f-stack/dpdk/drivers/net/mvneta/mvneta_rxtx.c

1023 lines
24 KiB
C
Raw Normal View History

2019-06-25 11:12:58 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Marvell International Ltd.
* Copyright(c) 2018 Semihalf.
* All rights reserved.
*/
#include "mvneta_rxtx.h"
#define MVNETA_PKT_EFFEC_OFFS (MRVL_NETA_PKT_OFFS + MV_MH_SIZE)
#define MRVL_NETA_DEFAULT_TC 0
/** Maximum number of descriptors in shadow queue. Must be power of 2 */
#define MRVL_NETA_TX_SHADOWQ_SIZE MRVL_NETA_TXD_MAX
/** Shadow queue size mask (since shadow queue size is power of 2) */
#define MRVL_NETA_TX_SHADOWQ_MASK (MRVL_NETA_TX_SHADOWQ_SIZE - 1)
/** Minimum number of sent buffers to release from shadow queue to BM */
#define MRVL_NETA_BUF_RELEASE_BURST_SIZE_MIN 16
/** Maximum number of sent buffers to release from shadow queue to BM */
#define MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX 64
#define MVNETA_COOKIE_ADDR_INVALID ~0ULL
#define MVNETA_COOKIE_HIGH_ADDR_SHIFT (sizeof(neta_cookie_t) * 8)
#define MVNETA_COOKIE_HIGH_ADDR_MASK (~0ULL << MVNETA_COOKIE_HIGH_ADDR_SHIFT)
#define MVNETA_SET_COOKIE_HIGH_ADDR(addr) { \
if (unlikely(cookie_addr_high == MVNETA_COOKIE_ADDR_INVALID)) \
cookie_addr_high = \
(uint64_t)(addr) & MVNETA_COOKIE_HIGH_ADDR_MASK;\
}
#define MVNETA_CHECK_COOKIE_HIGH_ADDR(addr) \
((likely(cookie_addr_high == \
((uint64_t)(addr) & MVNETA_COOKIE_HIGH_ADDR_MASK))) ? 1 : 0)
struct mvneta_rxq {
struct mvneta_priv *priv;
struct rte_mempool *mp;
int queue_id;
int port_id;
int size;
int cksum_enabled;
uint64_t bytes_recv;
uint64_t drop_mac;
uint64_t pkts_processed;
};
/*
* To use buffer harvesting based on loopback port shadow queue structure
* was introduced for buffers information bookkeeping.
*/
struct mvneta_shadow_txq {
int head; /* write index - used when sending buffers */
int tail; /* read index - used when releasing buffers */
u16 size; /* queue occupied size */
struct neta_buff_inf ent[MRVL_NETA_TX_SHADOWQ_SIZE]; /* q entries */
};
struct mvneta_txq {
struct mvneta_priv *priv;
int queue_id;
int port_id;
uint64_t bytes_sent;
struct mvneta_shadow_txq shadow_txq;
int tx_deferred_start;
};
static uint64_t cookie_addr_high = MVNETA_COOKIE_ADDR_INVALID;
static uint16_t rx_desc_free_thresh = MRVL_NETA_BUF_RELEASE_BURST_SIZE_MIN;
static inline int
mvneta_buffs_refill(struct mvneta_priv *priv, struct mvneta_rxq *rxq, u16 *num)
{
struct rte_mbuf *mbufs[MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX];
struct neta_buff_inf entries[MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX];
int i, ret;
uint16_t nb_desc = *num;
ret = rte_pktmbuf_alloc_bulk(rxq->mp, mbufs, nb_desc);
if (ret) {
MVNETA_LOG(ERR, "Failed to allocate %u mbufs.", nb_desc);
*num = 0;
return -1;
}
MVNETA_SET_COOKIE_HIGH_ADDR(mbufs[0]);
for (i = 0; i < nb_desc; i++) {
if (unlikely(!MVNETA_CHECK_COOKIE_HIGH_ADDR(mbufs[i]))) {
MVNETA_LOG(ERR,
"mbuf virt high addr 0x%lx out of range 0x%lx",
(uint64_t)mbufs[i] >> 32,
cookie_addr_high >> 32);
*num = 0;
goto out;
}
entries[i].addr = rte_mbuf_data_iova_default(mbufs[i]);
entries[i].cookie = (neta_cookie_t)(uint64_t)mbufs[i];
}
neta_ppio_inq_put_buffs(priv->ppio, rxq->queue_id, entries, num);
out:
for (i = *num; i < nb_desc; i++)
rte_pktmbuf_free(mbufs[i]);
return 0;
}
/**
* Allocate buffers from mempool
* and store addresses in rx descriptors.
