f-stack/dpdk/drivers/net/mpipe/mpipe_tilegx.c

1656 lines
43 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* BSD LICENSE
*
* Copyright(c) 2015 EZchip Semiconductor Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of EZchip Semiconductor nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <unistd.h>
#include <rte_eal.h>
#include <rte_dev.h>
#include <rte_eal_memconfig.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <arch/mpipe_xaui_def.h>
#include <arch/mpipe_gbe_def.h>
#include <gxio/mpipe.h>
#ifdef RTE_LIBRTE_MPIPE_PMD_DEBUG
#define PMD_DEBUG_RX(...) RTE_LOG(DEBUG, PMD, __VA_ARGS__)
#define PMD_DEBUG_TX(...) RTE_LOG(DEBUG, PMD, __VA_ARGS__)
#else
#define PMD_DEBUG_RX(...)
#define PMD_DEBUG_TX(...)
#endif
#define MPIPE_MAX_CHANNELS 128
#define MPIPE_TX_MAX_QUEUES 128
#define MPIPE_RX_MAX_QUEUES 16
#define MPIPE_TX_DESCS 512
#define MPIPE_RX_BUCKETS 256
#define MPIPE_RX_STACK_SIZE 65536
#define MPIPE_RX_IP_ALIGN 2
#define MPIPE_BSM_ALIGN 128
#define MPIPE_LINK_UPDATE_TIMEOUT 10 /* s */
#define MPIPE_LINK_UPDATE_INTERVAL 100000 /* us */
struct mpipe_channel_config {
int enable;
int first_bucket;
int num_buckets;
int head_room;
gxio_mpipe_rules_stacks_t stacks;
};
struct mpipe_context {
rte_spinlock_t lock;
gxio_mpipe_context_t context;
struct mpipe_channel_config channels[MPIPE_MAX_CHANNELS];
};
/* Per-core local data. */
struct mpipe_local {
int mbuf_push_debt[RTE_MAX_ETHPORTS]; /* Buffer push debt. */
} __rte_cache_aligned;
#define MPIPE_BUF_DEBT_THRESHOLD 32
static __thread struct mpipe_local mpipe_local;
static struct mpipe_context mpipe_contexts[GXIO_MPIPE_INSTANCE_MAX];
static int mpipe_instances;
static const char *drivername = "MPIPE PMD";
/* Per queue statistics. */
struct mpipe_queue_stats {
uint64_t packets, bytes, errors, nomem;
};
/* Common tx/rx queue fields. */
struct mpipe_queue {
struct mpipe_dev_priv *priv; /* "priv" data of its device. */
uint16_t nb_desc; /* Number of tx descriptors. */
uint16_t port_id; /* Device index. */
uint16_t stat_idx; /* Queue stats index. */
uint8_t queue_idx; /* Queue index. */
uint8_t link_status; /* 0 = link down. */
struct mpipe_queue_stats stats; /* Stat data for the queue. */
};
/* Transmit queue description. */
struct mpipe_tx_queue {
struct mpipe_queue q; /* Common stuff. */
};
/* Receive queue description. */
struct mpipe_rx_queue {
struct mpipe_queue q; /* Common stuff. */
gxio_mpipe_iqueue_t iqueue; /* mPIPE iqueue. */
gxio_mpipe_idesc_t *next_desc; /* Next idesc to process. */
int avail_descs; /* Number of available descs. */
void *rx_ring_mem; /* DMA ring memory. */
};
struct mpipe_dev_priv {
gxio_mpipe_context_t *context; /* mPIPE context. */
gxio_mpipe_link_t link; /* mPIPE link for the device. */
gxio_mpipe_equeue_t equeue; /* mPIPE equeue. */
unsigned equeue_size; /* mPIPE equeue desc count. */
int instance; /* mPIPE instance. */
int ering; /* mPIPE eDMA ring. */
int stack; /* mPIPE buffer stack. */
int channel; /* Device channel. */
int port_id; /* DPDK port index. */
struct rte_eth_dev *eth_dev; /* DPDK device. */
struct rte_mbuf **tx_comps; /* TX completion array. */
struct rte_mempool *rx_mpool; /* mpool used by the rx queues. */
unsigned rx_offset; /* Receive head room. */
unsigned rx_size_code; /* mPIPE rx buffer size code. */
int is_xaui:1, /* Is this an xgbe or gbe? */
initialized:1, /* Initialized port? */
running:1; /* Running port? */
struct ether_addr mac_addr; /* MAC address. */
unsigned nb_rx_queues; /* Configured tx queues. */
unsigned nb_tx_queues; /* Configured rx queues. */
int first_bucket; /* mPIPE bucket start index. */
int first_ring; /* mPIPE notif ring start index. */
int notif_group; /* mPIPE notif group. */
rte_atomic32_t dp_count __rte_cache_aligned; /* DP Entry count. */
int tx_stat_mapping[RTE_ETHDEV_QUEUE_STAT_CNTRS];
int rx_stat_mapping[RTE_ETHDEV_QUEUE_STAT_CNTRS];
};
#define mpipe_priv(dev) \
((struct mpipe_dev_priv*)(dev)->data->dev_private)
#define mpipe_name(priv) \
((priv)->eth_dev->data->name)
#define mpipe_rx_queue(priv, n) \
((struct mpipe_rx_queue *)(priv)->eth_dev->data->rx_queues[n])
#define mpipe_tx_queue(priv, n) \
((struct mpipe_tx_queue *)(priv)->eth_dev->data->tx_queues[n])
static void
mpipe_xmit_flush(struct mpipe_dev_priv *priv);
static void
mpipe_recv_flush(struct mpipe_dev_priv *priv);
static int mpipe_equeue_sizes[] = {
[GXIO_MPIPE_EQUEUE_ENTRY_512] = 512,
[GXIO_MPIPE_EQUEUE_ENTRY_2K] = 2048,
[GXIO_MPIPE_EQUEUE_ENTRY_8K] = 8192,
[GXIO_MPIPE_EQUEUE_ENTRY_64K] = 65536,
};
static int mpipe_iqueue_sizes[] = {
[GXIO_MPIPE_IQUEUE_ENTRY_128] = 128,
[GXIO_MPIPE_IQUEUE_ENTRY_512] = 512,
[GXIO_MPIPE_IQUEUE_ENTRY_2K] = 2048,
[GXIO_MPIPE_IQUEUE_ENTRY_64K] = 65536,
};
static int mpipe_buffer_sizes[] = {
[GXIO_MPIPE_BUFFER_SIZE_128] = 128,
[GXIO_MPIPE_BUFFER_SIZE_256] = 256,
[GXIO_MPIPE_BUFFER_SIZE_512] = 512,
[GXIO_MPIPE_BUFFER_SIZE_1024] = 1024,
[GXIO_MPIPE_BUFFER_SIZE_1664] = 1664,
[GXIO_MPIPE_BUFFER_SIZE_4096] = 4096,
[GXIO_MPIPE_BUFFER_SIZE_10368] = 10368,
[GXIO_MPIPE_BUFFER_SIZE_16384] = 16384,
};
static gxio_mpipe_context_t *
mpipe_context(int instance)
{
if (instance < 0 || instance >= mpipe_instances)
return NULL;
return &mpipe_contexts[instance].context;
}
static int mpipe_channel_config(int instance, int channel,
struct mpipe_channel_config *config)
{
struct mpipe_channel_config *data;
