f-stack/dpdk/drivers/raw/ifpga_rawdev/base/ifpga_fme.c

735 lines
18 KiB
C
Raw Normal View History

2018-12-06 14:17:51 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#include "ifpga_feature_dev.h"
#define PWR_THRESHOLD_MAX 0x7F
int fme_get_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
{
struct feature *feature;
if (!fme)
return -ENOENT;
feature = get_fme_feature_by_id(fme, prop->feature_id);
if (feature && feature->ops && feature->ops->get_prop)
return feature->ops->get_prop(feature, prop);
return -ENOENT;
}
int fme_set_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
{
struct feature *feature;
if (!fme)
return -ENOENT;
feature = get_fme_feature_by_id(fme, prop->feature_id);
if (feature && feature->ops && feature->ops->set_prop)
return feature->ops->set_prop(feature, prop);
return -ENOENT;
}
int fme_set_irq(struct ifpga_fme_hw *fme, u32 feature_id, void *irq_set)
{
struct feature *feature;
if (!fme)
return -ENOENT;
feature = get_fme_feature_by_id(fme, feature_id);
if (feature && feature->ops && feature->ops->set_irq)
return feature->ops->set_irq(feature, irq_set);
return -ENOENT;
}
/* fme private feature head */
static int fme_hdr_init(struct feature *feature)
{
struct feature_fme_header *fme_hdr;
fme_hdr = (struct feature_fme_header *)feature->addr;
dev_info(NULL, "FME HDR Init.\n");
dev_info(NULL, "FME cap %llx.\n",
(unsigned long long)fme_hdr->capability.csr);
return 0;
}
static void fme_hdr_uinit(struct feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME HDR UInit.\n");
}
static int fme_hdr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_header header;
header.csr = readq(&fme_hdr->header);
*revision = header.revision;
return 0;
}
static int fme_hdr_get_ports_num(struct ifpga_fme_hw *fme, u64 *ports_num)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*ports_num = fme_capability.num_ports;
return 0;
}
static int fme_hdr_get_cache_size(struct ifpga_fme_hw *fme, u64 *cache_size)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*cache_size = fme_capability.cache_size;
return 0;
}
static int fme_hdr_get_version(struct ifpga_fme_hw *fme, u64 *version)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*version = fme_capability.fabric_verid;
return 0;
}
static int fme_hdr_get_socket_id(struct ifpga_fme_hw *fme, u64 *socket_id)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
struct feature_fme_capability fme_capability;
fme_capability.csr = readq(&fme_hdr->capability);
*socket_id = fme_capability.socket_id;
return 0;
}
static int fme_hdr_get_bitstream_id(struct ifpga_fme_hw *fme,
u64 *bitstream_id)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
*bitstream_id = readq(&fme_hdr->bitstream_id);
return 0;
}
static int fme_hdr_get_bitstream_metadata(struct ifpga_fme_hw *fme,
u64 *bitstream_metadata)
{
struct feature_fme_header *fme_hdr
= get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
*bitstream_metadata = readq(&fme_hdr->bitstream_md);
return 0;
}
static int
fme_hdr_get_prop(struct feature *feature, struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
switch (prop->prop_id) {
case FME_HDR_PROP_REVISION:
return fme_hdr_get_revision(fme, &prop->data);
case FME_HDR_PROP_PORTS_NUM:
return fme_hdr_get_ports_num(fme, &prop->data);
case FME_HDR_PROP_CACHE_SIZE:
return fme_hdr_get_cache_size(fme, &prop->data);
case FME_HDR_PROP_VERSION:
return fme_hdr_get_version(fme, &prop->data);
case FME_HDR_PROP_SOCKET_ID:
return fme_hdr_get_socket_id(fme, &prop->data);
case FME_HDR_PROP_BITSTREAM_ID:
return fme_hdr_get_bitstream_id(fme, &prop->data);
