f-stack/dpdk/drivers/common/cnxk/roc_npa.h

663 lines
16 KiB
C
Raw Normal View History

2022-09-06 04:00:10 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#ifndef _ROC_NPA_H_
#define _ROC_NPA_H_
#define ROC_AURA_ID_MASK (BIT_ULL(16) - 1)
#define ROC_AURA_OP_LIMIT_MASK (BIT_ULL(36) - 1)
#define ROC_NPA_MAX_BLOCK_SZ (128 * 1024)
#define ROC_CN10K_NPA_BATCH_ALLOC_MAX_PTRS 512
#define ROC_CN10K_NPA_BATCH_FREE_MAX_PTRS 15
/* This value controls how much of the present average resource level is used to
* calculate the new resource level.
*/
#define ROC_NPA_AVG_CONT 0xE0
/* 16 CASP instructions can be outstanding in CN9k, but we use only 15
* outstanding CASPs as we run out of registers.
*/
#define ROC_CN9K_NPA_BULK_ALLOC_MAX_PTRS 30
/*
* Generate 64bit handle to have optimized alloc and free aura operation.
* 0 - ROC_AURA_ID_MASK for storing the aura_id.
* [ROC_AURA_ID_MASK+1, (2^64 - 1)] for storing the lf base address.
* This scheme is valid when OS can give ROC_AURA_ID_MASK
* aligned address for lf base address.
*/
static inline uint64_t
roc_npa_aura_handle_gen(uint32_t aura_id, uintptr_t addr)
{
uint64_t val;
val = aura_id & ROC_AURA_ID_MASK;
return (uint64_t)addr | val;
}
static inline uint64_t
roc_npa_aura_handle_to_aura(uint64_t aura_handle)
{
return aura_handle & ROC_AURA_ID_MASK;
}
static inline uintptr_t
roc_npa_aura_handle_to_base(uint64_t aura_handle)
{
return (uintptr_t)(aura_handle & ~ROC_AURA_ID_MASK);
}
static inline uint64_t
roc_npa_aura_op_alloc(uint64_t aura_handle, const int drop)
{
uint64_t wdata = roc_npa_aura_handle_to_aura(aura_handle);
int64_t *addr;
if (drop)
wdata |= BIT_ULL(63); /* DROP */
addr = (int64_t *)(roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_OP_ALLOCX(0));
return roc_atomic64_add_nosync(wdata, addr);
}
static inline void
roc_npa_aura_op_free(uint64_t aura_handle, const int fabs, uint64_t iova)
{
uint64_t reg = roc_npa_aura_handle_to_aura(aura_handle);
const uint64_t addr =
roc_npa_aura_handle_to_base(aura_handle) + NPA_LF_AURA_OP_FREE0;
if (fabs)
reg |= BIT_ULL(63); /* FABS */
roc_store_pair(iova, reg, addr);
}
static inline uint64_t
roc_npa_aura_op_cnt_get(uint64_t aura_handle)
{
uint64_t wdata;
int64_t *addr;
uint64_t reg;
wdata = roc_npa_aura_handle_to_aura(aura_handle) << 44;
addr = (int64_t *)(roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_OP_CNT);
reg = roc_atomic64_add_nosync(wdata, addr);
if (reg & BIT_ULL(42) /* OP_ERR */)
return 0;
else
return reg & 0xFFFFFFFFF;
}
static inline void
roc_npa_aura_op_cnt_set(uint64_t aura_handle, const int sign, uint64_t count)
{
uint64_t reg = count & (BIT_ULL(36) - 1);
if (sign)
reg |= BIT_ULL(43); /* CNT_ADD */
reg |= (roc_npa_aura_handle_to_aura(aura_handle) << 44);
plt_write64(reg, roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_OP_CNT);
}
static inline uint64_t
roc_npa_aura_op_limit_get(uint64_t aura_handle)
{
uint64_t wdata;
int64_t *addr;
uint64_t reg;
wdata = roc_npa_aura_handle_to_aura(aura_handle) << 44;
addr = (int64_t *)(roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_OP_LIMIT);
reg = roc_atomic64_add_nosync(wdata, addr);
if (reg & BIT_ULL(42) /* OP_ERR */)
return 0;
else
return reg & ROC_AURA_OP_LIMIT_MASK;
}
static inline void
roc_npa_aura_op_limit_set(uint64_t aura_handle, uint64_t limit)
{
uint64_t reg = limit & ROC_AURA_OP_LIMIT_MASK;
reg |= (roc_npa_aura_handle_to_aura(aura_handle) << 44);