struct mpipe_context *context;
gxio_mpipe_rules_t rules;
int idx, rc = 0;
if (instance < 0 || instance >= mpipe_instances ||
channel < 0 || channel >= MPIPE_MAX_CHANNELS)
return -EINVAL;
context = &mpipe_contexts[instance];
rte_spinlock_lock(&context->lock);
gxio_mpipe_rules_init(&rules, &context->context);
for (idx = 0; idx < MPIPE_MAX_CHANNELS; idx++) {
data = (channel == idx) ? config : &context->channels[idx];
if (!data->enable)
continue;
rc = gxio_mpipe_rules_begin(&rules, data->first_bucket,
data->num_buckets, &data->stacks);
if (rc < 0) {
goto done;
}
rc = gxio_mpipe_rules_add_channel(&rules, idx);
if (rc < 0) {
goto done;
}
rc = gxio_mpipe_rules_set_headroom(&rules, data->head_room);
if (rc < 0) {
goto done;
}
}
rc = gxio_mpipe_rules_commit(&rules);
if (rc == 0) {
memcpy(&context->channels[channel], config, sizeof(*config));
}
done:
rte_spinlock_unlock(&context->lock);
return rc;
}
static int
mpipe_get_size_index(int *array, int count, int size,
bool roundup)
{
int i, last = -1;
for (i = 0; i < count && array[i] < size; i++) {
if (array[i])
last = i;
}
if (roundup)
return i < count ? (int)i : -ENOENT;
else
return last >= 0 ? last : -ENOENT;
}
static int
mpipe_calc_size(int *array, int count, int size)
{
int index = mpipe_get_size_index(array, count, size, 1);
return index < 0 ? index : array[index];
}
static int mpipe_equeue_size(int size)
{
int result;
result = mpipe_calc_size(mpipe_equeue_sizes,
RTE_DIM(mpipe_equeue_sizes), size);
return result;
}
static int mpipe_iqueue_size(int size)
{
int result;
result = mpipe_calc_size(mpipe_iqueue_sizes,
RTE_DIM(mpipe_iqueue_sizes), size);
return result;
}
static int mpipe_buffer_size_index(int size)
{
int result;
result = mpipe_get_size_index(mpipe_buffer_sizes,
RTE_DIM(mpipe_buffer_sizes), size, 0);
return result;
}
static inline int
mpipe_dev_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &(dev->data->dev_link);
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static inline int
mpipe_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &(dev->data->dev_link);
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static void
mpipe_infos_get(struct rte_eth_dev *dev __rte_unused,
struct rte_eth_dev_info *dev_info)
{
dev_info->min_rx_bufsize = 128;
dev_info->max_rx_pktlen = 1518;
dev_info->max_tx_queues = MPIPE_TX_MAX_QUEUES;
dev_info->max_rx_queues = MPIPE_RX_MAX_QUEUES;
dev_info->max_mac_addrs = 1;
dev_info->rx_offload_capa = 0;
dev_info->tx_offload_capa = 0;
}
static int
mpipe_configure(struct rte_eth_dev *dev)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
if (dev->data->nb_tx_queues > MPIPE_TX_MAX_QUEUES) {
RTE_LOG(ERR, PMD, "%s: Too many tx queues: %d > %d\n",
mpipe_name(priv), dev->data->nb_tx_queues,
MPIPE_TX_MAX_QUEUES);
return -EINVAL;
}
priv->nb_tx_queues = dev->data->nb_tx_queues;
if (dev->data->nb_rx_queues > MPIPE_RX_MAX_QUEUES) {
RTE_LOG(ERR, PMD, "%s: Too many rx queues: %d > %d\n",
mpipe_name(priv), dev->data->nb_rx_queues,
MPIPE_RX_MAX_QUEUES);
}
priv->nb_rx_queues = dev->data->nb_rx_queues;
return 0;
}
static inline int
mpipe_link_compare(struct rte_eth_link *link1,
struct rte_eth_link *link2)
{
return (*(uint64_t *)link1 == *(uint64_t *)link2)
? -1 : 0;
}
static int
mpipe_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
struct rte_eth_link old, new;
int64_t state, speed;
int count, rc;
memset(&old, 0, sizeof(old));
memset(&new, 0, sizeof(new));
mpipe_dev_atomic_read_link_status(dev, &old);
for (count = 0, rc = 0; count < MPIPE_LINK_UPDATE_TIMEOUT; count++) {
if (!priv->initialized)
break;
state = gxio_mpipe_link_get_attr(&priv->link,
GXIO_MPIPE_LINK_CURRENT_STATE);
if (state < 0)
break;
speed = state & GXIO_MPIPE_LINK_SPEED_MASK;
new.link_autoneg = (dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_AUTONEG);
if (speed == GXIO_MPIPE_LINK_1G) {
new.link_speed = ETH_SPEED_NUM_1G;
new.link_duplex = ETH_LINK_FULL_DUPLEX;
new.link_status = ETH_LINK_UP;
} else if (speed == GXIO_MPIPE_LINK_10G) {
new.link_speed = ETH_SPEED_NUM_10G;
new.link_duplex = ETH_LINK_FULL_DUPLEX;
new.link_status = ETH_LINK_UP;
}
rc = mpipe_link_compare(&old, &new);
if (rc == 0 || !wait_to_complete)
break;
rte_delay_us(MPIPE_LINK_UPDATE_INTERVAL);
}
mpipe_dev_atomic_write_link_status(dev, &new);
return rc;
}
static int
mpipe_set_link(struct rte_eth_dev *dev, int up)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
int rc;
rc = gxio_mpipe_link_set_attr(&priv->link,
GXIO_MPIPE_LINK_DESIRED_STATE,
up ? GXIO_MPIPE_LINK_ANYSPEED : 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to set link %s.\n",
mpipe_name(priv), up ? "up" : "down");
} else {
mpipe_link_update(dev, 0);
}
return rc;
}
static int
mpipe_set_link_up(struct rte_eth_dev *dev)
{
return mpipe_set_link(dev, 1);
}
static int
mpipe_set_link_down(struct rte_eth_dev *dev)
{
return mpipe_set_link(dev, 0);
}
static inline void
mpipe_dp_enter(struct mpipe_dev_priv *priv)
{
__insn_mtspr(SPR_DSTREAM_PF, 0);
rte_atomic32_inc(&priv->dp_count);
}
static inline void
mpipe_dp_exit(struct mpipe_dev_priv *priv)
{
rte_atomic32_dec(&priv->dp_count);
}
static inline void
mpipe_dp_wait(struct mpipe_dev_priv *priv)
{
while (rte_atomic32_read(&priv->dp_count) != 0) {
rte_pause();
}
}
static inline int
mpipe_mbuf_stack_index(struct mpipe_dev_priv *priv, struct rte_mbuf *mbuf)
{
return (mbuf->port < RTE_MAX_ETHPORTS) ?
