2018-05-15 09:49:22 +00:00
|
|
|
/*-
|
|
|
|
* BSD LICENSE
|
|
|
|
*
|
|
|
|
* Copyright 2017 6WIND S.A.
|
|
|
|
* Copyright 2017 Mellanox
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* * Neither the name of 6WIND S.A. nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* Data plane functions for mlx4 driver.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
/* Verbs headers do not support -pedantic. */
|
|
|
|
#ifdef PEDANTIC
|
|
|
|
#pragma GCC diagnostic ignored "-Wpedantic"
|
|
|
|
#endif
|
|
|
|
#include <infiniband/verbs.h>
|
|
|
|
#ifdef PEDANTIC
|
|
|
|
#pragma GCC diagnostic error "-Wpedantic"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <rte_branch_prediction.h>
|
|
|
|
#include <rte_common.h>
|
|
|
|
#include <rte_io.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
|
|
#include <rte_mempool.h>
|
|
|
|
#include <rte_prefetch.h>
|
|
|
|
|
|
|
|
#include "mlx4.h"
|
|
|
|
#include "mlx4_prm.h"
|
|
|
|
#include "mlx4_rxtx.h"
|
|
|
|
#include "mlx4_utils.h"
|
|
|
|
|
|
|
|
#define WQE_ONE_DATA_SEG_SIZE \
|
|
|
|
(sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_data_seg))
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Pointer-value pair structure used in tx_post_send for saving the first
|
|
|
|
* DWORD (32 byte) of a TXBB.
|
|
|
|
*/
|
|
|
|
struct pv {
|
|
|
|
volatile struct mlx4_wqe_data_seg *dseg;
|
|
|
|
uint32_t val;
|
|
|
|
};
|
|
|
|
|
|
|
|
/** A table to translate Rx completion flags to packet type. */
|
|
|
|
uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
|
|
|
|
/*
|
|
|
|
* The index to the array should have:
|
|
|
|
* bit[7] - MLX4_CQE_L2_TUNNEL
|
|
|
|
* bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
|
|
|
|
* bit[5] - MLX4_CQE_STATUS_UDP
|
|
|
|
* bit[4] - MLX4_CQE_STATUS_TCP
|
|
|
|
* bit[3] - MLX4_CQE_STATUS_IPV4OPT
|
|
|
|
* bit[2] - MLX4_CQE_STATUS_IPV6
|
|
|
|
* bit[1] - MLX4_CQE_STATUS_IPV4F
|
|
|
|
* bit[0] - MLX4_CQE_STATUS_IPV4
|
|
|
|
* giving a total of up to 256 entries.
|
|
|
|
*/
|
|
|
|
[0x00] = RTE_PTYPE_L2_ETHER,
|
|
|
|
[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
|
|
[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_FRAG,
|
|
|
|
[0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_FRAG,
|
|
|
|
[0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
|
|
|
|
[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
|
|
|
|
[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_L4_FRAG,
|
|
|
|
[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
[0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
[0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
[0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
[0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
[0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
[0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
[0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
[0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
/* Tunneled - L3 IPV6 */
|
|
|
|
[0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
|
|
|
|
[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
|
|
|
|
[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
|
|
[0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
|
|
[0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
|
|
|
|
[0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT,
|
|
|
|
[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT,
|
|
|
|
[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
|
|
|
|
/* Tunneled - L3 IPV6, TCP */
|
|
|
|
[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
/* Tunneled - L3 IPV6, UDP */
|
|
|
|
[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
/* Tunneled - L3 IPV4 */
|
|
|
|
[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
|
|
|
|
[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
|
|
|
|
[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
|
|
[0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
|
|
[0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
|
|
|
|
[0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT,
|
|
|
|
[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT,
|
|
|
|
[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
|
|
/* Tunneled - L3 IPV4, TCP */
|
|
|
|
[0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
[0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
|
|
/* Tunneled - L3 IPV4, UDP */
|
|
|
|
[0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
|
|
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Stamp a WQE so it won't be reused by the HW.
|
|
|
|
*
|
|
|
|
* Routine is used when freeing WQE used by the chip or when failing
|
|
|
|
* building an WQ entry has failed leaving partial information on the queue.
|
|
|
|
*
|
|
|
|
* @param sq
|
|
|
|
* Pointer to the SQ structure.
|
|
|
|
* @param index
|
|
|
|
* Index of the freed WQE.
|
|
|
|
* @param num_txbbs
|
|
|
|
* Number of blocks to stamp.
|
|
|
|
* If < 0 the routine will use the size written in the WQ entry.
