2019-01-18 09:27:45 +00:00
|
|
|
/*-
|
|
|
|
* BSD LICENSE
|
|
|
|
*
|
|
|
|
* Copyright(c) 2017 Intel Corporation.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
2018-05-15 09:49:22 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _RTE_NET_CRC_SSE_H_
|
|
|
|
#define _RTE_NET_CRC_SSE_H_
|
|
|
|
|
|
|
|
#include <rte_branch_prediction.h>
|
|
|
|
|
|
|
|
#include <x86intrin.h>
|
|
|
|
#include <cpuid.h>
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/** PCLMULQDQ CRC computation context structure */
|
|
|
|
struct crc_pclmulqdq_ctx {
|
|
|
|
__m128i rk1_rk2;
|
|
|
|
__m128i rk5_rk6;
|
|
|
|
__m128i rk7_rk8;
|
|
|
|
};
|
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
struct crc_pclmulqdq_ctx crc32_eth_pclmulqdq __rte_aligned(16);
|
|
|
|
struct crc_pclmulqdq_ctx crc16_ccitt_pclmulqdq __rte_aligned(16);
|
2018-05-15 09:49:22 +00:00
|
|
|
/**
|
|
|
|
* @brief Performs one folding round
|
|
|
|
*
|
|
|
|
* Logically function operates as follows:
|
|
|
|
* DATA = READ_NEXT_16BYTES();
|
|
|
|
* F1 = LSB8(FOLD)
|
|
|
|
* F2 = MSB8(FOLD)
|
|
|
|
* T1 = CLMUL(F1, RK1)
|
|
|
|
* T2 = CLMUL(F2, RK2)
|
|
|
|
* FOLD = XOR(T1, T2, DATA)
|
|
|
|
*
|
|
|
|
* @param data_block
|
|
|
|
* 16 byte data block
|
|
|
|
* @param precomp
|
|
|
|
* Precomputed rk1 constant
|
|
|
|
* @param fold
|
|
|
|
* Current16 byte folded data
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* New 16 byte folded data
|
|
|
|
*/
|
|
|
|
static __rte_always_inline __m128i
|
|
|
|
crcr32_folding_round(__m128i data_block,
|
|
|
|
__m128i precomp,
|
|
|
|
__m128i fold)
|
|
|
|
{
|
|
|
|
__m128i tmp0 = _mm_clmulepi64_si128(fold, precomp, 0x01);
|
|
|
|
__m128i tmp1 = _mm_clmulepi64_si128(fold, precomp, 0x10);
|
|
|
|
|
|
|
|
return _mm_xor_si128(tmp1, _mm_xor_si128(data_block, tmp0));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Performs reduction from 128 bits to 64 bits
|
|
|
|
*
|
|
|
|
* @param data128
|
|
|
|
* 128 bits data to be reduced
|
|
|
|
* @param precomp
|
|
|
|
* precomputed constants rk5, rk6
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* 64 bits reduced data
|
|
|
|
*/
|
|
|
|
|
|
|
|
static __rte_always_inline __m128i
|
|
|
|
crcr32_reduce_128_to_64(__m128i data128, __m128i precomp)
|
|
|
|
{
|
|
|
|
__m128i tmp0, tmp1, tmp2;
|
|
|
|
|
|
|
|
/* 64b fold */
|
|
|
|
tmp0 = _mm_clmulepi64_si128(data128, precomp, 0x00);
|
|
|
|
tmp1 = _mm_srli_si128(data128, 8);
|
|
|
|
tmp0 = _mm_xor_si128(tmp0, tmp1);
|
|
|
|
|
|
|
|
/* 32b fold */
|
|
|
|
tmp2 = _mm_slli_si128(tmp0, 4);
|
|
|
|
tmp1 = _mm_clmulepi64_si128(tmp2, precomp, 0x10);
|
|
|
|
|
|
|
|
return _mm_xor_si128(tmp1, tmp0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Performs Barret's reduction from 64 bits to 32 bits
|
|
|
|
*
|
|
|
|
* @param data64
|
|
|
|
* 64 bits data to be reduced
|
|
|
|
* @param precomp
|
|
|
|
* rk7 precomputed constant
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* reduced 32 bits data
|
|
|
|
*/
|
|
|
|
|
|
|
|
static __rte_always_inline uint32_t
|
|
|
|
crcr32_reduce_64_to_32(__m128i data64, __m128i precomp)
|
|
|
|
{
|
|
|
|
static const uint32_t mask1[4] __rte_aligned(16) = {
|
|
|
|
0xffffffff, 0xffffffff, 0x00000000, 0x00000000
|
|
|
|
};
|
|
|
|
|
|
|
|
static const uint32_t mask2[4] __rte_aligned(16) = {
|
|
|
|
0x00000000, 0xffffffff, 0xffffffff, 0xffffffff
|
|
|
|
};
|
|
|
|
__m128i tmp0, tmp1, tmp2;
|
|
|
|
|
|
|
|