mpipe_priv(&rte_eth_devices[mbuf->port])->stack :
priv->stack;
}
static inline struct rte_mbuf *
mpipe_recv_mbuf(struct mpipe_dev_priv *priv, gxio_mpipe_idesc_t *idesc,
int in_port)
{
void *va = gxio_mpipe_idesc_get_va(idesc);
uint16_t size = gxio_mpipe_idesc_get_xfer_size(idesc);
struct rte_mbuf *mbuf = RTE_PTR_SUB(va, priv->rx_offset);
rte_pktmbuf_reset(mbuf);
mbuf->data_off = (uintptr_t)va - (uintptr_t)mbuf->buf_addr;
mbuf->port = in_port;
mbuf->data_len = size;
mbuf->pkt_len = size;
mbuf->hash.rss = gxio_mpipe_idesc_get_flow_hash(idesc);
PMD_DEBUG_RX("%s: RX mbuf %p, buffer %p, buf_addr %p, size %d\n",
mpipe_name(priv), mbuf, va, mbuf->buf_addr, size);
return mbuf;
}
static inline void
mpipe_recv_push(struct mpipe_dev_priv *priv, struct rte_mbuf *mbuf)
{
const int offset = RTE_PKTMBUF_HEADROOM + MPIPE_RX_IP_ALIGN;
void *buf_addr = RTE_PTR_ADD(mbuf->buf_addr, offset);
gxio_mpipe_push_buffer(priv->context, priv->stack, buf_addr);
PMD_DEBUG_RX("%s: Pushed mbuf %p, buffer %p into stack %d\n",
mpipe_name(priv), mbuf, buf_addr, priv->stack);
}
static inline void
mpipe_recv_fill_stack(struct mpipe_dev_priv *priv, int count)
{
struct rte_mbuf *mbuf;
int i;
for (i = 0; i < count; i++) {
mbuf = rte_mbuf_raw_alloc(priv->rx_mpool);
if (!mbuf)
break;
mpipe_recv_push(priv, mbuf);
}
PMD_DEBUG_RX("%s: Filled %d/%d buffers\n", mpipe_name(priv), i, count);
}
static inline void
mpipe_recv_flush_stack(struct mpipe_dev_priv *priv)
{
const int offset = priv->rx_offset & ~RTE_MEMPOOL_ALIGN_MASK;
uint8_t in_port = priv->port_id;
struct rte_mbuf *mbuf;
void *va;
while (1) {
va = gxio_mpipe_pop_buffer(priv->context, priv->stack);
if (!va)
break;
mbuf = RTE_PTR_SUB(va, offset);
PMD_DEBUG_RX("%s: Flushing mbuf %p, va %p\n",
mpipe_name(priv), mbuf, va);
mbuf->data_off = (uintptr_t)va - (uintptr_t)mbuf->buf_addr;
mbuf->refcnt = 1;
mbuf->nb_segs = 1;
mbuf->port = in_port;
mbuf->packet_type = 0;
mbuf->data_len = 0;
mbuf->pkt_len = 0;
__rte_mbuf_raw_free(mbuf);
}
}
static void
mpipe_register_segment(struct mpipe_dev_priv *priv, const struct rte_memseg *ms)
{
size_t size = ms->hugepage_sz;
uint8_t *addr, *end;
int rc;
for (addr = ms->addr, end = addr + ms->len; addr < end; addr += size) {
rc = gxio_mpipe_register_page(priv->context, priv->stack, addr,
size, 0);
if (rc < 0)
break;
}
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Could not register memseg @%p, %d.\n",
mpipe_name(priv), ms->addr, rc);
} else {
RTE_LOG(DEBUG, PMD, "%s: Registered segment %p - %p\n",
mpipe_name(priv), ms->addr,
RTE_PTR_ADD(ms->addr, ms->len - 1));
}
}
static int
mpipe_recv_init(struct mpipe_dev_priv *priv)
{
const struct rte_memseg *seg = rte_eal_get_physmem_layout();
size_t stack_size;
void *stack_mem;
int rc;
if (!priv->rx_mpool) {
RTE_LOG(ERR, PMD, "%s: No buffer pool.\n",
mpipe_name(priv));
return -ENODEV;
}
/* Allocate one NotifRing for each queue. */
rc = gxio_mpipe_alloc_notif_rings(priv->context, MPIPE_RX_MAX_QUEUES,
0, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate notif rings.\n",
mpipe_name(priv));
return rc;
}
priv->first_ring = rc;
/* Allocate a NotifGroup. */
rc = gxio_mpipe_alloc_notif_groups(priv->context, 1, 0, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate rx group.\n",
mpipe_name(priv));
return rc;
}
priv->notif_group = rc;
/* Allocate required buckets. */
rc = gxio_mpipe_alloc_buckets(priv->context, MPIPE_RX_BUCKETS, 0, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate buckets.\n",
mpipe_name(priv));
return rc;
}
priv->first_bucket = rc;
rc = gxio_mpipe_alloc_buffer_stacks(priv->context, 1, 0, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate buffer stack.\n",
mpipe_name(priv));
return rc;
}
priv->stack = rc;
while (seg && seg->addr)
mpipe_register_segment(priv, seg++);
stack_size = gxio_mpipe_calc_buffer_stack_bytes(MPIPE_RX_STACK_SIZE);
stack_mem = rte_zmalloc(NULL, stack_size, 65536);
if (!stack_mem) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate buffer memory.\n",
mpipe_name(priv));
return -ENOMEM;
} else {
RTE_LOG(DEBUG, PMD, "%s: Buffer stack memory %p - %p.\n",
mpipe_name(priv), stack_mem,
RTE_PTR_ADD(stack_mem, stack_size - 1));
}
rc = gxio_mpipe_init_buffer_stack(priv->context, priv->stack,
priv->rx_size_code, stack_mem,
stack_size, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to initialize buffer stack.\n",
mpipe_name(priv));
return rc;
}
return 0;
}
static int
mpipe_xmit_init(struct mpipe_dev_priv *priv)
{
size_t ring_size;
void *ring_mem;
int rc;
/* Allocate eDMA ring. */
rc = gxio_mpipe_alloc_edma_rings(priv->context, 1, 0, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to alloc tx ring.\n",
mpipe_name(priv));
return rc;
}
priv->ering = rc;
rc = mpipe_equeue_size(MPIPE_TX_DESCS);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Cannot allocate %d equeue descs.\n",
mpipe_name(priv), (int)MPIPE_TX_DESCS);
return -ENOMEM;
}