|
|
|
|
* @param owner
|
|
|
|
* The value of the WQE owner bit to use in the stamp.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* The number of Tx basic blocs (TXBB) the WQE contained.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
|
|
|
|
{
|
|
|
|
uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
|
|
|
|
(!!owner << MLX4_SQ_STAMP_SHIFT));
|
|
|
|
volatile uint8_t *wqe = mlx4_get_send_wqe(sq,
|
|
|
|
(index & sq->txbb_cnt_mask));
|
|
|
|
volatile uint32_t *ptr = (volatile uint32_t *)wqe;
|
|
|
|
int i;
|
|
|
|
int txbbs_size;
|
|
|
|
int num_txbbs;
|
|
|
|
|
|
|
|
/* Extract the size from the control segment of the WQE. */
|
|
|
|
num_txbbs = MLX4_SIZE_TO_TXBBS((((volatile struct mlx4_wqe_ctrl_seg *)
|
|
|
|
wqe)->fence_size & 0x3f) << 4);
|
|
|
|
txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
|
|
|
|
/* Optimize the common case when there is no wrap-around. */
|
|
|
|
if (wqe + txbbs_size <= sq->eob) {
|
|
|
|
/* Stamp the freed descriptor. */
|
|
|
|
for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
|
|
|
|
*ptr = stamp;
|
|
|
|
ptr += MLX4_SQ_STAMP_DWORDS;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Stamp the freed descriptor. */
|
|
|
|
for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
|
|
|
|
*ptr = stamp;
|
|
|
|
ptr += MLX4_SQ_STAMP_DWORDS;
|
|
|
|
if ((volatile uint8_t *)ptr >= sq->eob) {
|
|
|
|
ptr = (volatile uint32_t *)sq->buf;
|
|
|
|
stamp ^= RTE_BE32(0x80000000);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return num_txbbs;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Manage Tx completions.
|
|
|
|
*
|
|
|
|
* When sending a burst, mlx4_tx_burst() posts several WRs.
|
|
|
|
* To improve performance, a completion event is only required once every
|
|
|
|
* MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
|
|
|
|
* for other WRs, but this information would not be used anyway.
|
|
|
|
*
|
|
|
|
* @param txq
|
|
|
|
* Pointer to Tx queue structure.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* 0 on success, -1 on failure.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
|
|
|
|
struct mlx4_sq *sq)
|
|
|
|
{
|
|
|
|
unsigned int elts_comp = txq->elts_comp;
|
|
|
|
unsigned int elts_tail = txq->elts_tail;
|
|
|
|
unsigned int sq_tail = sq->tail;
|
|
|
|
struct mlx4_cq *cq = &txq->mcq;
|
|
|
|
volatile struct mlx4_cqe *cqe;
|
|
|
|
uint32_t cons_index = cq->cons_index;
|
|
|
|
uint16_t new_index;
|
|
|
|
uint16_t nr_txbbs = 0;
|
|
|
|
int pkts = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Traverse over all CQ entries reported and handle each WQ entry
|
|
|
|
* reported by them.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
|
|
|
|
if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
|
|
|
|
!!(cons_index & cq->cqe_cnt)))
|
|
|
|
break;
|
|
|
|
/*
|
|
|
|
* Make sure we read the CQE after we read the ownership bit.
|
|
|
|
*/
|
|
|
|
rte_io_rmb();
|
|
|
|
#ifndef NDEBUG
|
|
|
|
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
|
|
|
|
MLX4_CQE_OPCODE_ERROR)) {
|
|
|
|
volatile struct mlx4_err_cqe *cqe_err =
|
|
|
|
(volatile struct mlx4_err_cqe *)cqe;
|
|
|
|
ERROR("%p CQE error - vendor syndrome: 0x%x"
|
|
|
|
" syndrome: 0x%x\n",
|
|
|
|
(void *)txq, cqe_err->vendor_err,
|
|
|
|
cqe_err->syndrome);
|
|
|
|
}
|
|
|
|
#endif /* NDEBUG */
|
|
|
|
/* Get WQE index reported in the CQE. */
|
|
|
|
new_index =
|
|
|
|
rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
|
|
|
|
do {
|
|
|
|
/* Free next descriptor. */
|
|
|
|
sq_tail += nr_txbbs;
|
|
|
|
nr_txbbs =
|
|
|
|
mlx4_txq_stamp_freed_wqe(sq,
|
|
|
|
sq_tail & sq->txbb_cnt_mask,
|
|
|
|
!!(sq_tail & sq->txbb_cnt));
|
|
|
|
pkts++;
|
|
|
|
} while ((sq_tail & sq->txbb_cnt_mask) != new_index);
|
|
|
|
cons_index++;
|
|
|
|
} while (1);
|
|
|
|
if (unlikely(pkts == 0))
|
|
|
|
return 0;
|
|
|
|
/* Update CQ. */
|
|
|
|
cq->cons_index = cons_index;
|
|
|
|
*cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
|
|
|
|
sq->tail = sq_tail + nr_txbbs;
|
|
|
|
/* Update the list of packets posted for transmission. */
|
|
|
|
elts_comp -= pkts;
|
|
|
|
assert(elts_comp <= txq->elts_comp);
|
|
|
|
/*
|
|
|
|
* Assume completion status is successful as nothing can be done about
|
|
|
|
* it anyway.