*
* @return
* 0 on success, negative error value otherwise.
*/
static inline int
mvneta_buffs_alloc(struct mvneta_priv *priv, struct mvneta_rxq *rxq, int *num)
{
uint16_t nb_desc, nb_desc_burst, sent = 0;
int ret = 0;
nb_desc = *num;
do {
nb_desc_burst =
(nb_desc < MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX) ?
nb_desc : MRVL_NETA_BUF_RELEASE_BURST_SIZE_MAX;
ret = mvneta_buffs_refill(priv, rxq, &nb_desc_burst);
if (unlikely(ret || !nb_desc_burst))
break;
sent += nb_desc_burst;
nb_desc -= nb_desc_burst;
} while (nb_desc);
*num = sent;
return ret;
}
static inline void
mvneta_fill_shadowq(struct mvneta_shadow_txq *sq, struct rte_mbuf *buf)
{
sq->ent[sq->head].cookie = (uint64_t)buf;
sq->ent[sq->head].addr = buf ?
rte_mbuf_data_iova_default(buf) : 0;
sq->head = (sq->head + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
sq->size++;
}
static inline void
mvneta_fill_desc(struct neta_ppio_desc *desc, struct rte_mbuf *buf)
{
neta_ppio_outq_desc_reset(desc);
neta_ppio_outq_desc_set_phys_addr(desc, rte_pktmbuf_iova(buf));
neta_ppio_outq_desc_set_pkt_offset(desc, 0);
neta_ppio_outq_desc_set_pkt_len(desc, rte_pktmbuf_data_len(buf));
}
/**
* Release already sent buffers to mempool.
*
* @param ppio
* Pointer to the port structure.
* @param sq
* Pointer to the shadow queue.
* @param qid
* Queue id number.
* @param force
* Force releasing packets.
*/
static inline void
mvneta_sent_buffers_free(struct neta_ppio *ppio,
struct mvneta_shadow_txq *sq, int qid)
{
struct neta_buff_inf *entry;
uint16_t nb_done = 0;
int i;
int tail = sq->tail;
neta_ppio_get_num_outq_done(ppio, qid, &nb_done);
if (nb_done > sq->size) {
MVNETA_LOG(ERR, "nb_done: %d, sq->size %d",
nb_done, sq->size);
return;
}
for (i = 0; i < nb_done; i++) {
entry = &sq->ent[tail];
if (unlikely(!entry->addr)) {
MVNETA_LOG(DEBUG,
"Shadow memory @%d: cookie(%lx), pa(%lx)!",
tail, (u64)entry->cookie,
(u64)entry->addr);
tail = (tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
continue;
}
struct rte_mbuf *mbuf;
mbuf = (struct rte_mbuf *)
(cookie_addr_high | entry->cookie);
rte_pktmbuf_free(mbuf);
tail = (tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
}
sq->tail = tail;
sq->size -= nb_done;
}
/**
* Return packet type information and l3/l4 offsets.
*
* @param desc
* Pointer to the received packet descriptor.
* @param l3_offset
* l3 packet offset.
* @param l4_offset
* l4 packet offset.
*
* @return
* Packet type information.