case FME_HDR_PROP_BITSTREAM_METADATA:
return fme_hdr_get_bitstream_metadata(fme, &prop->data);
}
return -ENOENT;
}
struct feature_ops fme_hdr_ops = {
.init = fme_hdr_init,
.uinit = fme_hdr_uinit,
.get_prop = fme_hdr_get_prop,
};
/* thermal management */
static int fme_thermal_get_threshold1(struct ifpga_fme_hw *fme, u64 *thres1)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1 = temp_threshold.tmp_thshold1;
return 0;
}
static int fme_thermal_set_threshold1(struct ifpga_fme_hw *fme, u64 thres1)
{
struct feature_fme_thermal *thermal;
struct feature_fme_header *fme_hdr;
struct feature_fme_tmp_threshold tmp_threshold;
struct feature_fme_capability fme_capability;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
spinlock_lock(&fme->lock);
tmp_threshold.csr = readq(&thermal->threshold);
fme_capability.csr = readq(&fme_hdr->capability);
if (fme_capability.lock_bit == 1) {
spinlock_unlock(&fme->lock);
return -EBUSY;
} else if (thres1 > 100) {
spinlock_unlock(&fme->lock);
return -EINVAL;
} else if (thres1 == 0) {
tmp_threshold.tmp_thshold1_enable = 0;
tmp_threshold.tmp_thshold1 = thres1;
} else {
tmp_threshold.tmp_thshold1_enable = 1;
tmp_threshold.tmp_thshold1 = thres1;
}
writeq(tmp_threshold.csr, &thermal->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_thermal_get_threshold2(struct ifpga_fme_hw *fme, u64 *thres2)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres2 = temp_threshold.tmp_thshold2;
return 0;
}
static int fme_thermal_set_threshold2(struct ifpga_fme_hw *fme, u64 thres2)
{
struct feature_fme_thermal *thermal;
struct feature_fme_header *fme_hdr;
struct feature_fme_tmp_threshold tmp_threshold;
struct feature_fme_capability fme_capability;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
spinlock_lock(&fme->lock);
tmp_threshold.csr = readq(&thermal->threshold);
fme_capability.csr = readq(&fme_hdr->capability);
if (fme_capability.lock_bit == 1) {
spinlock_unlock(&fme->lock);
return -EBUSY;
} else if (thres2 > 100) {
spinlock_unlock(&fme->lock);
return -EINVAL;
} else if (thres2 == 0) {
tmp_threshold.tmp_thshold2_enable = 0;
tmp_threshold.tmp_thshold2 = thres2;
} else {
tmp_threshold.tmp_thshold2_enable = 1;
tmp_threshold.tmp_thshold2 = thres2;
}
writeq(tmp_threshold.csr, &thermal->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_thermal_get_threshold_trip(struct ifpga_fme_hw *fme,
u64 *thres_trip)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres_trip = temp_threshold.therm_trip_thshold;
return 0;
}
static int fme_thermal_get_threshold1_reached(struct ifpga_fme_hw *fme,
u64 *thres1_reached)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1_reached = temp_threshold.thshold1_status;
return 0;
}
static int fme_thermal_get_threshold2_reached(struct ifpga_fme_hw *fme,
u64 *thres1_reached)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1_reached = temp_threshold.thshold2_status;
return 0;
}
static int fme_thermal_get_threshold1_policy(struct ifpga_fme_hw *fme,
u64 *thres1_policy)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold temp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_threshold.csr = readq(&thermal->threshold);
*thres1_policy = temp_threshold.thshold_policy;
return 0;
}
static int fme_thermal_set_threshold1_policy(struct ifpga_fme_hw *fme,
u64 thres1_policy)
{
struct feature_fme_thermal *thermal;
struct feature_fme_tmp_threshold tmp_threshold;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
spinlock_lock(&fme->lock);
tmp_threshold.csr = readq(&thermal->threshold);
if (thres1_policy == 0) {