priv->equeue_size = rc;
/* Initialize completion array. */
ring_size = sizeof(priv->tx_comps[0]) * priv->equeue_size;
priv->tx_comps = rte_zmalloc(NULL, ring_size, RTE_CACHE_LINE_SIZE);
if (!priv->tx_comps) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate egress comps.\n",
mpipe_name(priv));
return -ENOMEM;
}
/* Allocate eDMA ring memory. */
ring_size = sizeof(gxio_mpipe_edesc_t) * priv->equeue_size;
ring_mem = rte_zmalloc(NULL, ring_size, ring_size);
if (!ring_mem) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate egress descs.\n",
mpipe_name(priv));
return -ENOMEM;
} else {
RTE_LOG(DEBUG, PMD, "%s: eDMA ring memory %p - %p.\n",
mpipe_name(priv), ring_mem,
RTE_PTR_ADD(ring_mem, ring_size - 1));
}
/* Initialize eDMA ring. */
rc = gxio_mpipe_equeue_init(&priv->equeue, priv->context, priv->ering,
priv->channel, ring_mem, ring_size, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to init equeue\n",
mpipe_name(priv));
return rc;
}
return 0;
}
static int
mpipe_link_init(struct mpipe_dev_priv *priv)
{
int rc;
/* Open the link. */
rc = gxio_mpipe_link_open(&priv->link, priv->context,
mpipe_name(priv), GXIO_MPIPE_LINK_AUTO_NONE);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to open link.\n",
mpipe_name(priv));
return rc;
}
/* Get the channel index. */
rc = gxio_mpipe_link_channel(&priv->link);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Bad channel\n",
mpipe_name(priv));
return rc;
}
priv->channel = rc;
return 0;
}
static int
mpipe_init(struct mpipe_dev_priv *priv)
{
int rc;
if (priv->initialized)
return 0;
rc = mpipe_recv_init(priv);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to init rx.\n",
mpipe_name(priv));
return rc;
}
rc = mpipe_xmit_init(priv);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to init tx.\n",
mpipe_name(priv));
rte_free(priv);
return rc;
}
priv->initialized = 1;
return 0;
}
static int
mpipe_start(struct rte_eth_dev *dev)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
struct mpipe_channel_config config;
struct mpipe_rx_queue *rx_queue;
struct rte_eth_link eth_link;
unsigned queue, buffers = 0;
size_t ring_size;
void *ring_mem;
int rc;
memset(&eth_link, 0, sizeof(eth_link));
mpipe_dev_atomic_write_link_status(dev, &eth_link);
rc = mpipe_init(priv);
if (rc < 0)
return rc;
/* Initialize NotifRings. */
for (queue = 0; queue < priv->nb_rx_queues; queue++) {
rx_queue = mpipe_rx_queue(priv, queue);
ring_size = rx_queue->q.nb_desc * sizeof(gxio_mpipe_idesc_t);
ring_mem = rte_malloc(NULL, ring_size, ring_size);
if (!ring_mem) {
RTE_LOG(ERR, PMD, "%s: Failed to alloc rx descs.\n",
mpipe_name(priv));
return -ENOMEM;
} else {
RTE_LOG(DEBUG, PMD, "%s: iDMA ring %d memory %p - %p.\n",
mpipe_name(priv), queue, ring_mem,
RTE_PTR_ADD(ring_mem, ring_size - 1));
}
rc = gxio_mpipe_iqueue_init(&rx_queue->iqueue, priv->context,
priv->first_ring + queue, ring_mem,
ring_size, 0);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to init rx queue.\n",
mpipe_name(priv));
return rc;
}
rx_queue->rx_ring_mem = ring_mem;
buffers += rx_queue->q.nb_desc;
}
/* Initialize ingress NotifGroup and buckets. */
rc = gxio_mpipe_init_notif_group_and_buckets(priv->context,
priv->notif_group, priv->first_ring, priv->nb_rx_queues,
priv->first_bucket, MPIPE_RX_BUCKETS,
GXIO_MPIPE_BUCKET_STATIC_FLOW_AFFINITY);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to init group and buckets.\n",
mpipe_name(priv));
return rc;
}
/* Configure the classifier to deliver packets from this port. */
config.enable = 1;
config.first_bucket = priv->first_bucket;
config.num_buckets = MPIPE_RX_BUCKETS;
memset(&config.stacks, 0xff, sizeof(config.stacks));
config.stacks.stacks[priv->rx_size_code] = priv->stack;
config.head_room = priv->rx_offset & RTE_MEMPOOL_ALIGN_MASK;
rc = mpipe_channel_config(priv->instance, priv->channel,
&config);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to setup classifier.\n",
mpipe_name(priv));
return rc;
}
/* Fill empty buffers into the buffer stack. */
mpipe_recv_fill_stack(priv, buffers);
/* Bring up the link. */
mpipe_set_link_up(dev);
/* Start xmit/recv on queues. */
for (queue = 0; queue < priv->nb_tx_queues; queue++)
mpipe_tx_queue(priv, queue)->q.link_status = ETH_LINK_UP;
for (queue = 0; queue < priv->nb_rx_queues; queue++)
mpipe_rx_queue(priv, queue)->q.link_status = ETH_LINK_UP;
priv->running = 1;
return 0;
}
static void
mpipe_stop(struct rte_eth_dev *dev)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
struct mpipe_channel_config config;
unsigned queue;
int rc;
for (queue = 0; queue < priv->nb_tx_queues; queue++)
mpipe_tx_queue(priv, queue)->q.link_status = ETH_LINK_DOWN;
for (queue = 0; queue < priv->nb_rx_queues; queue++)
mpipe_rx_queue(priv, queue)->q.link_status = ETH_LINK_DOWN;
/* Make sure the link_status writes land. */
rte_wmb();
/*
* Wait for link_status change to register with straggling datapath
* threads.