*/
static inline uint64_t
mvneta_desc_to_packet_type_and_offset(struct neta_ppio_desc *desc,
uint8_t *l3_offset, uint8_t *l4_offset)
{
enum neta_inq_l3_type l3_type;
enum neta_inq_l4_type l4_type;
uint64_t packet_type;
neta_ppio_inq_desc_get_l3_info(desc, &l3_type, l3_offset);
neta_ppio_inq_desc_get_l4_info(desc, &l4_type, l4_offset);
packet_type = RTE_PTYPE_L2_ETHER;
if (NETA_RXD_GET_VLAN_INFO(desc))
packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
switch (l3_type) {
case NETA_INQ_L3_TYPE_IPV4_BAD:
case NETA_INQ_L3_TYPE_IPV4_OK:
packet_type |= RTE_PTYPE_L3_IPV4;
break;
case NETA_INQ_L3_TYPE_IPV6:
packet_type |= RTE_PTYPE_L3_IPV6;
break;
default:
packet_type |= RTE_PTYPE_UNKNOWN;
MVNETA_LOG(DEBUG, "Failed to recognize l3 packet type");
break;
}
switch (l4_type) {
case NETA_INQ_L4_TYPE_TCP:
packet_type |= RTE_PTYPE_L4_TCP;
break;
case NETA_INQ_L4_TYPE_UDP:
packet_type |= RTE_PTYPE_L4_UDP;
break;
default:
packet_type |= RTE_PTYPE_UNKNOWN;
MVNETA_LOG(DEBUG, "Failed to recognize l4 packet type");
break;
}
return packet_type;
}
/**
* Prepare offload information.
*
* @param ol_flags
* Offload flags.
* @param l3_type
* Pointer to the neta_ouq_l3_type structure.
* @param l4_type
* Pointer to the neta_outq_l4_type structure.
* @param gen_l3_cksum
* Will be set to 1 in case l3 checksum is computed.
* @param l4_cksum
* Will be set to 1 in case l4 checksum is computed.
*/
2020-06-18 16:55:50 +00:00
static inline void
mvneta_prepare_proto_info(uint64_t ol_flags,
enum neta_outq_l3_type *l3_type,
enum neta_outq_l4_type *l4_type,
int *gen_l3_cksum,
int *gen_l4_cksum)
2019-06-25 11:12:58 +00:00
{
/*
* Based on ol_flags prepare information
* for neta_ppio_outq_desc_set_proto_info() which setups descriptor
* for offloading.
2020-06-18 16:55:50 +00:00
* in most of the checksum cases ipv4 must be set, so this is the
* default value
2019-06-25 11:12:58 +00:00
*/
2020-06-18 16:55:50 +00:00
*l3_type = NETA_OUTQ_L3_TYPE_IPV4;
*gen_l3_cksum = ol_flags & PKT_TX_IP_CKSUM ? 1 : 0;
if (ol_flags & PKT_TX_IPV6) {
2019-06-25 11:12:58 +00:00
*l3_type = NETA_OUTQ_L3_TYPE_IPV6;
/* no checksum for ipv6 header */
*gen_l3_cksum = 0;
}
2020-06-18 16:55:50 +00:00
if (ol_flags & PKT_TX_TCP_CKSUM) {
2019-06-25 11:12:58 +00:00
*l4_type = NETA_OUTQ_L4_TYPE_TCP;
*gen_l4_cksum = 1;
2020-06-18 16:55:50 +00:00
} else if (ol_flags & PKT_TX_UDP_CKSUM) {
2019-06-25 11:12:58 +00:00
*l4_type = NETA_OUTQ_L4_TYPE_UDP;
*gen_l4_cksum = 1;
} else {
*l4_type = NETA_OUTQ_L4_TYPE_OTHER;
/* no checksum for other type */
*gen_l4_cksum = 0;
}
}
/**
* Get offload information from the received packet descriptor.