|
|
|
|
*/
|
|
|
|
elts_tail += pkts;
|
|
|
|
if (elts_tail >= elts_n)
|
|
|
|
elts_tail -= elts_n;
|
|
|
|
txq->elts_tail = elts_tail;
|
|
|
|
txq->elts_comp = elts_comp;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
|
|
|
|
* the cloned mbuf is allocated is returned instead.
|
|
|
|
*
|
|
|
|
* @param buf
|
|
|
|
* Pointer to mbuf.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Memory pool where data is located for given mbuf.
|
|
|
|
*/
|
|
|
|
static struct rte_mempool *
|
|
|
|
mlx4_txq_mb2mp(struct rte_mbuf *buf)
|
|
|
|
{
|
|
|
|
if (unlikely(RTE_MBUF_INDIRECT(buf)))
|
|
|
|
return rte_mbuf_from_indirect(buf)->pool;
|
|
|
|
return buf->pool;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
|
|
|
|
volatile struct mlx4_wqe_ctrl_seg **pctrl)
|
|
|
|
{
|
|
|
|
int wqe_real_size;
|
|
|
|
int nr_txbbs;
|
|
|
|
struct pv *pv = (struct pv *)txq->bounce_buf;
|
|
|
|
struct mlx4_sq *sq = &txq->msq;
|
|
|
|
uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
|
|
|
|
volatile struct mlx4_wqe_ctrl_seg *ctrl;
|
|
|
|
volatile struct mlx4_wqe_data_seg *dseg;
|
|
|
|
struct rte_mbuf *sbuf;
|
|
|
|
uint32_t lkey;
|
|
|
|
uintptr_t addr;
|
|
|
|
uint32_t byte_count;
|
|
|
|
int pv_counter = 0;
|
|
|
|
|
|
|
|
/* Calculate the needed work queue entry size for this packet. */
|
|
|
|
wqe_real_size = sizeof(volatile struct mlx4_wqe_ctrl_seg) +
|
|
|
|
buf->nb_segs * sizeof(volatile struct mlx4_wqe_data_seg);
|
|
|
|
nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
|
|
|
|
/*
|
|
|
|
* Check that there is room for this WQE in the send queue and that
|
|
|
|
* the WQE size is legal.
|
|
|
|
*/
|
|
|
|
if (((sq->head - sq->tail) + nr_txbbs +
|
|
|
|
sq->headroom_txbbs) >= sq->txbb_cnt ||
|
|
|
|
nr_txbbs > MLX4_MAX_WQE_TXBBS) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* Get the control and data entries of the WQE. */
|
|
|
|
ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
|
|
|
|
mlx4_get_send_wqe(sq, head_idx);
|
|
|
|
dseg = (volatile struct mlx4_wqe_data_seg *)
|
|
|
|
((uintptr_t)ctrl + sizeof(struct mlx4_wqe_ctrl_seg));
|
|
|
|
*pctrl = ctrl;
|
|
|
|
/* Fill the data segments with buffer information. */
|
|
|
|
for (sbuf = buf; sbuf != NULL; sbuf = sbuf->next, dseg++) {
|
|
|
|
addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
|
|
|
|
rte_prefetch0((volatile void *)addr);
|
|
|
|
/* Handle WQE wraparound. */
|
|
|
|
if (dseg >= (volatile struct mlx4_wqe_data_seg *)sq->eob)
|
|
|
|
dseg = (volatile struct mlx4_wqe_data_seg *)sq->buf;
|
|
|
|
dseg->addr = rte_cpu_to_be_64(addr);
|
|
|
|
/* Memory region key (big endian) for this memory pool. */
|
|
|
|
lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
|
|
|
|
dseg->lkey = rte_cpu_to_be_32(lkey);
|
|
|
|
/* Calculate the needed work queue entry size for this packet */
|
|
|
|
if (unlikely(dseg->lkey == rte_cpu_to_be_32((uint32_t)-1))) {
|
|
|
|
/* MR does not exist. */
|
|
|
|
DEBUG("%p: unable to get MP <-> MR association",
|
|
|
|
(void *)txq);
|
|
|
|
/*
|
|
|
|
* Restamp entry in case of failure.
|
|
|
|
* Make sure that size is written correctly
|
|
|
|
* Note that we give ownership to the SW, not the HW.
|
|
|
|
*/
|
|
|
|
wqe_real_size = sizeof(struct mlx4_wqe_ctrl_seg) +
|
|
|
|
buf->nb_segs * sizeof(struct mlx4_wqe_data_seg);
|
|
|
|
ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
|
|
|
|
mlx4_txq_stamp_freed_wqe(sq, head_idx,
|
|
|
|
(sq->head & sq->txbb_cnt) ? 0 : 1);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
if (likely(sbuf->data_len)) {
|
|
|
|
byte_count = rte_cpu_to_be_32(sbuf->data_len);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Zero length segment is treated as inline segment
|
|
|
|
* with zero data.