plt_write64(reg, roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_OP_LIMIT);
}
static inline uint64_t
roc_npa_aura_op_available(uint64_t aura_handle)
{
uint64_t wdata;
uint64_t reg;
int64_t *addr;
wdata = roc_npa_aura_handle_to_aura(aura_handle) << 44;
addr = (int64_t *)(roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_POOL_OP_AVAILABLE);
reg = roc_atomic64_add_nosync(wdata, addr);
if (reg & BIT_ULL(42) /* OP_ERR */)
return 0;
else
return reg & 0xFFFFFFFFF;
}
static inline uint64_t
roc_npa_pool_op_performance_counter(uint64_t aura_handle, const int drop)
{
union {
uint64_t u;
struct npa_aura_op_wdata_s s;
} op_wdata;
int64_t *addr;
uint64_t reg;
op_wdata.u = 0;
op_wdata.s.aura = roc_npa_aura_handle_to_aura(aura_handle);
if (drop)
op_wdata.s.drop |= BIT_ULL(63); /* DROP */
addr = (int64_t *)(roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_POOL_OP_PC);
reg = roc_atomic64_add_nosync(op_wdata.u, addr);
/*
* NPA_LF_POOL_OP_PC Read Data
*
* 63 49 48 48 47 0
* -----------------------------
* | Reserved | OP_ERR | OP_PC |
* -----------------------------
*/
if (reg & BIT_ULL(48) /* OP_ERR */)
return 0;
else
return reg & 0xFFFFFFFFFFFF;
}
static inline int
roc_npa_aura_batch_alloc_issue(uint64_t aura_handle, uint64_t *buf,
unsigned int num, const int dis_wait,
const int drop)
{
unsigned int i;
int64_t *addr;
uint64_t res;
union {
uint64_t u;
struct npa_batch_alloc_compare_s compare_s;
} cmp;
if (num > ROC_CN10K_NPA_BATCH_ALLOC_MAX_PTRS)
return -1;
/* Zero first word of every cache line */
for (i = 0; i < num; i += (ROC_ALIGN / sizeof(uint64_t)))
buf[i] = 0;
addr = (int64_t *)(roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_BATCH_ALLOC);
cmp.u = 0;
cmp.compare_s.aura = roc_npa_aura_handle_to_aura(aura_handle);
cmp.compare_s.drop = drop;
cmp.compare_s.stype = ALLOC_STYPE_STF;
cmp.compare_s.dis_wait = dis_wait;
cmp.compare_s.count = num;
res = roc_atomic64_cas(cmp.u, (uint64_t)buf, addr);
if (res != ALLOC_RESULT_ACCEPTED && res != ALLOC_RESULT_NOCORE)
return -1;
return 0;
}
static inline void
roc_npa_batch_alloc_wait(uint64_t *cache_line)
{
/* Batch alloc status code is updated in bits [5:6] of the first word
* of the 128 byte cache line.
*/
while (((__atomic_load_n(cache_line, __ATOMIC_RELAXED) >> 5) & 0x3) ==
ALLOC_CCODE_INVAL)
;
}
static inline unsigned int
roc_npa_aura_batch_alloc_count(uint64_t *aligned_buf, unsigned int num)
{
unsigned int count, i;
if (num > ROC_CN10K_NPA_BATCH_ALLOC_MAX_PTRS)
return 0;
count = 0;
/* Check each ROC cache line one by one */
for (i = 0; i < num; i += (ROC_ALIGN >> 3)) {
struct npa_batch_alloc_status_s *status;
status = (struct npa_batch_alloc_status_s *)&aligned_buf[i];
roc_npa_batch_alloc_wait(&aligned_buf[i]);
count += status->count;
}
return count;
}
static inline unsigned int
roc_npa_aura_batch_alloc_extract(uint64_t *buf, uint64_t *aligned_buf,
unsigned int num)
{
unsigned int count, i;
if (num > ROC_CN10K_NPA_BATCH_ALLOC_MAX_PTRS)
return 0;
count = 0;
/* Check each ROC cache line one by one */
for (i = 0; i < num; i += (ROC_ALIGN >> 3)) {
struct npa_batch_alloc_status_s *status;
int line_count;
status = (struct npa_batch_alloc_status_s *)&aligned_buf[i];
roc_npa_batch_alloc_wait(&aligned_buf[i]);
line_count = status->count;
/* Clear the status from the cache line */
status->ccode = 0;
status->count = 0;
/* 'Compress' the allocated buffers as there can
* be 'holes' at the end of the 128 byte cache
* lines.