tmp_threshold.thshold_policy = 0;
} else if (thres1_policy == 1) {
tmp_threshold.thshold_policy = 1;
} else {
spinlock_unlock(&fme->lock);
return -EINVAL;
}
writeq(tmp_threshold.csr, &thermal->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_thermal_get_temperature(struct ifpga_fme_hw *fme, u64 *temp)
{
struct feature_fme_thermal *thermal;
struct feature_fme_temp_rdsensor_fmt1 temp_rdsensor_fmt1;
thermal = get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
temp_rdsensor_fmt1.csr = readq(&thermal->rdsensor_fm1);
*temp = temp_rdsensor_fmt1.fpga_temp;
return 0;
}
static int fme_thermal_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
{
struct feature_fme_thermal *fme_thermal
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_THERMAL_MGMT);
struct feature_header header;
header.csr = readq(&fme_thermal->header);
*revision = header.revision;
return 0;
}
#define FME_THERMAL_CAP_NO_TMP_THRESHOLD 0x1
static int fme_thermal_mgmt_init(struct feature *feature)
{
struct feature_fme_thermal *fme_thermal;
struct feature_fme_tmp_threshold_cap thermal_cap;
UNUSED(feature);
dev_info(NULL, "FME thermal mgmt Init.\n");
fme_thermal = (struct feature_fme_thermal *)feature->addr;
thermal_cap.csr = readq(&fme_thermal->threshold_cap);
dev_info(NULL, "FME thermal cap %llx.\n",
(unsigned long long)fme_thermal->threshold_cap.csr);
if (thermal_cap.tmp_thshold_disabled)
feature->cap |= FME_THERMAL_CAP_NO_TMP_THRESHOLD;
return 0;
}
static void fme_thermal_mgmt_uinit(struct feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME thermal mgmt UInit.\n");
}
static int
fme_thermal_set_prop(struct feature *feature, struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD)
return -ENOENT;
switch (prop->prop_id) {
case FME_THERMAL_PROP_THRESHOLD1:
return fme_thermal_set_threshold1(fme, prop->data);
case FME_THERMAL_PROP_THRESHOLD2:
return fme_thermal_set_threshold2(fme, prop->data);
case FME_THERMAL_PROP_THRESHOLD1_POLICY:
return fme_thermal_set_threshold1_policy(fme, prop->data);
}
return -ENOENT;
}
static int
fme_thermal_get_prop(struct feature *feature, struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD &&
prop->prop_id != FME_THERMAL_PROP_TEMPERATURE &&
prop->prop_id != FME_THERMAL_PROP_REVISION)
return -ENOENT;
switch (prop->prop_id) {
case FME_THERMAL_PROP_THRESHOLD1:
return fme_thermal_get_threshold1(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD2:
return fme_thermal_get_threshold2(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD_TRIP:
return fme_thermal_get_threshold_trip(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD1_REACHED:
return fme_thermal_get_threshold1_reached(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD2_REACHED:
return fme_thermal_get_threshold2_reached(fme, &prop->data);
case FME_THERMAL_PROP_THRESHOLD1_POLICY:
return fme_thermal_get_threshold1_policy(fme, &prop->data);
case FME_THERMAL_PROP_TEMPERATURE:
return fme_thermal_get_temperature(fme, &prop->data);
case FME_THERMAL_PROP_REVISION:
return fme_thermal_get_revision(fme, &prop->data);
}
return -ENOENT;
}
struct feature_ops fme_thermal_mgmt_ops = {
.init = fme_thermal_mgmt_init,
.uinit = fme_thermal_mgmt_uinit,
.get_prop = fme_thermal_get_prop,
.set_prop = fme_thermal_set_prop,
};
static int fme_pwr_get_consumed(struct ifpga_fme_hw *fme, u64 *consumed)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_status pm_status;
pm_status.csr = readq(&fme_power->status);
*consumed = pm_status.pwr_consumed;
return 0;
}