|
|
|
|
*/
|
|
|
|
byte_count = RTE_BE32(0x80000000);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If the data segment is not at the beginning of a
|
|
|
|
* Tx basic block (TXBB) then write the byte count,
|
|
|
|
* else postpone the writing to just before updating the
|
|
|
|
* control segment.
|
|
|
|
*/
|
|
|
|
if ((uintptr_t)dseg & (uintptr_t)(MLX4_TXBB_SIZE - 1)) {
|
|
|
|
#if RTE_CACHE_LINE_SIZE < 64
|
|
|
|
/*
|
|
|
|
* Need a barrier here before writing the byte_count
|
|
|
|
* fields to make sure that all the data is visible
|
|
|
|
* before the byte_count field is set.
|
|
|
|
* Otherwise, if the segment begins a new cacheline,
|
|
|
|
* the HCA prefetcher could grab the 64-byte chunk and
|
|
|
|
* get a valid (!= 0xffffffff) byte count but stale
|
|
|
|
* data, and end up sending the wrong data.
|
|
|
|
*/
|
|
|
|
rte_io_wmb();
|
|
|
|
#endif /* RTE_CACHE_LINE_SIZE */
|
|
|
|
dseg->byte_count = byte_count;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* This data segment starts at the beginning of a new
|
|
|
|
* TXBB, so we need to postpone its byte_count writing
|
|
|
|
* for later.
|
|
|
|
*/
|
|
|
|
pv[pv_counter].dseg = dseg;
|
|
|
|
pv[pv_counter++].val = byte_count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Write the first DWORD of each TXBB save earlier. */
|
|
|
|
if (pv_counter) {
|
|
|
|
/* Need a barrier here before writing the byte_count. */
|
|
|
|
rte_io_wmb();
|
|
|
|
for (--pv_counter; pv_counter >= 0; pv_counter--)
|
|
|
|
pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
|
|
|
|
}
|
|
|
|
/* Fill the control parameters for this packet. */
|
|
|
|
ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
|
|
|
|
return nr_txbbs;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* DPDK callback for Tx.
|
|
|
|
*
|
|
|
|
* @param dpdk_txq
|
|
|
|
* Generic pointer to Tx queue structure.
|
|
|
|
* @param[in] pkts
|
|
|
|
* Packets to transmit.
|
|
|
|
* @param pkts_n
|
|
|
|
* Number of packets in array.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
|
|
*/
|
|
|
|
uint16_t
|
|
|
|
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
|
|
{
|
|
|
|
struct txq *txq = (struct txq *)dpdk_txq;
|
|
|
|
unsigned int elts_head = txq->elts_head;
|
|
|
|
const unsigned int elts_n = txq->elts_n;
|
|
|
|
unsigned int bytes_sent = 0;
|
|
|
|
unsigned int i;
|
|
|
|
unsigned int max;
|
|
|
|
struct mlx4_sq *sq = &txq->msq;
|
|
|
|
int nr_txbbs;
|
|
|
|
|
|
|
|
assert(txq->elts_comp_cd != 0);
|
|
|
|
if (likely(txq->elts_comp != 0))
|
|
|
|
mlx4_txq_complete(txq, elts_n, sq);
|
|
|
|
max = (elts_n - (elts_head - txq->elts_tail));
|
|
|
|
if (max > elts_n)
|
|
|
|
max -= elts_n;
|
|
|
|
assert(max >= 1);
|
|
|
|
assert(max <= elts_n);
|
|
|
|
/* Always leave one free entry in the ring. */
|
|
|
|
--max;
|
|
|
|
if (max > pkts_n)
|
|
|
|
max = pkts_n;
|
|
|
|
for (i = 0; (i != max); ++i) {
|
|
|
|
struct rte_mbuf *buf = pkts[i];
|
|
|
|
unsigned int elts_head_next =
|
|
|
|
(((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
|
|
|
|
struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
|
|
|
|
struct txq_elt *elt = &(*txq->elts)[elts_head];
|
|
|
|
uint32_t owner_opcode = MLX4_OPCODE_SEND;
|
|
|
|
volatile struct mlx4_wqe_ctrl_seg *ctrl;
|
|
|
|
volatile struct mlx4_wqe_data_seg *dseg;
|
|
|
|
union {
|
|
|
|
uint32_t flags;
|
|
|
|
uint16_t flags16[2];
|
|
|
|
} srcrb;
|
|
|
|
uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
|
|
|
|
uint32_t lkey;
|
|
|
|
uintptr_t addr;
|
|
|
|
|
|
|
|
/* Clean up old buffer. */
|
|
|
|
if (likely(elt->buf != NULL)) {
|
|
|
|
struct rte_mbuf *tmp = elt->buf;
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
/* Poisoning. */
|
|
|
|
memset(elt, 0x66, sizeof(*elt));
|
|
|
|
#endif
|
|
|
|
/* Faster than rte_pktmbuf_free(). */