*
* @param desc
* Pointer to the received packet descriptor.
*
* @return
* Mbuf offload flags.
*/
static inline uint64_t
mvneta_desc_to_ol_flags(struct neta_ppio_desc *desc)
{
uint64_t flags;
enum neta_inq_desc_status status;
status = neta_ppio_inq_desc_get_l3_pkt_error(desc);
if (unlikely(status != NETA_DESC_ERR_OK))
flags = PKT_RX_IP_CKSUM_BAD;
else
flags = PKT_RX_IP_CKSUM_GOOD;
status = neta_ppio_inq_desc_get_l4_pkt_error(desc);
if (unlikely(status != NETA_DESC_ERR_OK))
flags |= PKT_RX_L4_CKSUM_BAD;
else
flags |= PKT_RX_L4_CKSUM_GOOD;
return flags;
}
/**
* DPDK callback for transmit.
*
* @param txq
* Generic pointer transmit queue.
* @param tx_pkts
* Packets to transmit.
* @param nb_pkts
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted.
*/
static uint16_t
mvneta_tx_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct mvneta_txq *q = txq;
struct mvneta_shadow_txq *sq;
struct neta_ppio_desc descs[nb_pkts];
2020-06-18 16:55:50 +00:00
int i, bytes_sent = 0;
2019-06-25 11:12:58 +00:00
uint16_t num, sq_free_size;
uint64_t addr;
sq = &q->shadow_txq;
if (unlikely(!nb_pkts || !q->priv->ppio))
return 0;
if (sq->size)
mvneta_sent_buffers_free(q->priv->ppio,
sq, q->queue_id);
sq_free_size = MRVL_NETA_TX_SHADOWQ_SIZE - sq->size - 1;
if (unlikely(nb_pkts > sq_free_size)) {
MVNETA_LOG(DEBUG,
"No room in shadow queue for %d packets! %d packets will be sent.",
nb_pkts, sq_free_size);
nb_pkts = sq_free_size;
}
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf = tx_pkts[i];
int gen_l3_cksum, gen_l4_cksum;
enum neta_outq_l3_type l3_type;
enum neta_outq_l4_type l4_type;
/* Fill first mbuf info in shadow queue */
mvneta_fill_shadowq(sq, mbuf);
mvneta_fill_desc(&descs[i], mbuf);
bytes_sent += rte_pktmbuf_pkt_len(mbuf);
2020-06-18 16:55:50 +00:00
if (!(mbuf->ol_flags & MVNETA_TX_PKT_OFFLOADS))
2019-06-25 11:12:58 +00:00
continue;
2020-06-18 16:55:50 +00:00
mvneta_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type,
&gen_l3_cksum, &gen_l4_cksum);
2019-06-25 11:12:58 +00:00
neta_ppio_outq_desc_set_proto_info(&descs[i], l3_type, l4_type,
mbuf->l2_len,
mbuf->l2_len + mbuf->l3_len,
gen_l3_cksum, gen_l4_cksum);
}
num = nb_pkts;
neta_ppio_send(q->priv->ppio, q->queue_id, descs, &nb_pkts);
/* number of packets that were not sent */
if (unlikely(num > nb_pkts)) {
for (i = nb_pkts; i < num; i++) {
sq->head = (MRVL_NETA_TX_SHADOWQ_SIZE + sq->head - 1) &
MRVL_NETA_TX_SHADOWQ_MASK;
addr = cookie_addr_high | sq->ent[sq->head].cookie;
bytes_sent -=
rte_pktmbuf_pkt_len((struct rte_mbuf *)addr);
}
sq->size -= num - nb_pkts;
}
q->bytes_sent += bytes_sent;
return nb_pkts;
}
/** DPDK callback for S/G transmit.
*
* @param txq
* Generic pointer transmit queue.
* @param tx_pkts
* Packets to transmit.
* @param nb_pkts
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted.