tmp0 = _mm_and_si128(data64, _mm_load_si128((const __m128i *)mask2));
|
|
|
|
|
|
|
|
tmp1 = _mm_clmulepi64_si128(tmp0, precomp, 0x00);
|
|
|
|
tmp1 = _mm_xor_si128(tmp1, tmp0);
|
|
|
|
tmp1 = _mm_and_si128(tmp1, _mm_load_si128((const __m128i *)mask1));
|
|
|
|
|
|
|
|
tmp2 = _mm_clmulepi64_si128(tmp1, precomp, 0x10);
|
|
|
|
tmp2 = _mm_xor_si128(tmp2, tmp1);
|
|
|
|
tmp2 = _mm_xor_si128(tmp2, tmp0);
|
|
|
|
|
|
|
|
return _mm_extract_epi32(tmp2, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const uint8_t crc_xmm_shift_tab[48] __rte_aligned(16) = {
|
|
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Shifts left 128 bit register by specified number of bytes
|
|
|
|
*
|
|
|
|
* @param reg
|
|
|
|
* 128 bit value
|
|
|
|
* @param num
|
|
|
|
* number of bytes to shift left reg by (0-16)
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* reg << (num * 8)
|
|
|
|
*/
|
|
|
|
|
|
|
|
static __rte_always_inline __m128i
|
|
|
|
xmm_shift_left(__m128i reg, const unsigned int num)
|
|
|
|
{
|
|
|
|
const __m128i *p = (const __m128i *)(crc_xmm_shift_tab + 16 - num);
|
|
|
|
|
|
|
|
return _mm_shuffle_epi8(reg, _mm_loadu_si128(p));
|
|
|
|
}
|
|
|
|
|
|
|
|
static __rte_always_inline uint32_t
|
|
|
|
crc32_eth_calc_pclmulqdq(
|
|
|
|
const uint8_t *data,
|
|
|
|
uint32_t data_len,
|
|
|
|
uint32_t crc,
|
|
|
|
const struct crc_pclmulqdq_ctx *params)
|
|
|
|
{
|
|
|
|
__m128i temp, fold, k;
|
|
|
|
uint32_t n;
|
|
|
|
|
|
|
|
/* Get CRC init value */
|
|
|
|
temp = _mm_insert_epi32(_mm_setzero_si128(), crc, 0);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Folding all data into single 16 byte data block
|
|
|
|
* Assumes: fold holds first 16 bytes of data
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (unlikely(data_len < 32)) {
|
|
|
|
if (unlikely(data_len == 16)) {
|
|
|
|
/* 16 bytes */
|
|
|
|
fold = _mm_loadu_si128((const __m128i *)data);
|
|
|
|
fold = _mm_xor_si128(fold, temp);
|
|
|
|
goto reduction_128_64;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(data_len < 16)) {
|
|
|
|
/* 0 to 15 bytes */
|
|
|
|
uint8_t buffer[16] __rte_aligned(16);
|
|
|
|
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
|
|
memcpy(buffer, data, data_len);
|
|
|
|
|
|
|
|
fold = _mm_load_si128((const __m128i *)buffer);
|
|
|
|
fold = _mm_xor_si128(fold, temp);
|
|
|
|
if (unlikely(data_len < 4)) {
|
|
|
|
fold = xmm_shift_left(fold, 8 - data_len);
|
|
|
|
goto barret_reduction;
|
|
|
|
}
|
|
|
|
fold = xmm_shift_left(fold, 16 - data_len);
|
|
|
|
goto reduction_128_64;
|
|
|
|
}
|
|
|
|
/* 17 to 31 bytes */
|
|
|
|
fold = _mm_loadu_si128((const __m128i *)data);
|
|
|
|
fold = _mm_xor_si128(fold, temp);
|
|
|
|
n = 16;
|
|
|
|
k = params->rk1_rk2;
|
|
|
|
goto partial_bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** At least 32 bytes in the buffer */
|
|
|
|
/** Apply CRC initial value */
|
|
|
|
fold = _mm_loadu_si128((const __m128i *)data);
|
|
|
|
fold = _mm_xor_si128(fold, temp);
|
|
|
|
|
|
|
|
/** Main folding loop - the last 16 bytes is processed separately */
|
|
|
|
k = params->rk1_rk2;
|
|
|
|
for (n = 16; (n + 16) <= data_len; n += 16) {
|
|
|
|
temp = _mm_loadu_si128((const __m128i *)&data[n]);
|
|
|
|
fold = crcr32_folding_round(temp, k, fold);
|
|
|
|
}
|
|
|
|
|
|
|
|
partial_bytes:
|
|
|
|
if (likely(n < data_len)) {
|
|
|
|
|
|
|
|
const uint32_t mask3[4] __rte_aligned(16) = {
|
|
|
|
0x80808080, 0x80808080, 0x80808080, 0x80808080
|
|
|