|
|
|
|
do {
|
|
|
|
struct rte_mbuf *next = tmp->next;
|
|
|
|
|
|
|
|
rte_pktmbuf_free_seg(tmp);
|
|
|
|
tmp = next;
|
|
|
|
} while (tmp != NULL);
|
|
|
|
}
|
|
|
|
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
|
|
|
|
if (buf->nb_segs == 1) {
|
|
|
|
/*
|
|
|
|
* Check that there is room for this WQE in the send
|
|
|
|
* queue and that the WQE size is legal
|
|
|
|
*/
|
|
|
|
if (((sq->head - sq->tail) + 1 + sq->headroom_txbbs) >=
|
|
|
|
sq->txbb_cnt || 1 > MLX4_MAX_WQE_TXBBS) {
|
|
|
|
elt->buf = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Get the control and data entries of the WQE. */
|
|
|
|
ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
|
|
|
|
mlx4_get_send_wqe(sq, head_idx);
|
|
|
|
dseg = (volatile struct mlx4_wqe_data_seg *)
|
|
|
|
((uintptr_t)ctrl +
|
|
|
|
sizeof(struct mlx4_wqe_ctrl_seg));
|
|
|
|
addr = rte_pktmbuf_mtod(buf, uintptr_t);
|
|
|
|
rte_prefetch0((volatile void *)addr);
|
|
|
|
/* Handle WQE wraparound. */
|
|
|
|
if (dseg >=
|
|
|
|
(volatile struct mlx4_wqe_data_seg *)sq->eob)
|
|
|
|
dseg = (volatile struct mlx4_wqe_data_seg *)
|
|
|
|
sq->buf;
|
|
|
|
dseg->addr = rte_cpu_to_be_64(addr);
|
|
|
|
/* Memory region key (big endian). */
|
|
|
|
lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
|
|
|
|
dseg->lkey = rte_cpu_to_be_32(lkey);
|
|
|
|
if (unlikely(dseg->lkey ==
|
|
|
|
rte_cpu_to_be_32((uint32_t)-1))) {
|
|
|
|
/* MR does not exist. */
|
|
|
|
DEBUG("%p: unable to get MP <-> MR association",
|
|
|
|
(void *)txq);
|
|
|
|
/*
|
|
|
|
* Restamp entry in case of failure.
|
|
|
|
* Make sure that size is written correctly
|
|
|
|
* Note that we give ownership to the SW,
|
|
|
|
* not the HW.
|
|
|
|
*/
|
|
|
|
ctrl->fence_size =
|
|
|
|
(WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
|
|
|
|
mlx4_txq_stamp_freed_wqe(sq, head_idx,
|
|
|
|
(sq->head & sq->txbb_cnt) ? 0 : 1);
|
|
|
|
elt->buf = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Never be TXBB aligned, no need compiler barrier. */
|
|
|
|
dseg->byte_count = rte_cpu_to_be_32(buf->data_len);
|
|
|
|
/* Fill the control parameters for this packet. */
|
|
|
|
ctrl->fence_size = (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
|
|
|
|
nr_txbbs = 1;
|
|
|
|
} else {
|
|
|
|
nr_txbbs = mlx4_tx_burst_segs(buf, txq, &ctrl);
|
|
|
|
if (nr_txbbs < 0) {
|
|
|
|
elt->buf = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* For raw Ethernet, the SOLICIT flag is used to indicate
|
|
|
|
* that no ICRC should be calculated.
|
|
|
|
*/
|
|
|
|
txq->elts_comp_cd -= nr_txbbs;
|
|
|
|
if (unlikely(txq->elts_comp_cd <= 0)) {
|
|
|
|
txq->elts_comp_cd = txq->elts_comp_cd_init;
|
|
|
|
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
|
|
|
|
MLX4_WQE_CTRL_CQ_UPDATE);
|
|
|
|
} else {
|
|
|
|
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
|
|
|
|
}
|
|
|
|
/* Enable HW checksum offload if requested */
|
|
|
|
if (txq->csum &&
|
|
|
|
(buf->ol_flags &
|
|
|
|
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
|
|
|
|
const uint64_t is_tunneled = (buf->ol_flags &
|
|
|
|
(PKT_TX_TUNNEL_GRE |
|
|
|
|
PKT_TX_TUNNEL_VXLAN));
|
|
|
|
|
|
|
|
if (is_tunneled && txq->csum_l2tun) {
|
|
|
|
owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
|
|
|
|
MLX4_WQE_CTRL_IL4_HDR_CSUM;
|
|
|
|
if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
|
|
|
|
srcrb.flags |=
|
|
|
|
RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
|
|
|
|
} else {
|
|
|
|
srcrb.flags |=
|
|
|
|
RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
|
|
|
|
MLX4_WQE_CTRL_TCP_UDP_CSUM);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (txq->lb) {
|
|
|
|
/*
|
|
|
|
* Copy destination MAC address to the WQE, this allows
|
|
|
|
* loopback in eSwitch, so that VFs and PF can
|
|
|
|
* communicate with each other.