*/
memmove(&buf[count], &aligned_buf[i],
line_count * sizeof(uint64_t));
count += line_count;
}
return count;
}
static inline void
roc_npa_aura_op_bulk_free(uint64_t aura_handle, uint64_t const *buf,
unsigned int num, const int fabs)
{
unsigned int i;
for (i = 0; i < num; i++) {
const uint64_t inbuf = buf[i];
roc_npa_aura_op_free(aura_handle, fabs, inbuf);
}
}
static inline unsigned int
roc_npa_aura_op_batch_alloc(uint64_t aura_handle, uint64_t *buf,
uint64_t *aligned_buf, unsigned int num,
const int dis_wait, const int drop,
const int partial)
{
unsigned int count, chunk, num_alloc;
/* The buffer should be 128 byte cache line aligned */
if (((uint64_t)aligned_buf & (ROC_ALIGN - 1)) != 0)
return 0;
count = 0;
while (num) {
chunk = (num > ROC_CN10K_NPA_BATCH_ALLOC_MAX_PTRS) ?
ROC_CN10K_NPA_BATCH_ALLOC_MAX_PTRS :
num;
if (roc_npa_aura_batch_alloc_issue(aura_handle, aligned_buf,
chunk, dis_wait, drop))
break;
num_alloc = roc_npa_aura_batch_alloc_extract(buf, aligned_buf,
chunk);
count += num_alloc;
buf += num_alloc;
num -= num_alloc;
if (num_alloc != chunk)
break;
}
/* If the requested number of pointers was not allocated and if partial
* alloc is not desired, then free allocated pointers.
*/
if (unlikely(num != 0 && !partial)) {
roc_npa_aura_op_bulk_free(aura_handle, buf - count, count, 1);
count = 0;
}
return count;
}
static inline void
roc_npa_aura_batch_free(uint64_t aura_handle, uint64_t const *buf,
unsigned int num, const int fabs, uint64_t lmt_addr,
uint64_t lmt_id)
{
uint64_t addr, tar_addr, free0;
volatile uint64_t *lmt_data;
unsigned int i;
if (num > ROC_CN10K_NPA_BATCH_FREE_MAX_PTRS)
return;
lmt_data = (uint64_t *)lmt_addr;
addr = roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_BATCH_FREE0;
/*
* NPA_LF_AURA_BATCH_FREE0
*
* 63 63 62 33 32 32 31 20 19 0
* -----------------------------------------
* | FABS | Rsvd | COUNT_EOT | Rsvd | AURA |
* -----------------------------------------
*/
free0 = roc_npa_aura_handle_to_aura(aura_handle);
if (fabs)
free0 |= (0x1UL << 63);
if (num & 0x1)
free0 |= (0x1UL << 32);
/* tar_addr[4:6] is LMTST size-1 in units of 128b */
tar_addr = addr | ((num >> 1) << 4);
lmt_data[0] = free0;
for (i = 0; i < num; i++)
lmt_data[i + 1] = buf[i];
roc_lmt_submit_steorl(lmt_id, tar_addr);
plt_io_wmb();
}
static inline void
roc_npa_aura_op_batch_free(uint64_t aura_handle, uint64_t const *buf,
unsigned int num, const int fabs, uint64_t lmt_addr,
uint64_t lmt_id)
{
unsigned int chunk;
while (num) {
chunk = (num >= ROC_CN10K_NPA_BATCH_FREE_MAX_PTRS) ?