*/
static uint16_t
mvneta_tx_sg_pkt_burst(void *txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct mvneta_txq *q = txq;
struct mvneta_shadow_txq *sq;
struct neta_ppio_desc descs[nb_pkts * NETA_PPIO_DESC_NUM_FRAGS];
struct neta_ppio_sg_pkts pkts;
uint8_t frags[nb_pkts];
2020-06-18 16:55:50 +00:00
int i, j, bytes_sent = 0;
2019-06-25 11:12:58 +00:00
int tail, tail_first;
uint16_t num, sq_free_size;
uint16_t nb_segs, total_descs = 0;
uint64_t addr;
sq = &q->shadow_txq;
pkts.frags = frags;
pkts.num = 0;
if (unlikely(!q->priv->ppio))
return 0;
if (sq->size)
mvneta_sent_buffers_free(q->priv->ppio,
sq, q->queue_id);
/* Save shadow queue free size */
sq_free_size = MRVL_NETA_TX_SHADOWQ_SIZE - sq->size - 1;
tail = 0;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf = tx_pkts[i];
struct rte_mbuf *seg = NULL;
int gen_l3_cksum, gen_l4_cksum;
enum neta_outq_l3_type l3_type;
enum neta_outq_l4_type l4_type;
nb_segs = mbuf->nb_segs;
total_descs += nb_segs;
/*
* Check if total_descs does not exceed
* shadow queue free size
*/
if (unlikely(total_descs > sq_free_size)) {
total_descs -= nb_segs;
MVNETA_LOG(DEBUG,
"No room in shadow queue for %d packets! "
"%d packets will be sent.",
nb_pkts, i);
break;
}
/* Check if nb_segs does not exceed the max nb of desc per
* fragmented packet
*/
if (unlikely(nb_segs > NETA_PPIO_DESC_NUM_FRAGS)) {
total_descs -= nb_segs;
MVNETA_LOG(ERR,
"Too many segments. Packet won't be sent.");
break;
}
pkts.frags[pkts.num] = nb_segs;
pkts.num++;
tail_first = tail;
seg = mbuf;
for (j = 0; j < nb_segs - 1; j++) {
/* For the subsequent segments, set shadow queue
* buffer to NULL
*/
mvneta_fill_shadowq(sq, NULL);
mvneta_fill_desc(&descs[tail], seg);
tail++;
seg = seg->next;
}
/* Put first mbuf info in last shadow queue entry */
mvneta_fill_shadowq(sq, mbuf);
/* Update descriptor with last segment */
mvneta_fill_desc(&descs[tail++], seg);
bytes_sent += rte_pktmbuf_pkt_len(mbuf);
2020-06-18 16:55:50 +00:00
if (!(mbuf->ol_flags & MVNETA_TX_PKT_OFFLOADS))
2019-06-25 11:12:58 +00:00
continue;
2020-06-18 16:55:50 +00:00
mvneta_prepare_proto_info(mbuf->ol_flags, &l3_type, &l4_type,
&gen_l3_cksum, &gen_l4_cksum);
2019-06-25 11:12:58 +00:00
neta_ppio_outq_desc_set_proto_info(&descs[tail_first],
l3_type, l4_type,
mbuf->l2_len,
mbuf->l2_len + mbuf->l3_len,
gen_l3_cksum, gen_l4_cksum);
}
num = total_descs;
neta_ppio_send_sg(q->priv->ppio, q->queue_id, descs, &total_descs,
&pkts);
/* number of packets that were not sent */
if (unlikely(num > total_descs)) {
for (i = total_descs; i < num; i++) {
sq->head = (MRVL_NETA_TX_SHADOWQ_SIZE +
sq->head - 1) &
MRVL_NETA_TX_SHADOWQ_MASK;
addr = sq->ent[sq->head].cookie;
if (addr) {
struct rte_mbuf *mbuf;
mbuf = (struct rte_mbuf *)
(cookie_addr_high | addr);
bytes_sent -= rte_pktmbuf_pkt_len(mbuf);
}
}
sq->size -= num - total_descs;
nb_pkts = pkts.num;
}
q->bytes_sent += bytes_sent;
return nb_pkts;
}
/**
* Set tx burst function according to offload flag
*
* @param dev
* Pointer to Ethernet device structure.