|
|
|
|
*/
|
|
|
|
srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
|
|
|
|
ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
|
|
|
|
sizeof(uint16_t)));
|
|
|
|
} else {
|
|
|
|
ctrl->imm = 0;
|
|
|
|
}
|
|
|
|
ctrl->srcrb_flags = srcrb.flags;
|
|
|
|
/*
|
|
|
|
* Make sure descriptor is fully written before
|
|
|
|
* setting ownership bit (because HW can start
|
|
|
|
* executing as soon as we do).
|
|
|
|
*/
|
|
|
|
rte_io_wmb();
|
|
|
|
ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
|
|
|
|
((sq->head & sq->txbb_cnt) ?
|
|
|
|
MLX4_BIT_WQE_OWN : 0));
|
|
|
|
sq->head += nr_txbbs;
|
|
|
|
elt->buf = buf;
|
|
|
|
bytes_sent += buf->pkt_len;
|
|
|
|
elts_head = elts_head_next;
|
|
|
|
}
|
|
|
|
/* Take a shortcut if nothing must be sent. */
|
|
|
|
if (unlikely(i == 0))
|
|
|
|
return 0;
|
|
|
|
/* Increment send statistics counters. */
|
|
|
|
txq->stats.opackets += i;
|
|
|
|
txq->stats.obytes += bytes_sent;
|
|
|
|
/* Make sure that descriptors are written before doorbell record. */
|
|
|
|
rte_wmb();
|
|
|
|
/* Ring QP doorbell. */
|
|
|
|
rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
|
|
|
|
txq->elts_head = elts_head;
|
|
|
|
txq->elts_comp += i;
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Translate Rx completion flags to packet type.
|
|
|
|
*
|
|
|
|
* @param[in] cqe
|
|
|
|
* Pointer to CQE.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Packet type for struct rte_mbuf.
|
|
|
|
*/
|
|
|
|
static inline uint32_t
|
|
|
|
rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
|
|
|
|
uint32_t l2tun_offload)
|
|
|
|
{
|
|
|
|
uint8_t idx = 0;
|
|
|
|
uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
|
|
|
|
uint32_t status = rte_be_to_cpu_32(cqe->status);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The index to the array should have:
|
|
|
|
* bit[7] - MLX4_CQE_L2_TUNNEL
|
|
|
|
* bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
|
|
|
|
*/
|
|
|
|
if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
|
|
|
|
idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
|
|
|
|
((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
|
|
|
|
/*
|
|
|
|
* The index to the array should have:
|
|
|
|
* bit[5] - MLX4_CQE_STATUS_UDP
|
|
|
|
* bit[4] - MLX4_CQE_STATUS_TCP
|
|
|
|
* bit[3] - MLX4_CQE_STATUS_IPV4OPT
|
|
|
|
* bit[2] - MLX4_CQE_STATUS_IPV6
|
|
|
|
* bit[1] - MLX4_CQE_STATUS_IPV4F
|
|
|
|
* bit[0] - MLX4_CQE_STATUS_IPV4
|
|
|
|
* giving a total of up to 256 entries.
|
|
|
|
*/
|
|
|
|
idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
|
|
|
|
return mlx4_ptype_table[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Translate Rx completion flags to offload flags.
|
|
|
|
*
|
|
|
|
* @param flags
|
|
|
|
* Rx completion flags returned by mlx4_cqe_flags().
|
|
|
|
* @param csum
|
|
|
|
* Whether Rx checksums are enabled.
|
|
|
|
* @param csum_l2tun
|
|
|
|
* Whether Rx L2 tunnel checksums are enabled.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Offload flags (ol_flags) in mbuf format.
|
|
|
|
*/
|
|
|
|
static inline uint32_t
|
|
|
|
rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
|
|
|
|
{
|
|
|
|
uint32_t ol_flags = 0;
|
|
|
|
|
|
|
|
if (csum)
|
|
|
|
ol_flags |=
|
|
|
|
mlx4_transpose(flags,
|
|
|
|
MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
|
|
|
|
PKT_RX_IP_CKSUM_GOOD) |
|
|
|
|
mlx4_transpose(flags,
|
|
|
|
MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
|
|
|
|
PKT_RX_L4_CKSUM_GOOD);
|
|
|
|
if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
|
|
|
|
ol_flags |=
|
|
|
|
mlx4_transpose(flags,
|
|
|
|
MLX4_CQE_L2_TUNNEL_IPOK,
|
|
|
|
PKT_RX_IP_CKSUM_GOOD) |
|
|
|
|
mlx4_transpose(flags,
|
|
|
|
MLX4_CQE_L2_TUNNEL_L4_CSUM,
|
|
|
|
PKT_RX_L4_CKSUM_GOOD);
|
|
|
|
return ol_flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Extract checksum information from CQE flags.
|
|
|
|
*
|
|
|
|
* @param cqe
|
|
|
|
* Pointer to CQE structure.