*/
mpipe_dp_wait(priv);
/* Bring down the link. */
mpipe_set_link_down(dev);
/* Remove classifier rules. */
memset(&config, 0, sizeof(config));
rc = mpipe_channel_config(priv->instance, priv->channel,
&config);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to stop classifier.\n",
mpipe_name(priv));
}
/* Flush completed xmit packets. */
mpipe_xmit_flush(priv);
/* Flush buffer stacks. */
mpipe_recv_flush(priv);
priv->running = 0;
}
static void
mpipe_close(struct rte_eth_dev *dev)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
if (priv->running)
mpipe_stop(dev);
}
static void
mpipe_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
struct mpipe_tx_queue *tx_queue;
struct mpipe_rx_queue *rx_queue;
unsigned i;
uint16_t idx;
memset(stats, 0, sizeof(*stats));
for (i = 0; i < priv->nb_tx_queues; i++) {
tx_queue = mpipe_tx_queue(priv, i);
stats->opackets += tx_queue->q.stats.packets;
stats->obytes += tx_queue->q.stats.bytes;
stats->oerrors += tx_queue->q.stats.errors;
idx = tx_queue->q.stat_idx;
if (idx != (uint16_t)-1) {
stats->q_opackets[idx] += tx_queue->q.stats.packets;
stats->q_obytes[idx] += tx_queue->q.stats.bytes;
stats->q_errors[idx] += tx_queue->q.stats.errors;
}
}
for (i = 0; i < priv->nb_rx_queues; i++) {
rx_queue = mpipe_rx_queue(priv, i);
stats->ipackets += rx_queue->q.stats.packets;
stats->ibytes += rx_queue->q.stats.bytes;
stats->ierrors += rx_queue->q.stats.errors;
stats->rx_nombuf += rx_queue->q.stats.nomem;
idx = rx_queue->q.stat_idx;
if (idx != (uint16_t)-1) {
stats->q_ipackets[idx] += rx_queue->q.stats.packets;
stats->q_ibytes[idx] += rx_queue->q.stats.bytes;
stats->q_errors[idx] += rx_queue->q.stats.errors;
}
}
}
static void
mpipe_stats_reset(struct rte_eth_dev *dev)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
struct mpipe_tx_queue *tx_queue;
struct mpipe_rx_queue *rx_queue;
unsigned i;
for (i = 0; i < priv->nb_tx_queues; i++) {
tx_queue = mpipe_tx_queue(priv, i);
memset(&tx_queue->q.stats, 0, sizeof(tx_queue->q.stats));
}
for (i = 0; i < priv->nb_rx_queues; i++) {
rx_queue = mpipe_rx_queue(priv, i);
memset(&rx_queue->q.stats, 0, sizeof(rx_queue->q.stats));
}
}
static int
mpipe_queue_stats_mapping_set(struct rte_eth_dev *dev, uint16_t queue_id,
uint8_t stat_idx, uint8_t is_rx)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
if (is_rx) {
priv->rx_stat_mapping[stat_idx] = queue_id;
} else {
priv->tx_stat_mapping[stat_idx] = queue_id;
}
return 0;
}
static int
mpipe_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct mpipe_tx_queue *tx_queue = dev->data->tx_queues[queue_idx];
struct mpipe_dev_priv *priv = mpipe_priv(dev);
uint16_t idx;
tx_queue = rte_realloc(tx_queue, sizeof(*tx_queue),
RTE_CACHE_LINE_SIZE);
if (!tx_queue) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate TX queue.\n",
mpipe_name(priv));
return -ENOMEM;
}
memset(&tx_queue->q, 0, sizeof(tx_queue->q));
tx_queue->q.priv = priv;
tx_queue->q.queue_idx = queue_idx;
tx_queue->q.port_id = dev->data->port_id;
tx_queue->q.nb_desc = nb_desc;
tx_queue->q.stat_idx = -1;
for (idx = 0; idx < RTE_ETHDEV_QUEUE_STAT_CNTRS; idx++) {
if (priv->tx_stat_mapping[idx] == queue_idx)
tx_queue->q.stat_idx = idx;
}
dev->data->tx_queues[queue_idx] = tx_queue;
return 0;
}
static void
mpipe_tx_queue_release(void *_txq)
{
rte_free(_txq);
}
static int
mpipe_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mp)
{
struct mpipe_rx_queue *rx_queue = dev->data->rx_queues[queue_idx];
struct mpipe_dev_priv *priv = mpipe_priv(dev);
uint16_t idx;
int size, rc;
rc = mpipe_iqueue_size(nb_desc);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Cannot allocate %d iqueue descs.\n",
mpipe_name(priv), (int)nb_desc);
return -ENOMEM;
}
if (rc != nb_desc) {
RTE_LOG(WARNING, PMD, "%s: Extending RX descs from %d to %d.\n",
mpipe_name(priv), (int)nb_desc, rc);
nb_desc = rc;
}
size = sizeof(*rx_queue);
rx_queue = rte_realloc(rx_queue, size, RTE_CACHE_LINE_SIZE);
if (!rx_queue) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate RX queue.\n",
mpipe_name(priv));
return -ENOMEM;
}
memset(&rx_queue->q, 0, sizeof(rx_queue->q));
rx_queue->q.priv = priv;
rx_queue->q.nb_desc = nb_desc;
rx_queue->q.port_id = dev->data->port_id;
rx_queue->q.queue_idx = queue_idx;
if (!priv->rx_mpool) {
int size = (rte_pktmbuf_data_room_size(mp) -
RTE_PKTMBUF_HEADROOM -
MPIPE_RX_IP_ALIGN);
priv->rx_offset = (sizeof(struct rte_mbuf) +
rte_pktmbuf_priv_size(mp) +
RTE_PKTMBUF_HEADROOM +
MPIPE_RX_IP_ALIGN);
if (size < 0) {
RTE_LOG(ERR, PMD, "%s: Bad buffer size %d.\n",
mpipe_name(priv),
rte_pktmbuf_data_room_size(mp));
return -ENOMEM;
}
priv->rx_size_code = mpipe_buffer_size_index(size);
priv->rx_mpool = mp;
}
if (priv->rx_mpool != mp) {
RTE_LOG(WARNING, PMD, "%s: Ignoring multiple buffer pools.\n",
mpipe_name(priv));
}
rx_queue->q.stat_idx = -1;
for (idx = 0; idx < RTE_ETHDEV_QUEUE_STAT_CNTRS; idx++) {
if (priv->rx_stat_mapping[idx] == queue_idx)
rx_queue->q.stat_idx = idx;
}
dev->data->rx_queues[queue_idx] = rx_queue;
return 0;
}
static void
mpipe_rx_queue_release(void *_rxq)
{
rte_free(_rxq);
}
#define MPIPE_XGBE_ENA_HASH_MULTI \
(1UL << MPIPE_XAUI_RECEIVE_CONFIGURATION__ENA_HASH_MULTI_SHIFT)
#define MPIPE_XGBE_ENA_HASH_UNI \
(1UL << MPIPE_XAUI_RECEIVE_CONFIGURATION__ENA_HASH_UNI_SHIFT)
#define MPIPE_XGBE_COPY_ALL \