ROC_CN10K_NPA_BATCH_FREE_MAX_PTRS :
num;
roc_npa_aura_batch_free(aura_handle, buf, chunk, fabs, lmt_addr,
lmt_id);
buf += chunk;
num -= chunk;
}
}
static inline unsigned int
roc_npa_aura_bulk_alloc(uint64_t aura_handle, uint64_t *buf, unsigned int num,
const int drop)
{
#if defined(__aarch64__)
uint64_t wdata = roc_npa_aura_handle_to_aura(aura_handle);
unsigned int i, count;
uint64_t addr;
if (drop)
wdata |= BIT_ULL(63); /* DROP */
addr = roc_npa_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_OP_ALLOCX(0);
switch (num) {
case 30:
asm volatile(
".cpu generic+lse\n"
"mov v18.d[0], %[dst]\n"
"mov v18.d[1], %[loc]\n"
"mov v19.d[0], %[wdata]\n"
"mov v19.d[1], x30\n"
"mov v20.d[0], x24\n"
"mov v20.d[1], x25\n"
"mov v21.d[0], x26\n"
"mov v21.d[1], x27\n"
"mov v22.d[0], x28\n"
"mov v22.d[1], x29\n"
"mov x28, v19.d[0]\n"
"mov x29, v19.d[0]\n"
"mov x30, v18.d[1]\n"
"casp x0, x1, x28, x29, [x30]\n"
"casp x2, x3, x28, x29, [x30]\n"
"casp x4, x5, x28, x29, [x30]\n"
"casp x6, x7, x28, x29, [x30]\n"
"casp x8, x9, x28, x29, [x30]\n"
"casp x10, x11, x28, x29, [x30]\n"
"casp x12, x13, x28, x29, [x30]\n"
"casp x14, x15, x28, x29, [x30]\n"
"casp x16, x17, x28, x29, [x30]\n"
"casp x18, x19, x28, x29, [x30]\n"
"casp x20, x21, x28, x29, [x30]\n"
"casp x22, x23, x28, x29, [x30]\n"
"casp x24, x25, x28, x29, [x30]\n"
"casp x26, x27, x28, x29, [x30]\n"
"casp x28, x29, x28, x29, [x30]\n"
"mov x30, v18.d[0]\n"
"stp x0, x1, [x30]\n"
"stp x2, x3, [x30, #16]\n"
"stp x4, x5, [x30, #32]\n"
"stp x6, x7, [x30, #48]\n"
"stp x8, x9, [x30, #64]\n"
"stp x10, x11, [x30, #80]\n"
"stp x12, x13, [x30, #96]\n"
"stp x14, x15, [x30, #112]\n"
"stp x16, x17, [x30, #128]\n"
"stp x18, x19, [x30, #144]\n"
"stp x20, x21, [x30, #160]\n"
"stp x22, x23, [x30, #176]\n"
"stp x24, x25, [x30, #192]\n"
"stp x26, x27, [x30, #208]\n"
"stp x28, x29, [x30, #224]\n"
"mov %[dst], v18.d[0]\n"
"mov %[loc], v18.d[1]\n"
"mov %[wdata], v19.d[0]\n"
"mov x30, v19.d[1]\n"
"mov x24, v20.d[0]\n"
"mov x25, v20.d[1]\n"
"mov x26, v21.d[0]\n"
"mov x27, v21.d[1]\n"
"mov x28, v22.d[0]\n"
"mov x29, v22.d[1]\n"
:
: [wdata] "r"(wdata), [loc] "r"(addr), [dst] "r"(buf)
: "memory", "x0", "x1", "x2", "x3", "x4", "x5", "x6",
"x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14",
"x15", "x16", "x17", "x18", "x19", "x20", "x21",
"x22", "x23", "v18", "v19", "v20", "v21", "v22");
break;
case 16:
asm volatile(
".cpu generic+lse\n"
"mov x16, %[wdata]\n"
"mov x17, %[wdata]\n"
"casp x0, x1, x16, x17, [%[loc]]\n"
"casp x2, x3, x16, x17, [%[loc]]\n"
"casp x4, x5, x16, x17, [%[loc]]\n"
"casp x6, x7, x16, x17, [%[loc]]\n"
"casp x8, x9, x16, x17, [%[loc]]\n"
"casp x10, x11, x16, x17, [%[loc]]\n"
"casp x12, x13, x16, x17, [%[loc]]\n"
"casp x14, x15, x16, x17, [%[loc]]\n"
"stp x0, x1, [%[dst]]\n"
"stp x2, x3, [%[dst], #16]\n"
"stp x4, x5, [%[dst], #32]\n"
"stp x6, x7, [%[dst], #48]\n"
"stp x8, x9, [%[dst], #64]\n"
"stp x10, x11, [%[dst], #80]\n"
"stp x12, x13, [%[dst], #96]\n"
"stp x14, x15, [%[dst], #112]\n"
:
: [wdata] "r" (wdata), [dst] "r" (buf), [loc] "r" (addr)
: "memory", "x0", "x1", "x2", "x3", "x4", "x5", "x6",
"x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14",
"x15", "x16", "x17"
);
break;
case 8:
asm volatile(
".cpu generic+lse\n"
"mov x16, %[wdata]\n"