|
|
|
|
* @param csum
|
|
|
|
* Whether Rx checksums are enabled.
|
|
|
|
* @param csum_l2tun
|
|
|
|
* Whether Rx L2 tunnel checksums are enabled.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* CQE checksum information.
|
|
|
|
*/
|
|
|
|
static inline uint32_t
|
|
|
|
mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
|
|
|
|
{
|
|
|
|
uint32_t flags = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The relevant bits are in different locations on their
|
|
|
|
* CQE fields therefore we can join them in one 32bit
|
|
|
|
* variable.
|
|
|
|
*/
|
|
|
|
if (csum)
|
|
|
|
flags = (rte_be_to_cpu_32(cqe->status) &
|
|
|
|
MLX4_CQE_STATUS_IPV4_CSUM_OK);
|
|
|
|
if (csum_l2tun)
|
|
|
|
flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
|
|
|
|
(MLX4_CQE_L2_TUNNEL |
|
|
|
|
MLX4_CQE_L2_TUNNEL_IPOK |
|
|
|
|
MLX4_CQE_L2_TUNNEL_L4_CSUM |
|
|
|
|
MLX4_CQE_L2_TUNNEL_IPV4));
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Poll one CQE from CQ.
|
|
|
|
*
|
|
|
|
* @param rxq
|
|
|
|
* Pointer to the receive queue structure.
|
|
|
|
* @param[out] out
|
|
|
|
* Just polled CQE.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Number of bytes of the CQE, 0 in case there is no completion.
|
|
|
|
*/
|
|
|
|
static unsigned int
|
|
|
|
mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
volatile struct mlx4_cqe *cqe = NULL;
|
|
|
|
struct mlx4_cq *cq = &rxq->mcq;
|
|
|
|
|
|
|
|
cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
|
|
|
|
if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
|
|
|
|
!!(cq->cons_index & cq->cqe_cnt))
|
|
|
|
goto out;
|
|
|
|
/*
|
|
|
|
* Make sure we read CQ entry contents after we've checked the
|
|
|
|
* ownership bit.
|
|
|
|
*/
|
|
|
|
rte_rmb();
|
|
|
|
assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
|
|
|
|
assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
|
|
|
|
MLX4_CQE_OPCODE_ERROR);
|
|
|
|
ret = rte_be_to_cpu_32(cqe->byte_cnt);
|
|
|
|
++cq->cons_index;
|
|
|
|
out:
|
|
|
|
*out = cqe;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* DPDK callback for Rx with scattered packets support.
|
|
|
|
*
|
|
|
|
* @param dpdk_rxq
|
|
|
|
* Generic pointer to Rx queue structure.
|
|
|
|
* @param[out] pkts
|
|
|
|
* Array to store received packets.
|
|
|
|
* @param pkts_n
|
|
|
|
* Maximum number of packets in array.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Number of packets successfully received (<= pkts_n).
|
|
|
|
*/
|
|
|
|
uint16_t
|
|
|
|
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
|
|
{
|
|
|
|
struct rxq *rxq = dpdk_rxq;
|
|
|
|
const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
|
|
|
|
const uint16_t sges_n = rxq->sges_n;
|
|
|
|
struct rte_mbuf *pkt = NULL;
|
|
|
|
struct rte_mbuf *seg = NULL;
|
|
|
|
unsigned int i = 0;
|
|
|
|
uint32_t rq_ci = rxq->rq_ci << sges_n;
|
|
|
|
int len = 0;
|
|
|
|
|
|
|
|
while (pkts_n) {
|
|
|
|
volatile struct mlx4_cqe *cqe;
|
|
|
|
uint32_t idx = rq_ci & wr_cnt;
|
|
|
|
struct rte_mbuf *rep = (*rxq->elts)[idx];
|
|
|
|
volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
|
|
|
|
|
|
|
|
/* Update the 'next' pointer of the previous segment. */
|
|
|
|
if (pkt)
|
|
|
|
seg->next = rep;
|
|
|
|
seg = rep;
|
|
|
|
rte_prefetch0(seg);
|
|
|
|
rte_prefetch0(scat);
|
|
|
|
rep = rte_mbuf_raw_alloc(rxq->mp);
|
|
|
|
if (unlikely(rep == NULL)) {
|
|
|
|
++rxq->stats.rx_nombuf;
|
|
|
|
if (!pkt) {
|
|
|
|
/*
|
|
|
|
* No buffers before we even started,
|
|
|
|
* bail out silently.