|
};
|
|
|
|
|
|
|
|
const uint8_t shf_table[32] __rte_aligned(16) = {
|
|
|
|
0x00, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
|
|
|
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
|
|
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
|
|
|
|
};
|
|
|
|
|
|
|
|
__m128i last16, a, b;
|
|
|
|
|
|
|
|
last16 = _mm_loadu_si128((const __m128i *)&data[data_len - 16]);
|
|
|
|
|
|
|
|
temp = _mm_loadu_si128((const __m128i *)
|
|
|
|
&shf_table[data_len & 15]);
|
|
|
|
a = _mm_shuffle_epi8(fold, temp);
|
|
|
|
|
|
|
|
temp = _mm_xor_si128(temp,
|
|
|
|
_mm_load_si128((const __m128i *)mask3));
|
|
|
|
b = _mm_shuffle_epi8(fold, temp);
|
|
|
|
b = _mm_blendv_epi8(b, last16, temp);
|
|
|
|
|
|
|
|
/* k = rk1 & rk2 */
|
|
|
|
temp = _mm_clmulepi64_si128(a, k, 0x01);
|
|
|
|
fold = _mm_clmulepi64_si128(a, k, 0x10);
|
|
|
|
|
|
|
|
fold = _mm_xor_si128(fold, temp);
|
|
|
|
fold = _mm_xor_si128(fold, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Reduction 128 -> 32 Assumes: fold holds 128bit folded data */
|
|
|
|
reduction_128_64:
|
|
|
|
k = params->rk5_rk6;
|
|
|
|
fold = crcr32_reduce_128_to_64(fold, k);
|
|
|
|
|
|
|
|
barret_reduction:
|
|
|
|
k = params->rk7_rk8;
|
|
|
|
n = crcr32_reduce_64_to_32(fold, k);
|
|
|
|
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
rte_net_crc_sse42_init(void)
|
|
|
|
{
|
|
|
|
uint64_t k1, k2, k5, k6;
|
|
|
|
uint64_t p = 0, q = 0;
|
|
|
|
|
|
|
|
/** Initialize CRC16 data */
|
|
|
|
k1 = 0x189aeLLU;
|
|
|
|
k2 = 0x8e10LLU;
|
|
|
|
k5 = 0x189aeLLU;
|
|
|
|
k6 = 0x114aaLLU;
|
|
|
|
q = 0x11c581910LLU;
|
|
|
|
p = 0x10811LLU;
|
|
|
|
|
|
|
|
/** Save the params in context structure */
|
|
|
|
crc16_ccitt_pclmulqdq.rk1_rk2 =
|
|
|
|
_mm_setr_epi64(_mm_cvtsi64_m64(k1), _mm_cvtsi64_m64(k2));
|
|
|
|
crc16_ccitt_pclmulqdq.rk5_rk6 =
|
|
|
|
_mm_setr_epi64(_mm_cvtsi64_m64(k5), _mm_cvtsi64_m64(k6));
|
|
|
|
crc16_ccitt_pclmulqdq.rk7_rk8 =
|
|
|
|
_mm_setr_epi64(_mm_cvtsi64_m64(q), _mm_cvtsi64_m64(p));
|
|
|
|
|
|
|
|
/** Initialize CRC32 data */
|
|
|
|
k1 = 0xccaa009eLLU;
|
|
|
|
k2 = 0x1751997d0LLU;
|
|
|
|
k5 = 0xccaa009eLLU;
|
|
|
|
k6 = 0x163cd6124LLU;
|
|
|
|
q = 0x1f7011640LLU;
|
|
|
|
p = 0x1db710641LLU;
|
|
|
|
|
|
|
|
/** Save the params in context structure */
|
|
|
|
crc32_eth_pclmulqdq.rk1_rk2 =
|
|
|
|
_mm_setr_epi64(_mm_cvtsi64_m64(k1), _mm_cvtsi64_m64(k2));
|
|
|
|
crc32_eth_pclmulqdq.rk5_rk6 =
|
|
|
|
_mm_setr_epi64(_mm_cvtsi64_m64(k5), _mm_cvtsi64_m64(k6));
|
|
|
|
crc32_eth_pclmulqdq.rk7_rk8 =
|
|
|
|
_mm_setr_epi64(_mm_cvtsi64_m64(q), _mm_cvtsi64_m64(p));
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Reset the register as following calculation may
|
|
|
|
* use other data types such as float, double, etc.
|
|
|
|
*/
|
|
|
|
_mm_empty();
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t
|
|
|
|
rte_crc16_ccitt_sse42_handler(const uint8_t *data,
|
|
|
|
uint32_t data_len)
|
|
|
|
{
|
|
|
|
/** return 16-bit CRC value */
|
|
|
|
return (uint16_t)~crc32_eth_calc_pclmulqdq(data,
|
|
|
|
data_len,
|
|
|
|
0xffff,
|
|
|
|
&crc16_ccitt_pclmulqdq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t
|
|
|
|
rte_crc32_eth_sse42_handler(const uint8_t *data,
|
|
|
|
uint32_t data_len)
|
|
|
|
{
|
|
|
|
return ~crc32_eth_calc_pclmulqdq(data,
|
|
|
|
data_len,
|
|
|
|
0xffffffffUL,
|
|
|
|
&crc32_eth_pclmulqdq);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _RTE_NET_CRC_SSE_H_ */
|