(1UL << MPIPE_XAUI_RECEIVE_CONFIGURATION__COPY_ALL_SHIFT)
#define MPIPE_GBE_ENA_MULTI_HASH \
(1UL << MPIPE_GBE_NETWORK_CONFIGURATION__MULTI_HASH_ENA_SHIFT)
#define MPIPE_GBE_ENA_UNI_HASH \
(1UL << MPIPE_GBE_NETWORK_CONFIGURATION__UNI_HASH_ENA_SHIFT)
#define MPIPE_GBE_COPY_ALL \
(1UL << MPIPE_GBE_NETWORK_CONFIGURATION__COPY_ALL_SHIFT)
static void
mpipe_promiscuous_enable(struct rte_eth_dev *dev)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
int64_t reg;
int addr;
if (priv->is_xaui) {
addr = MPIPE_XAUI_RECEIVE_CONFIGURATION;
reg = gxio_mpipe_link_mac_rd(&priv->link, addr);
reg &= ~MPIPE_XGBE_ENA_HASH_MULTI;
reg &= ~MPIPE_XGBE_ENA_HASH_UNI;
reg |= MPIPE_XGBE_COPY_ALL;
gxio_mpipe_link_mac_wr(&priv->link, addr, reg);
} else {
addr = MPIPE_GBE_NETWORK_CONFIGURATION;
reg = gxio_mpipe_link_mac_rd(&priv->link, addr);
reg &= ~MPIPE_GBE_ENA_MULTI_HASH;
reg &= ~MPIPE_GBE_ENA_UNI_HASH;
reg |= MPIPE_GBE_COPY_ALL;
gxio_mpipe_link_mac_wr(&priv->link, addr, reg);
}
}
static void
mpipe_promiscuous_disable(struct rte_eth_dev *dev)
{
struct mpipe_dev_priv *priv = mpipe_priv(dev);
int64_t reg;
int addr;
if (priv->is_xaui) {
addr = MPIPE_XAUI_RECEIVE_CONFIGURATION;
reg = gxio_mpipe_link_mac_rd(&priv->link, addr);
reg |= MPIPE_XGBE_ENA_HASH_MULTI;
reg |= MPIPE_XGBE_ENA_HASH_UNI;
reg &= ~MPIPE_XGBE_COPY_ALL;
gxio_mpipe_link_mac_wr(&priv->link, addr, reg);
} else {
addr = MPIPE_GBE_NETWORK_CONFIGURATION;
reg = gxio_mpipe_link_mac_rd(&priv->link, addr);
reg |= MPIPE_GBE_ENA_MULTI_HASH;
reg |= MPIPE_GBE_ENA_UNI_HASH;
reg &= ~MPIPE_GBE_COPY_ALL;
gxio_mpipe_link_mac_wr(&priv->link, addr, reg);
}
}
static const struct eth_dev_ops mpipe_dev_ops = {
.dev_infos_get = mpipe_infos_get,
.dev_configure = mpipe_configure,
.dev_start = mpipe_start,
.dev_stop = mpipe_stop,
.dev_close = mpipe_close,
.stats_get = mpipe_stats_get,
.stats_reset = mpipe_stats_reset,
.queue_stats_mapping_set = mpipe_queue_stats_mapping_set,
.tx_queue_setup = mpipe_tx_queue_setup,
.rx_queue_setup = mpipe_rx_queue_setup,
.tx_queue_release = mpipe_tx_queue_release,
.rx_queue_release = mpipe_rx_queue_release,
.link_update = mpipe_link_update,
.dev_set_link_up = mpipe_set_link_up,
.dev_set_link_down = mpipe_set_link_down,
.promiscuous_enable = mpipe_promiscuous_enable,
.promiscuous_disable = mpipe_promiscuous_disable,
};
static inline void
mpipe_xmit_null(struct mpipe_dev_priv *priv, int64_t start, int64_t end)
{
gxio_mpipe_edesc_t null_desc = { { .bound = 1, .ns = 1 } };
gxio_mpipe_equeue_t *equeue = &priv->equeue;
int64_t slot;
for (slot = start; slot < end; slot++) {
gxio_mpipe_equeue_put_at(equeue, null_desc, slot);
}
}
static void
mpipe_xmit_flush(struct mpipe_dev_priv *priv)
{
gxio_mpipe_equeue_t *equeue = &priv->equeue;
int64_t slot;
/* Post a dummy descriptor and wait for its return. */
slot = gxio_mpipe_equeue_reserve(equeue, 1);
if (slot < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to reserve stop slot.\n",
mpipe_name(priv));
return;
}
mpipe_xmit_null(priv, slot, slot + 1);
while (!gxio_mpipe_equeue_is_complete(equeue, slot, 1)) {
rte_pause();
}
for (slot = 0; slot < priv->equeue_size; slot++) {
if (priv->tx_comps[slot])
rte_pktmbuf_free_seg(priv->tx_comps[slot]);
}
}
static void
mpipe_recv_flush(struct mpipe_dev_priv *priv)
{
uint8_t in_port = priv->port_id;
struct mpipe_rx_queue *rx_queue;
gxio_mpipe_iqueue_t *iqueue;
gxio_mpipe_idesc_t idesc;
struct rte_mbuf *mbuf;
unsigned queue;
/* Release packets on the buffer stack. */
mpipe_recv_flush_stack(priv);
/* Flush packets sitting in recv queues. */
for (queue = 0; queue < priv->nb_rx_queues; queue++) {
rx_queue = mpipe_rx_queue(priv, queue);
iqueue = &rx_queue->iqueue;
while (gxio_mpipe_iqueue_try_get(iqueue, &idesc) >= 0) {
/* Skip idesc with the 'buffer error' bit set. */
if (idesc.be)
continue;
mbuf = mpipe_recv_mbuf(priv, &idesc, in_port);
rte_pktmbuf_free(mbuf);
}
rte_free(rx_queue->rx_ring_mem);
}
}
static inline uint16_t
mpipe_do_xmit(struct mpipe_tx_queue *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct mpipe_dev_priv *priv = tx_queue->q.priv;
gxio_mpipe_equeue_t *equeue = &priv->equeue;
unsigned nb_bytes = 0;
unsigned nb_sent = 0;
int nb_slots, i;
uint8_t port_id;
PMD_DEBUG_TX("Trying to transmit %d packets on %s:%d.\n",
nb_pkts, mpipe_name(tx_queue->q.priv),
tx_queue->q.queue_idx);
/* Optimistic assumption that we need exactly one slot per packet. */
nb_slots = RTE_MIN(nb_pkts, MPIPE_TX_DESCS / 2);
do {
struct rte_mbuf *mbuf = NULL, *pkt = NULL;
int64_t slot;
/* Reserve eDMA ring slots. */
slot = gxio_mpipe_equeue_try_reserve_fast(equeue, nb_slots);
if (unlikely(slot < 0)) {
break;
}
for (i = 0; i < nb_slots; i++) {
unsigned idx = (slot + i) & (priv->equeue_size - 1);
rte_prefetch0(priv->tx_comps[idx]);
}
/* Fill up slots with descriptor and completion info. */
for (i = 0; i < nb_slots; i++) {
unsigned idx = (slot + i) & (priv->equeue_size - 1);
gxio_mpipe_edesc_t desc;
struct rte_mbuf *next;
/* Starting on a new packet? */
if (likely(!mbuf)) {
int room = nb_slots - i;
pkt = mbuf = tx_pkts[nb_sent];
/* Bail out if we run out of descs. */
if (unlikely(pkt->nb_segs > room))
break;
nb_sent++;
}
/* We have a segment to send. */
next = mbuf->next;
if (priv->tx_comps[idx])
rte_pktmbuf_free_seg(priv->tx_comps[idx]);
port_id = (mbuf->port < RTE_MAX_ETHPORTS) ?