|
|
|
|
*/
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
while (pkt != seg) {
|
|
|
|
assert(pkt != (*rxq->elts)[idx]);
|
|
|
|
rep = pkt->next;
|
|
|
|
pkt->next = NULL;
|
|
|
|
pkt->nb_segs = 1;
|
|
|
|
rte_mbuf_raw_free(pkt);
|
|
|
|
pkt = rep;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (!pkt) {
|
|
|
|
/* Looking for the new packet. */
|
|
|
|
len = mlx4_cq_poll_one(rxq, &cqe);
|
|
|
|
if (!len) {
|
|
|
|
rte_mbuf_raw_free(rep);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (unlikely(len < 0)) {
|
|
|
|
/* Rx error, packet is likely too large. */
|
|
|
|
rte_mbuf_raw_free(rep);
|
|
|
|
++rxq->stats.idropped;
|
|
|
|
goto skip;
|
|
|
|
}
|
|
|
|
pkt = seg;
|
|
|
|
/* Update packet information. */
|
|
|
|
pkt->packet_type =
|
|
|
|
rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
|
2018-11-21 08:34:11 +00:00
|
|
|
pkt->ol_flags = PKT_RX_RSS_HASH;
|
|
|
|
pkt->hash.rss = cqe->immed_rss_invalid;
|
2018-05-15 09:49:22 +00:00
|
|
|
pkt->pkt_len = len;
|
|
|
|
if (rxq->csum | rxq->csum_l2tun) {
|
|
|
|
uint32_t flags =
|
|
|
|
mlx4_cqe_flags(cqe,
|
|
|
|
rxq->csum,
|
|
|
|
rxq->csum_l2tun);
|
|
|
|
|
|
|
|
pkt->ol_flags =
|
|
|
|
rxq_cq_to_ol_flags(flags,
|
|
|
|
rxq->csum,
|
|
|
|
rxq->csum_l2tun);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
rep->nb_segs = 1;
|
|
|
|
rep->port = rxq->port_id;
|
|
|
|
rep->data_len = seg->data_len;
|
|
|
|
rep->data_off = seg->data_off;
|
|
|
|
(*rxq->elts)[idx] = rep;
|
|
|
|
/*
|
|
|
|
* Fill NIC descriptor with the new buffer. The lkey and size
|
|
|
|
* of the buffers are already known, only the buffer address
|
|
|
|
* changes.
|
|
|
|
*/
|
|
|
|
scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
|
|
|
|
if (len > seg->data_len) {
|
|
|
|
len -= seg->data_len;
|
|
|
|
++pkt->nb_segs;
|
|
|
|
++rq_ci;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* The last segment. */
|
|
|
|
seg->data_len = len;
|
|
|
|
/* Increment bytes counter. */
|
|
|
|
rxq->stats.ibytes += pkt->pkt_len;
|
|
|
|
/* Return packet. */
|
|
|
|
*(pkts++) = pkt;
|
|
|
|
pkt = NULL;
|
|
|
|
--pkts_n;
|
|
|
|
++i;
|
|
|
|
skip:
|
|
|
|
/* Align consumer index to the next stride. */
|
|
|
|
rq_ci >>= sges_n;
|
|
|
|
++rq_ci;
|
|
|
|
rq_ci <<= sges_n;
|
|
|
|
}
|
|
|
|
if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
|
|
|
|
return 0;
|
|
|
|
/* Update the consumer index. */
|
|
|
|
rxq->rq_ci = rq_ci >> sges_n;
|
|
|
|
rte_wmb();
|
|
|
|
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
|
|
|
|
*rxq->mcq.set_ci_db =
|
|
|
|
rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
|
|
|
|
/* Increment packets counter. */
|
|
|
|
rxq->stats.ipackets += i;
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Dummy DPDK callback for Tx.
|
|
|
|
*
|
|
|
|
* This function is used to temporarily replace the real callback during
|
|
|
|
* unsafe control operations on the queue, or in case of error.
|
|
|
|
*
|
|
|
|
* @param dpdk_txq
|
|
|
|
* Generic pointer to Tx queue structure.
|
|
|
|
* @param[in] pkts
|
|
|
|
* Packets to transmit.
|
|
|
|
* @param pkts_n
|
|
|
|
* Number of packets in array.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
|
|
*/
|
|
|
|
uint16_t
|
|
|
|
mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
|
|
{
|
|
|
|
(void)dpdk_txq;
|
|
|
|
(void)pkts;
|
|
|
|
(void)pkts_n;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Dummy DPDK callback for Rx.
|
|
|
|
*
|
|
|
|
* This function is used to temporarily replace the real callback during
|
|
|
|
* unsafe control operations on the queue, or in case of error.
|
|
|
|
*
|
|
|
|
* @param dpdk_rxq
|
|
|
|
* Generic pointer to Rx queue structure.
|
|
|
|
* @param[out] pkts
|
|
|
|
* Array to store received packets.
|
|
|
|
* @param pkts_n
|
|
|
|
* Maximum number of packets in array.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* Number of packets successfully received (<= pkts_n).
|
|
|
|
*/
|
|
|
|
uint16_t
|
|
|
|
mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
|
|
|
{
|
|
|
|
(void)dpdk_rxq;
|
|
|
|
(void)pkts;
|
|
|
|
(void)pkts_n;
|
|
|
|
return 0;
|
|
|
|
}
|