*/
void
mvneta_set_tx_function(struct rte_eth_dev *dev)
{
struct mvneta_priv *priv = dev->data->dev_private;
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
if (priv->multiseg) {
MVNETA_LOG(INFO, "Using multi-segment tx callback");
dev->tx_pkt_burst = mvneta_tx_sg_pkt_burst;
} else {
MVNETA_LOG(INFO, "Using single-segment tx callback");
dev->tx_pkt_burst = mvneta_tx_pkt_burst;
}
}
/**
* DPDK callback for receive.
*
* @param rxq
* Generic pointer to the receive queue.
* @param rx_pkts
* Array to store received packets.
* @param nb_pkts
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received.
*/
uint16_t
mvneta_rx_pkt_burst(void *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct mvneta_rxq *q = rxq;
struct neta_ppio_desc descs[nb_pkts];
int i, ret, rx_done = 0, rx_dropped = 0;
if (unlikely(!q || !q->priv->ppio))
return 0;
ret = neta_ppio_recv(q->priv->ppio, q->queue_id,
descs, &nb_pkts);
if (unlikely(ret < 0)) {
MVNETA_LOG(ERR, "Failed to receive packets");
return 0;
}
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *mbuf;
uint8_t l3_offset, l4_offset;
enum neta_inq_desc_status status;
uint64_t addr;
addr = cookie_addr_high |
neta_ppio_inq_desc_get_cookie(&descs[i]);
mbuf = (struct rte_mbuf *)addr;
rte_pktmbuf_reset(mbuf);
/* drop packet in case of mac, overrun or resource error */
status = neta_ppio_inq_desc_get_l2_pkt_error(&descs[i]);
if (unlikely(status != NETA_DESC_ERR_OK)) {
/* Release the mbuf to the mempool since
* it won't be transferred to tx path
*/
rte_pktmbuf_free(mbuf);
q->drop_mac++;
rx_dropped++;
continue;
}
mbuf->data_off += MVNETA_PKT_EFFEC_OFFS;
mbuf->pkt_len = neta_ppio_inq_desc_get_pkt_len(&descs[i]);
mbuf->data_len = mbuf->pkt_len;
mbuf->port = q->port_id;
mbuf->packet_type =
mvneta_desc_to_packet_type_and_offset(&descs[i],
&l3_offset,
&l4_offset);
mbuf->l2_len = l3_offset;
mbuf->l3_len = l4_offset - l3_offset;
if (likely(q->cksum_enabled))
mbuf->ol_flags = mvneta_desc_to_ol_flags(&descs[i]);
rx_pkts[rx_done++] = mbuf;
q->bytes_recv += mbuf->pkt_len;
}
q->pkts_processed += rx_done + rx_dropped;
if (q->pkts_processed > rx_desc_free_thresh) {
int buf_to_refill = rx_desc_free_thresh;
ret = mvneta_buffs_alloc(q->priv, q, &buf_to_refill);
if (ret)
MVNETA_LOG(ERR, "Refill failed");
q->pkts_processed -= buf_to_refill;
}
return rx_done;
}
/**
* DPDK callback to configure the receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param conf
* Thresholds parameters (unused_).
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative error value otherwise.