mbuf->port : priv->port_id;
desc = (gxio_mpipe_edesc_t) { {
.va = rte_pktmbuf_mtod(mbuf, uintptr_t),
.xfer_size = rte_pktmbuf_data_len(mbuf),
.bound = next ? 0 : 1,
.stack_idx = mpipe_mbuf_stack_index(priv, mbuf),
.size = priv->rx_size_code,
} };
if (mpipe_local.mbuf_push_debt[port_id] > 0) {
mpipe_local.mbuf_push_debt[port_id]--;
desc.hwb = 1;
priv->tx_comps[idx] = NULL;
} else
priv->tx_comps[idx] = mbuf;
nb_bytes += mbuf->data_len;
gxio_mpipe_equeue_put_at(equeue, desc, slot + i);
PMD_DEBUG_TX("%s:%d: Sending packet %p, len %d\n",
mpipe_name(priv),
tx_queue->q.queue_idx,
rte_pktmbuf_mtod(mbuf, void *),
rte_pktmbuf_data_len(mbuf));
mbuf = next;
}
if (unlikely(nb_sent < nb_pkts)) {
/* Fill remaining slots with null descriptors. */
mpipe_xmit_null(priv, slot + i, slot + nb_slots);
/*
* Calculate exact number of descriptors needed for
* the next go around.
*/
nb_slots = 0;
for (i = nb_sent; i < nb_pkts; i++) {
nb_slots += tx_pkts[i]->nb_segs;
}
nb_slots = RTE_MIN(nb_slots, MPIPE_TX_DESCS / 2);
}
} while (nb_sent < nb_pkts);
tx_queue->q.stats.packets += nb_sent;
tx_queue->q.stats.bytes += nb_bytes;
return nb_sent;
}
static inline uint16_t
mpipe_do_recv(struct mpipe_rx_queue *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct mpipe_dev_priv *priv = rx_queue->q.priv;
gxio_mpipe_iqueue_t *iqueue = &rx_queue->iqueue;
gxio_mpipe_idesc_t *first_idesc, *idesc, *last_idesc;
uint8_t in_port = rx_queue->q.port_id;
const unsigned look_ahead = 8;
int room = nb_pkts, rc = 0;
unsigned nb_packets = 0;
unsigned nb_dropped = 0;
unsigned nb_nomem = 0;
unsigned nb_bytes = 0;
unsigned nb_descs, i;
while (room && !rc) {
if (rx_queue->avail_descs < room) {
rc = gxio_mpipe_iqueue_try_peek(iqueue,
&rx_queue->next_desc);
rx_queue->avail_descs = rc < 0 ? 0 : rc;
}
if (unlikely(!rx_queue->avail_descs)) {
break;
}
nb_descs = RTE_MIN(room, rx_queue->avail_descs);
first_idesc = rx_queue->next_desc;
last_idesc = first_idesc + nb_descs;
rx_queue->next_desc += nb_descs;
rx_queue->avail_descs -= nb_descs;
for (i = 1; i < look_ahead; i++) {
rte_prefetch0(first_idesc + i);
}
PMD_DEBUG_RX("%s:%d: Trying to receive %d packets\n",
mpipe_name(rx_queue->q.priv),
rx_queue->q.queue_idx,
nb_descs);
for (idesc = first_idesc; idesc < last_idesc; idesc++) {
struct rte_mbuf *mbuf;
PMD_DEBUG_RX("%s:%d: processing idesc %d/%d\n",
mpipe_name(priv),
rx_queue->q.queue_idx,
nb_packets, nb_descs);
rte_prefetch0(idesc + look_ahead);
PMD_DEBUG_RX("%s:%d: idesc %p, %s%s%s%s%s%s%s%s%s%s"
"size: %d, bkt: %d, chan: %d, ring: %d, sqn: %lu, va: %lu\n",
mpipe_name(priv),
rx_queue->q.queue_idx,
idesc,
idesc->me ? "me, " : "",
idesc->tr ? "tr, " : "",
idesc->ce ? "ce, " : "",
idesc->ct ? "ct, " : "",
idesc->cs ? "cs, " : "",
idesc->nr ? "nr, " : "",
idesc->sq ? "sq, " : "",
idesc->ts ? "ts, " : "",
idesc->ps ? "ps, " : "",
idesc->be ? "be, " : "",
idesc->l2_size,
idesc->bucket_id,
idesc->channel,
idesc->notif_ring,
(unsigned long)idesc->packet_sqn,
(unsigned long)idesc->va);
if (unlikely(gxio_mpipe_idesc_has_error(idesc))) {
nb_dropped++;
gxio_mpipe_iqueue_drop(iqueue, idesc);
PMD_DEBUG_RX("%s:%d: Descriptor error\n",
mpipe_name(rx_queue->q.priv),
rx_queue->q.queue_idx);
continue;
}
if (mpipe_local.mbuf_push_debt[in_port] <
MPIPE_BUF_DEBT_THRESHOLD)
mpipe_local.mbuf_push_debt[in_port]++;
else {
mbuf = rte_mbuf_raw_alloc(priv->rx_mpool);
if (unlikely(!mbuf)) {
nb_nomem++;
gxio_mpipe_iqueue_drop(iqueue, idesc);
PMD_DEBUG_RX("%s:%d: alloc failure\n",
mpipe_name(rx_queue->q.priv),
rx_queue->q.queue_idx);
continue;
}
mpipe_recv_push(priv, mbuf);
}
/* Get and setup the mbuf for the received packet. */
mbuf = mpipe_recv_mbuf(priv, idesc, in_port);
/* Update results and statistics counters. */
rx_pkts[nb_packets] = mbuf;
nb_bytes += mbuf->pkt_len;
nb_packets++;
}
/*
* We release the ring in bursts, but do not track and release
* buckets. This therefore breaks dynamic flow affinity, but
* we always operate in static affinity mode, and so we're OK
* with this optimization.
