_ops)
break;
}
/* skip over any remaining blank elements, e.g. batch completion */
while (idxd->hdl_ring_flags[h_idx] == RTE_IDXD_HDL_INVALID && h_idx != idxd->hdls_avail) {
idxd->hdl_ring_flags[h_idx] = RTE_IDXD_HDL_NORMAL;
if (++h_idx > idxd->desc_ring_mask)
h_idx = 0;
}
idxd->hdls_read = h_idx;
idxd->xstats.completed += n;
return n;
}
#endif