*/
int
mvneta_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket,
const struct rte_eth_rxconf *conf __rte_unused,
struct rte_mempool *mp)
{
struct mvneta_priv *priv = dev->data->dev_private;
struct mvneta_rxq *rxq;
uint32_t frame_size, buf_size = rte_pktmbuf_data_room_size(mp);
uint32_t max_rx_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
frame_size = buf_size - RTE_PKTMBUF_HEADROOM - MVNETA_PKT_EFFEC_OFFS;
if (frame_size < max_rx_pkt_len) {
MVNETA_LOG(ERR,
"Mbuf size must be increased to %u bytes to hold up "
"to %u bytes of data.",
buf_size + max_rx_pkt_len - frame_size,
max_rx_pkt_len);
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
MVNETA_LOG(INFO, "Setting max rx pkt len to %u",
dev->data->dev_conf.rxmode.max_rx_pkt_len);
}
if (dev->data->rx_queues[idx]) {
rte_free(dev->data->rx_queues[idx]);
dev->data->rx_queues[idx] = NULL;
}
rxq = rte_zmalloc_socket("rxq", sizeof(*rxq), 0, socket);
if (!rxq)
return -ENOMEM;
rxq->priv = priv;
rxq->mp = mp;
rxq->cksum_enabled = dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_IPV4_CKSUM;
rxq->queue_id = idx;
rxq->port_id = dev->data->port_id;
rxq->size = desc;
rx_desc_free_thresh = RTE_MIN(rx_desc_free_thresh, (desc / 2));
priv->ppio_params.inqs_params.tcs_params[MRVL_NETA_DEFAULT_TC].size =
desc;
dev->data->rx_queues[idx] = rxq;
return 0;
}
/**
* DPDK callback to configure the transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* Transmit queue index.
* @param desc
* Number of descriptors to configure in the queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param conf
* Tx queue configuration parameters.
*
* @return
* 0 on success, negative error value otherwise.
*/
int
mvneta_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mvneta_priv *priv = dev->data->dev_private;
struct mvneta_txq *txq;
if (dev->data->tx_queues[idx]) {
rte_free(dev->data->tx_queues[idx]);
dev->data->tx_queues[idx] = NULL;
}
txq = rte_zmalloc_socket("txq", sizeof(*txq), 0, socket);
if (!txq)
return -ENOMEM;
txq->priv = priv;
txq->queue_id = idx;
txq->port_id = dev->data->port_id;
txq->tx_deferred_start = conf->tx_deferred_start;
dev->data->tx_queues[idx] = txq;
priv->ppio_params.outqs_params.outqs_params[idx].size = desc;
priv->ppio_params.outqs_params.outqs_params[idx].weight = 1;
return 0;
}
/**
* DPDK callback to release the transmit queue.
*
* @param txq
* Generic transmit queue pointer.
*/
void
mvneta_tx_queue_release(void *txq)
{
struct mvneta_txq *q = txq;
if (!q)
return;
rte_free(q);
}
/**
* Return mbufs to mempool.
*
* @param rxq
* Pointer to rx queue structure
* @param desc
* Array of rx descriptors
*/
static void
mvneta_recv_buffs_free(struct neta_ppio_desc *desc, uint16_t num)
{
uint64_t addr;
uint8_t i;
for (i = 0; i < num; i++) {
if (desc) {
addr = cookie_addr_high |
neta_ppio_inq_desc_get_cookie(desc);
if (addr)
rte_pktmbuf_free((struct rte_mbuf *)addr);
desc++;
}
}
}
int
mvneta_alloc_rx_bufs(struct rte_eth_dev *dev)
{
struct mvneta_priv *priv = dev->data->dev_private;
int ret = 0, i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct mvneta_rxq *rxq = dev->data->rx_queues[i];
int num = rxq->size;
ret = mvneta_buffs_alloc(priv, rxq, &num);
if (ret || num != rxq->size) {
rte_free(rxq);
return ret;
}
}
return 0;
}
/**
* Flush single receive queue.
*
* @param rxq
* Pointer to rx queue structure.