*/
gxio_mpipe_iqueue_advance(iqueue, nb_descs);
gxio_mpipe_credit(iqueue->context, iqueue->ring, -1, nb_descs);
/*
* Go around once more if we haven't yet peeked the queue, and
* if we have more room to receive.
*/
room = nb_pkts - nb_packets;
}
rx_queue->q.stats.packets += nb_packets;
rx_queue->q.stats.bytes += nb_bytes;
rx_queue->q.stats.errors += nb_dropped;
rx_queue->q.stats.nomem += nb_nomem;
PMD_DEBUG_RX("%s:%d: RX: %d/%d pkts/bytes, %d/%d drops/nomem\n",
mpipe_name(rx_queue->q.priv), rx_queue->q.queue_idx,
nb_packets, nb_bytes, nb_dropped, nb_nomem);
return nb_packets;
}
static uint16_t
mpipe_recv_pkts(void *_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct mpipe_rx_queue *rx_queue = _rxq;
uint16_t result = 0;
if (rx_queue) {
mpipe_dp_enter(rx_queue->q.priv);
if (likely(rx_queue->q.link_status))
result = mpipe_do_recv(rx_queue, rx_pkts, nb_pkts);
mpipe_dp_exit(rx_queue->q.priv);
}
return result;
}
static uint16_t
mpipe_xmit_pkts(void *_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct mpipe_tx_queue *tx_queue = _txq;
uint16_t result = 0;
if (tx_queue) {
mpipe_dp_enter(tx_queue->q.priv);
if (likely(tx_queue->q.link_status))
result = mpipe_do_xmit(tx_queue, tx_pkts, nb_pkts);
mpipe_dp_exit(tx_queue->q.priv);
}
return result;
}
static int
mpipe_link_mac(const char *ifname, uint8_t *mac)
{
int rc, idx;
char name[GXIO_MPIPE_LINK_NAME_LEN];
for (idx = 0, rc = 0; !rc; idx++) {
rc = gxio_mpipe_link_enumerate_mac(idx, name, mac);
if (!rc && !strncmp(name, ifname, GXIO_MPIPE_LINK_NAME_LEN))
return 0;
}
return -ENODEV;
}
static int
rte_pmd_mpipe_devinit(const char *ifname,
const char *params __rte_unused)
{
gxio_mpipe_context_t *context;
struct rte_eth_dev *eth_dev;
struct mpipe_dev_priv *priv;
int instance, rc;
uint8_t *mac;
/* Get the mPIPE instance that the device belongs to. */
instance = gxio_mpipe_link_instance(ifname);
context = mpipe_context(instance);
if (!context) {
RTE_LOG(ERR, PMD, "%s: No device for link.\n", ifname);
return -ENODEV;
}
priv = rte_zmalloc(NULL, sizeof(*priv), 0);
if (!priv) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate priv.\n", ifname);
return -ENOMEM;
}
memset(&priv->tx_stat_mapping, 0xff, sizeof(priv->tx_stat_mapping));
memset(&priv->rx_stat_mapping, 0xff, sizeof(priv->rx_stat_mapping));
priv->context = context;
priv->instance = instance;
priv->is_xaui = (strncmp(ifname, "xgbe", 4) == 0);
priv->channel = -1;
mac = priv->mac_addr.addr_bytes;
rc = mpipe_link_mac(ifname, mac);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to enumerate link.\n", ifname);
rte_free(priv);
return -ENODEV;
}
eth_dev = rte_eth_dev_allocate(ifname, RTE_ETH_DEV_VIRTUAL);
if (!eth_dev) {
RTE_LOG(ERR, PMD, "%s: Failed to allocate device.\n", ifname);
rte_free(priv);
return -ENOMEM;
}
RTE_LOG(INFO, PMD, "%s: Initialized mpipe device"
"(mac %02x:%02x:%02x:%02x:%02x:%02x).\n",
ifname, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
priv->eth_dev = eth_dev;
priv->port_id = eth_dev->data->port_id;
eth_dev->data->dev_private = priv;
eth_dev->data->mac_addrs = &priv->mac_addr;
eth_dev->data->dev_flags = 0;
eth_dev->data->kdrv = RTE_KDRV_NONE;
eth_dev->driver = NULL;
eth_dev->data->drv_name = drivername;
eth_dev->data->numa_node = instance;
eth_dev->dev_ops = &mpipe_dev_ops;
eth_dev->rx_pkt_burst = &mpipe_recv_pkts;
eth_dev->tx_pkt_burst = &mpipe_xmit_pkts;
rc = mpipe_link_init(priv);
if (rc < 0) {
RTE_LOG(ERR, PMD, "%s: Failed to init link.\n",
mpipe_name(priv));
return rc;
}
return 0;
}
static struct rte_driver pmd_mpipe_xgbe_drv = {
.type = PMD_VDEV,
.init = rte_pmd_mpipe_devinit,
};
static struct rte_driver pmd_mpipe_gbe_drv = {
.type = PMD_VDEV,
.init = rte_pmd_mpipe_devinit,
};
PMD_REGISTER_DRIVER(pmd_mpipe_xgbe_drv, xgbe);
PMD_REGISTER_DRIVER(pmd_mpipe_gbe_drv, gbe);
static void __attribute__((constructor, used))
mpipe_init_contexts(void)
{
struct mpipe_context *context;
int rc, instance;
for (instance = 0; instance < GXIO_MPIPE_INSTANCE_MAX; instance++) {
context = &mpipe_contexts[instance];
rte_spinlock_init(&context->lock);
rc = gxio_mpipe_init(&context->context, instance);
if (rc < 0)
break;
}
mpipe_instances = instance;
}