2019-06-25 11:12:58 +00:00
|
|
|
/* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
* Copyright(c) 2017 Cavium, Inc
|
|
|
|
*/
|
2017-04-21 10:43:26 +00:00
|
|
|
/*
|
|
|
|
* Reciprocal divide
|
|
|
|
*
|
|
|
|
* Used with permission from original authors
|
|
|
|
* Hannes Frederic Sowa and Daniel Borkmann
|
|
|
|
*
|
|
|
|
* This algorithm is based on the paper "Division by Invariant
|
|
|
|
* Integers Using Multiplication" by Torbjörn Granlund and Peter
|
|
|
|
* L. Montgomery.
|
|
|
|
*
|
|
|
|
* The assembler implementation from Agner Fog, which this code is
|
|
|
|
* based on, can be found here:
|
|
|
|
* http://www.agner.org/optimize/asmlib.zip
|
|
|
|
*
|
|
|
|
* This optimization for A/B is helpful if the divisor B is mostly
|
|
|
|
* runtime invariant. The reciprocal of B is calculated in the
|
|
|
|
* slow-path with reciprocal_value(). The fast-path can then just use
|
|
|
|
* a much faster multiplication operation with a variable dividend A
|
|
|
|
* to calculate the division A/B.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _RTE_RECIPROCAL_H_
|
|
|
|
#define _RTE_RECIPROCAL_H_
|
|
|
|
|
2018-05-15 09:49:22 +00:00
|
|
|
#include <stdint.h>
|
|
|
|
|
2017-04-21 10:43:26 +00:00
|
|
|
struct rte_reciprocal {
|
|
|
|
uint32_t m;
|
|
|
|
uint8_t sh1, sh2;
|
|
|
|
};
|
|
|
|
|
2019-06-25 11:12:58 +00:00
|
|
|
struct rte_reciprocal_u64 {
|
|
|
|
uint64_t m;
|
|
|
|
uint8_t sh1, sh2;
|
|
|
|
};
|
|
|
|
|
2017-04-21 10:43:26 +00:00
|
|
|
static inline uint32_t rte_reciprocal_divide(uint32_t a, struct rte_reciprocal R)
|
|
|
|
{
|
|
|
|
uint32_t t = (uint32_t)(((uint64_t)a * R.m) >> 32);
|
|
|
|
|
|
|
|
return (t + ((a - t) >> R.sh1)) >> R.sh2;
|
|
|
|
}
|
|
|
|
|
2019-06-25 11:12:58 +00:00
|
|
|
static __rte_always_inline uint64_t
|
|
|
|
mullhi_u64(uint64_t x, uint64_t y)
|
|
|
|
{
|
|
|
|
#ifdef __SIZEOF_INT128__
|
|
|
|
__uint128_t xl = x;
|
|
|
|
__uint128_t rl = xl * y;
|
|
|
|
|
|
|
|
return (rl >> 64);
|
|
|
|
#else
|
|
|
|
uint64_t u0, u1, v0, v1, k, t;
|
|
|
|
uint64_t w1, w2;
|
|
|
|
uint64_t whi;
|
|
|
|
|
|
|
|
u1 = x >> 32; u0 = x & 0xFFFFFFFF;
|
|
|
|
v1 = y >> 32; v0 = y & 0xFFFFFFFF;
|
|
|
|
|
|
|
|
t = u0*v0;
|
|
|
|
k = t >> 32;
|
|
|
|
|
|
|
|
t = u1*v0 + k;
|
|
|
|
w1 = t & 0xFFFFFFFF;
|
|
|
|
w2 = t >> 32;
|
|
|
|
|
|
|
|
t = u0*v1 + w1;
|
|
|
|
k = t >> 32;
|
|
|
|
|
|
|
|
whi = u1*v1 + w2 + k;
|
|
|
|
|
|
|
|
return whi;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static __rte_always_inline uint64_t
|
2020-06-18 16:55:50 +00:00
|
|
|
rte_reciprocal_divide_u64(uint64_t a, const struct rte_reciprocal_u64 *R)
|
2019-06-25 11:12:58 +00:00
|
|
|
{
|
|
|
|
uint64_t t = mullhi_u64(a, R->m);
|
|
|
|
|
|
|
|
return (t + ((a - t) >> R->sh1)) >> R->sh2;
|
|
|
|
}
|
|
|
|
|
2017-04-21 10:43:26 +00:00
|
|
|
struct rte_reciprocal rte_reciprocal_value(uint32_t d);
|
2019-06-25 11:12:58 +00:00
|
|
|
struct rte_reciprocal_u64 rte_reciprocal_value_u64(uint64_t d);
|
2017-04-21 10:43:26 +00:00
|
|
|
|
|
|
|
#endif /* _RTE_RECIPROCAL_H_ */
|