* @param descs
* Array of rx descriptors
*/
static void
mvneta_rx_queue_flush(struct mvneta_rxq *rxq)
{
struct neta_ppio_desc *descs;
struct neta_buff_inf *bufs;
uint16_t num;
int ret, i;
descs = rte_malloc("rxdesc", MRVL_NETA_RXD_MAX * sizeof(*descs), 0);
2022-09-02 07:34:10 +00:00
if (descs == NULL) {
MVNETA_LOG(ERR, "Failed to allocate descs.");
return;
}
2019-06-25 11:12:58 +00:00
bufs = rte_malloc("buffs", MRVL_NETA_RXD_MAX * sizeof(*bufs), 0);
2022-09-02 07:34:10 +00:00
if (bufs == NULL) {
MVNETA_LOG(ERR, "Failed to allocate bufs.");
rte_free(descs);
return;
}
2019-06-25 11:12:58 +00:00
do {
num = MRVL_NETA_RXD_MAX;
ret = neta_ppio_recv(rxq->priv->ppio,
rxq->queue_id,
descs, &num);
mvneta_recv_buffs_free(descs, num);
} while (ret == 0 && num);
rxq->pkts_processed = 0;
num = MRVL_NETA_RXD_MAX;
neta_ppio_inq_get_all_buffs(rxq->priv->ppio, rxq->queue_id, bufs, &num);
MVNETA_LOG(INFO, "freeing %u unused bufs.", num);
for (i = 0; i < num; i++) {
uint64_t addr;
if (bufs[i].cookie) {
addr = cookie_addr_high | bufs[i].cookie;
rte_pktmbuf_free((struct rte_mbuf *)addr);
}
}
rte_free(descs);
rte_free(bufs);
}
/**
* Flush single transmit queue.
*
* @param txq
* Pointer to tx queue structure
*/
static void
mvneta_tx_queue_flush(struct mvneta_txq *txq)
{
struct mvneta_shadow_txq *sq = &txq->shadow_txq;
if (sq->size)
mvneta_sent_buffers_free(txq->priv->ppio, sq,
txq->queue_id);
/* free the rest of them */
while (sq->tail != sq->head) {
uint64_t addr = cookie_addr_high |
sq->ent[sq->tail].cookie;
rte_pktmbuf_free((struct rte_mbuf *)addr);
sq->tail = (sq->tail + 1) & MRVL_NETA_TX_SHADOWQ_MASK;
}
memset(sq, 0, sizeof(*sq));
}
void
mvneta_flush_queues(struct rte_eth_dev *dev)
{
int i;
MVNETA_LOG(INFO, "Flushing rx queues");
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct mvneta_rxq *rxq = dev->data->rx_queues[i];
mvneta_rx_queue_flush(rxq);
}
MVNETA_LOG(INFO, "Flushing tx queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct mvneta_txq *txq = dev->data->tx_queues[i];
mvneta_tx_queue_flush(txq);
}
}
/**
* DPDK callback to release the receive queue.
*
* @param rxq
* Generic receive queue pointer.
*/
void
mvneta_rx_queue_release(void *rxq)
{
struct mvneta_rxq *q = rxq;
if (!q)
return;
/* If dev_stop was called already, mbufs are already
* returned to mempool and ppio is deinitialized.
* Skip this step.
*/
if (q->priv->ppio)
mvneta_rx_queue_flush(q);
rte_free(rxq);
}
/**
* DPDK callback to get information about specific receive queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rx_queue_id
* Receive queue index.
* @param qinfo
* Receive queue information structure.
*/
void
mvneta_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct mvneta_rxq *q = dev->data->rx_queues[rx_queue_id];
qinfo->mp = q->mp;
qinfo->nb_desc = q->size;
}
/**
* DPDK callback to get information about specific transmit queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param tx_queue_id
* Transmit queue index.
* @param qinfo
* Transmit queue information structure.
*/
void
mvneta_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
struct rte_eth_txq_info *qinfo)
{
struct mvneta_priv *priv = dev->data->dev_private;
qinfo->nb_desc =
priv->ppio_params.outqs_params.outqs_params[tx_queue_id].size;
}