f-stack/app/redis-6.2.6/tests/unit/multi.tcl

647 lines
17 KiB
Tcl
Raw Normal View History

2022-05-28 01:34:09 +00:00
start_server {tags {"multi"}} {
test {MUTLI / EXEC basics} {
r del mylist
r rpush mylist a
r rpush mylist b
r rpush mylist c
r multi
set v1 [r lrange mylist 0 -1]
set v2 [r ping]
set v3 [r exec]
list $v1 $v2 $v3
} {QUEUED QUEUED {{a b c} PONG}}
test {DISCARD} {
r del mylist
r rpush mylist a
r rpush mylist b
r rpush mylist c
r multi
set v1 [r del mylist]
set v2 [r discard]
set v3 [r lrange mylist 0 -1]
list $v1 $v2 $v3
} {QUEUED OK {a b c}}
test {Nested MULTI are not allowed} {
set err {}
r multi
catch {[r multi]} err
r exec
set _ $err
} {*ERR MULTI*}
test {MULTI where commands alter argc/argv} {
r sadd myset a
r multi
r spop myset
list [r exec] [r exists myset]
} {a 0}
test {WATCH inside MULTI is not allowed} {
set err {}
r multi
catch {[r watch x]} err
r exec
set _ $err
} {*ERR WATCH*}
test {EXEC fails if there are errors while queueing commands #1} {
r del foo1 foo2
r multi
r set foo1 bar1
catch {r non-existing-command}
r set foo2 bar2
catch {r exec} e
assert_match {EXECABORT*} $e
list [r exists foo1] [r exists foo2]
} {0 0}
test {EXEC fails if there are errors while queueing commands #2} {
set rd [redis_deferring_client]
r del foo1 foo2
r multi
r set foo1 bar1
$rd config set maxmemory 1
assert {[$rd read] eq {OK}}
catch {r lpush mylist myvalue}
$rd config set maxmemory 0
assert {[$rd read] eq {OK}}
r set foo2 bar2
catch {r exec} e
assert_match {EXECABORT*} $e
$rd close
list [r exists foo1] [r exists foo2]
} {0 0}
test {If EXEC aborts, the client MULTI state is cleared} {
r del foo1 foo2
r multi
r set foo1 bar1
catch {r non-existing-command}
r set foo2 bar2
catch {r exec} e
assert_match {EXECABORT*} $e
r ping
} {PONG}
test {EXEC works on WATCHed key not modified} {
r watch x y z
r watch k
r multi
r ping
r exec
} {PONG}
test {EXEC fail on WATCHed key modified (1 key of 1 watched)} {
r set x 30
r watch x
r set x 40
r multi
r ping
r exec
} {}
test {EXEC fail on WATCHed key modified (1 key of 5 watched)} {
r set x 30
r watch a b x k z
r set x 40
r multi
r ping
r exec
} {}
test {EXEC fail on WATCHed key modified by SORT with STORE even if the result is empty} {
r flushdb
r lpush foo bar
r watch foo
r sort emptylist store foo
r multi
r ping
r exec
} {}
test {EXEC fail on lazy expired WATCHed key} {
r flushall
r debug set-active-expire 0
r del key
r set key 1 px 2
r watch key
after 100
r multi
r incr key
assert_equal [r exec] {}
r debug set-active-expire 1
} {OK} {needs:debug}
test {After successful EXEC key is no longer watched} {
r set x 30
r watch x
r multi
r ping
r exec
r set x 40
r multi
r ping
r exec
} {PONG}
test {After failed EXEC key is no longer watched} {
r set x 30
r watch x
r set x 40
r multi
r ping
r exec
r set x 40
r multi
r ping
r exec
} {PONG}
test {It is possible to UNWATCH} {
r set x 30
r watch x
r set x 40
r unwatch
r multi
r ping
r exec
} {PONG}
test {UNWATCH when there is nothing watched works as expected} {
r unwatch
} {OK}
test {FLUSHALL is able to touch the watched keys} {
r set x 30
r watch x
r flushall
r multi
r ping
r exec
} {}
test {FLUSHALL does not touch non affected keys} {
r del x
r watch x
r flushall
r multi
r ping
r exec
} {PONG}
test {FLUSHDB is able to touch the watched keys} {
r set x 30
r watch x
r flushdb
r multi
r ping
r exec
} {}
test {FLUSHDB does not touch non affected keys} {
r del x
r watch x
r flushdb
r multi
r ping
r exec
} {PONG}
test {SWAPDB is able to touch the watched keys that exist} {
r flushall
r select 0
r set x 30
r watch x ;# make sure x (set to 30) doesn't change (SWAPDB will "delete" it)
r swapdb 0 1
r multi
r ping
r exec
} {}
test {SWAPDB is able to touch the watched keys that do not exist} {
r flushall
r select 1
r set x 30
r select 0
r watch x ;# make sure the key x (currently missing) doesn't change (SWAPDB will create it)
r swapdb 0 1
r multi
r ping
r exec
} {}
test {WATCH is able to remember the DB a key belongs to} {
r select 5
r set x 30
r watch x
r select 1
r set x 10
r select 5
r multi
r ping
set res [r exec]
# Restore original DB
r select 9
set res
} {PONG}
test {WATCH will consider touched keys target of EXPIRE} {
r del x
r set x foo
r watch x