"mov x17, %[wdata]\n"
"casp x0, x1, x16, x17, [%[loc]]\n"
"casp x2, x3, x16, x17, [%[loc]]\n"
"casp x4, x5, x16, x17, [%[loc]]\n"
"casp x6, x7, x16, x17, [%[loc]]\n"
"stp x0, x1, [%[dst]]\n"
"stp x2, x3, [%[dst], #16]\n"
"stp x4, x5, [%[dst], #32]\n"
"stp x6, x7, [%[dst], #48]\n"
:
: [wdata] "r" (wdata), [dst] "r" (buf), [loc] "r" (addr)
: "memory", "x0", "x1", "x2", "x3", "x4", "x5", "x6",
"x7", "x16", "x17"
);
break;
case 4:
asm volatile(
".cpu generic+lse\n"
"mov x16, %[wdata]\n"
"mov x17, %[wdata]\n"
"casp x0, x1, x16, x17, [%[loc]]\n"
"casp x2, x3, x16, x17, [%[loc]]\n"
"stp x0, x1, [%[dst]]\n"
"stp x2, x3, [%[dst], #16]\n"
:
: [wdata] "r" (wdata), [dst] "r" (buf), [loc] "r" (addr)
: "memory", "x0", "x1", "x2", "x3", "x16", "x17"
);
break;
case 2:
asm volatile(
".cpu generic+lse\n"
"mov x16, %[wdata]\n"
"mov x17, %[wdata]\n"
"casp x0, x1, x16, x17, [%[loc]]\n"
"stp x0, x1, [%[dst]]\n"
:
: [wdata] "r" (wdata), [dst] "r" (buf), [loc] "r" (addr)
: "memory", "x0", "x1", "x16", "x17"
);
break;
case 1:
buf[0] = roc_npa_aura_op_alloc(aura_handle, drop);
return !!buf[0];
}
/* Pack the pointers */
for (i = 0, count = 0; i < num; i++)
if (buf[i])
buf[count++] = buf[i];
return count;
#else
unsigned int i, count;
for (i = 0, count = 0; i < num; i++) {
buf[count] = roc_npa_aura_op_alloc(aura_handle, drop);
if (buf[count])
count++;
}
return count;
#endif
}
static inline unsigned int
roc_npa_aura_op_bulk_alloc(uint64_t aura_handle, uint64_t *buf,
unsigned int num, const int drop, const int partial)
{
unsigned int chunk, count, num_alloc;
count = 0;
while (num) {
chunk = (num >= ROC_CN9K_NPA_BULK_ALLOC_MAX_PTRS) ?
ROC_CN9K_NPA_BULK_ALLOC_MAX_PTRS :
plt_align32prevpow2(num);
num_alloc =
roc_npa_aura_bulk_alloc(aura_handle, buf, chunk, drop);
count += num_alloc;
buf += num_alloc;
num -= num_alloc;
if (unlikely(num_alloc != chunk))
break;
}
/* If the requested number of pointers was not allocated and if partial
* alloc is not desired, then free allocated pointers.
*/
if (unlikely(num != 0 && !partial)) {
roc_npa_aura_op_bulk_free(aura_handle, buf - count, count, 1);
count = 0;
}
return count;
}
struct roc_npa {
struct plt_pci_device *pci_dev;
#define ROC_NPA_MEM_SZ (1 * 1024)
uint8_t reserved[ROC_NPA_MEM_SZ] __plt_cache_aligned;
} __plt_cache_aligned;
int __roc_api roc_npa_dev_init(struct roc_npa *roc_npa);
int __roc_api roc_npa_dev_fini(struct roc_npa *roc_npa);
/* NPA pool */
int __roc_api roc_npa_pool_create(uint64_t *aura_handle, uint32_t block_size,
uint32_t block_count, struct npa_aura_s *aura,
struct npa_pool_s *pool);
int __roc_api roc_npa_aura_limit_modify(uint64_t aura_handle,
uint16_t aura_limit);
int __roc_api roc_npa_pool_destroy(uint64_t aura_handle);
int __roc_api roc_npa_pool_range_update_check(uint64_t aura_handle);
void __roc_api roc_npa_aura_op_range_set(uint64_t aura_handle,
uint64_t start_iova,
uint64_t end_iova);
/* Init callbacks */
typedef int (*roc_npa_lf_init_cb_t)(struct plt_pci_device *pci_dev);
int __roc_api roc_npa_lf_init_cb_register(roc_npa_lf_init_cb_t cb);
/* Debug */
int __roc_api roc_npa_ctx_dump(void);
int __roc_api roc_npa_dump(void);
/* Reset operation performance counter. */
int __roc_api roc_npa_pool_op_pc_reset(uint64_t aura_handle);
#endif /* _ROC_NPA_H_ */