r expire x 10
r multi
r ping
r exec
} {}
test {WATCH will consider touched expired keys} {
r del x
r set x foo
r expire x 1
r watch x
after 1100
r multi
r ping
r exec
} {}
test {DISCARD should clear the WATCH dirty flag on the client} {
r watch x
r set x 10
r multi
r discard
r multi
r incr x
r exec
} {11}
test {DISCARD should UNWATCH all the keys} {
r watch x
r set x 10
r multi
r discard
r set x 10
r multi
r incr x
r exec
} {11}
test {MULTI / EXEC is propagated correctly (single write command)} {
set repl [attach_to_replication_stream]
r multi
r set foo bar
r exec
assert_replication_stream $repl {
{select *}
{multi}
{set foo bar}
{exec}
}
close_replication_stream $repl
}
test {MULTI / EXEC is propagated correctly (empty transaction)} {
set repl [attach_to_replication_stream]
r multi
r exec
r set foo bar
assert_replication_stream $repl {
{select *}
{set foo bar}
}
close_replication_stream $repl
}
test {MULTI / EXEC is propagated correctly (read-only commands)} {
r set foo value1
set repl [attach_to_replication_stream]
r multi
r get foo
r exec
r set foo value2
assert_replication_stream $repl {
{select *}
{set foo value2}
}
close_replication_stream $repl
}
test {MULTI / EXEC is propagated correctly (write command, no effect)} {
r del bar foo bar
set repl [attach_to_replication_stream]
r multi
r del foo
r exec
# add another command so that when we see it we know multi-exec wasn't
# propagated
r incr foo
assert_replication_stream $repl {
{select *}
{incr foo}
}
close_replication_stream $repl
}
test {DISCARD should not fail during OOM} {
set rd [redis_deferring_client]
$rd config set maxmemory 1
assert {[$rd read] eq {OK}}
r multi
catch {r set x 1} e
assert_match {OOM*} $e
r discard
$rd config set maxmemory 0
assert {[$rd read] eq {OK}}
$rd close
r ping
} {PONG}
test {MULTI and script timeout} {
# check that if MULTI arrives during timeout, it is either refused, or
# allowed to pass, and we don't end up executing half of the transaction
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
$rd1 eval {while true do end} 0
after 200
catch { $r2 multi; } e
catch { $r2 incr xx; } e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
catch { $r2 incr xx; } e
catch { $r2 exec; } e
assert_match {EXECABORT*previous errors*} $e
set xx [r get xx]
# make sure that either the whole transcation passed or none of it (we actually expect none)
assert { $xx == 1 || $xx == 3}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {EXEC and script timeout} {
# check that if EXEC arrives during timeout, we don't end up executing
# half of the transaction, and also that we exit the multi state
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
catch { $r2 multi; } e
catch { $r2 incr xx; } e
$rd1 eval {while true do end} 0
after 200
catch { $r2 incr xx; } e
catch { $r2 exec; } e
assert_match {EXECABORT*BUSY*} $e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
set xx [r get xx]
# make sure that either the whole transcation passed or none of it (we actually expect none)
assert { $xx == 1 || $xx == 3}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {MULTI-EXEC body and script timeout} {
# check that we don't run an imcomplete transaction due to some commands
# arriving during busy script
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
catch { $r2 multi; } e
catch { $r2 incr xx; } e
$rd1 eval {while true do end} 0
after 200
catch { $r2 incr xx; } e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
catch { $r2 exec; } e
assert_match {EXECABORT*previous errors*} $e
set xx [r get xx]
# make sure that either the whole transcation passed or none of it (we actually expect none)
assert { $xx == 1 || $xx == 3}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {just EXEC and script timeout} {
# check that if EXEC arrives during timeout, we don't end up executing
# actual commands during busy script, and also that we exit the multi state
set rd1 [redis_deferring_client]
set r2 [redis_client]
r config set lua-time-limit 10
r set xx 1
catch { $r2 multi; } e
catch { $r2 incr xx; } e
$rd1 eval {while true do end} 0
after 200
catch { $r2 exec; } e
assert_match {EXECABORT*BUSY*} $e
r script kill
after 200 ; # Give some time to Lua to call the hook again...
set xx [r get xx]
# make we didn't execute the transaction
assert { $xx == 1}
# check that the connection is no longer in multi state
set pong [$r2 ping asdf]
assert_equal $pong "asdf"
$rd1 close; $r2 close
}
test {exec with write commands and state change} {
# check that exec that contains write commands fails if server state changed since they were queued
set r1 [redis_client]
r set xx 1
r multi
r incr xx
$r1 config set min-replicas-to-write 2
catch {r exec} e
assert_match {*EXECABORT*NOREPLICAS*} $e
set xx [r get xx]
# make sure that the INCR wasn't executed
assert { $xx == 1}
$r1 config set min-replicas-to-write 0
$r1 close;
}
test {exec with read commands and stale replica state change} {
# check that exec that contains read commands fails if server state changed since they were queued
r config set replica-serve-stale-data no
set r1 [redis_client]
r set xx 1
# check that GET is disallowed on stale replica, even if the replica becomes stale only after queuing.
r multi
r get xx
$r1 replicaof localhsot 0
catch {r exec} e
assert_match {*EXECABORT*MASTERDOWN*} $e
# check that PING is allowed
r multi
r ping
$r1 replicaof localhsot 0
set pong [r exec]
assert {$pong == "PONG"}
# check that when replica is not stale, GET is allowed
# while we're at it, let's check that multi is allowed on stale replica too
r multi
$r1 replicaof no one
r get xx
set xx [r exec]
# make sure that the INCR was executed
assert { $xx == 1 }
$r1 close;
}
test {EXEC with only read commands should not be rejected when OOM} {
set r2 [redis_client]
r set x value
r multi
r get x
r ping
# enforcing OOM
$r2 config set maxmemory 1
# finish the multi transaction with exec
assert { [r exec] == {value PONG} }
# releasing OOM
$r2 config set maxmemory 0
$r2 close
}
test {EXEC with at least one use-memory command should fail} {
set r2 [redis_client]
r multi
r set x 1
r get x
# enforcing OOM
$r2 config set maxmemory 1
# finish the multi transaction with exec
catch {r exec} e
assert_match {EXECABORT*OOM*} $e
# releasing OOM
$r2 config set maxmemory 0
$r2 close
}
test {Blocking commands ignores the timeout} {
r xgroup create s g $ MKSTREAM
set m [r multi]
r blpop empty_list 0
r brpop empty_list 0
r brpoplpush empty_list1 empty_list2 0
r blmove empty_list1 empty_list2 LEFT LEFT 0
r bzpopmin empty_zset 0
r bzpopmax empty_zset 0
r xread BLOCK 0 STREAMS s $
r xreadgroup group g c BLOCK 0 STREAMS s >
set res [r exec]
list $m $res
} {OK {{} {} {} {} {} {} {} {}}}
test {MULTI propagation of PUBLISH} {
set repl [attach_to_replication_stream]
# make sure that PUBLISH inside MULTI is propagated in a transaction
r multi
r publish bla bla
r exec
assert_replication_stream $repl {
{select *}
{multi}
{publish bla bla}
{exec}
}
close_replication_stream $repl
}
test {MULTI propagation of SCRIPT LOAD} {
set repl [attach_to_replication_stream]
# make sure that SCRIPT LOAD inside MULTI is propagated in a transaction
r multi
r script load {redis.call('set', KEYS[1], 'foo')}
set res [r exec]
set sha [lindex $res 0]
assert_replication_stream $repl {
{select *}
{multi}
{script load *}
{exec}
}
close_replication_stream $repl
}
test {MULTI propagation of SCRIPT LOAD} {
set repl [attach_to_replication_stream]
# make sure that EVAL inside MULTI is propagated in a transaction
r config set lua-replicate-commands no
r multi
r eval {redis.call('set', KEYS[1], 'bar')} 1 bar
r exec
assert_replication_stream $repl {
{select *}
{multi}
{eval *}
{exec}
}
close_replication_stream $repl
}
tags {"stream"} {
test {MULTI propagation of XREADGROUP} {
# stream is a special case because it calls propagate() directly for XREADGROUP
set repl [attach_to_replication_stream]
r XADD mystream * foo bar
r XGROUP CREATE mystream mygroup 0
# make sure the XCALIM (propagated by XREADGROUP) is indeed inside MULTI/EXEC
r multi
r XREADGROUP GROUP mygroup consumer1 STREAMS mystream ">"
r exec
assert_replication_stream $repl {
{select *}
{xadd *}
{xgroup CREATE *}
{multi}
{xclaim *}
{exec}
}
close_replication_stream $repl
}
}
}