static int fme_pwr_get_threshold1(struct ifpga_fme_hw *fme, u64 *threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold = pm_ap_threshold.threshold1;
return 0;
}
static int fme_pwr_set_threshold1(struct ifpga_fme_hw *fme, u64 threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
spinlock_lock(&fme->lock);
pm_ap_threshold.csr = readq(&fme_power->threshold);
if (threshold <= PWR_THRESHOLD_MAX) {
pm_ap_threshold.threshold1 = threshold;
} else {
spinlock_unlock(&fme->lock);
return -EINVAL;
}
writeq(pm_ap_threshold.csr, &fme_power->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_pwr_get_threshold2(struct ifpga_fme_hw *fme, u64 *threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold = pm_ap_threshold.threshold2;
return 0;
}
static int fme_pwr_set_threshold2(struct ifpga_fme_hw *fme, u64 threshold)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
spinlock_lock(&fme->lock);
pm_ap_threshold.csr = readq(&fme_power->threshold);
if (threshold <= PWR_THRESHOLD_MAX) {
pm_ap_threshold.threshold2 = threshold;
} else {
spinlock_unlock(&fme->lock);
return -EINVAL;
}
writeq(pm_ap_threshold.csr, &fme_power->threshold);
spinlock_unlock(&fme->lock);
return 0;
}
static int fme_pwr_get_threshold1_status(struct ifpga_fme_hw *fme,
u64 *threshold_status)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold_status = pm_ap_threshold.threshold1_status;
return 0;
}
static int fme_pwr_get_threshold2_status(struct ifpga_fme_hw *fme,
u64 *threshold_status)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_ap_threshold pm_ap_threshold;
pm_ap_threshold.csr = readq(&fme_power->threshold);
*threshold_status = pm_ap_threshold.threshold2_status;
return 0;
}
static int fme_pwr_get_rtl(struct ifpga_fme_hw *fme, u64 *rtl)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_status pm_status;
pm_status.csr = readq(&fme_power->status);
*rtl = pm_status.fpga_latency_report;
return 0;
}
static int fme_pwr_get_xeon_limit(struct ifpga_fme_hw *fme, u64 *limit)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_xeon_limit xeon_limit;
xeon_limit.csr = readq(&fme_power->xeon_limit);
if (!xeon_limit.enable)
xeon_limit.pwr_limit = 0;
*limit = xeon_limit.pwr_limit;
return 0;
}
static int fme_pwr_get_fpga_limit(struct ifpga_fme_hw *fme, u64 *limit)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_fme_pm_fpga_limit fpga_limit;
fpga_limit.csr = readq(&fme_power->fpga_limit);
if (!fpga_limit.enable)
fpga_limit.pwr_limit = 0;
*limit = fpga_limit.pwr_limit;
return 0;
}
static int fme_pwr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
{
struct feature_fme_power *fme_power
= get_fme_feature_ioaddr_by_index(fme,
FME_FEATURE_ID_POWER_MGMT);
struct feature_header header;
header.csr = readq(&fme_power->header);
*revision = header.revision;
return 0;
}
static int fme_power_mgmt_init(struct feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME power mgmt Init.\n");
return 0;
}
static void fme_power_mgmt_uinit(struct feature *feature)
{
UNUSED(feature);
dev_info(NULL, "FME power mgmt UInit.\n");
}
static int fme_power_mgmt_get_prop(struct feature *feature,
struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
switch (prop->prop_id) {
case FME_PWR_PROP_CONSUMED:
return fme_pwr_get_consumed(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD1:
return fme_pwr_get_threshold1(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD2:
return fme_pwr_get_threshold2(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD1_STATUS:
return fme_pwr_get_threshold1_status(fme, &prop->data);
case FME_PWR_PROP_THRESHOLD2_STATUS:
return fme_pwr_get_threshold2_status(fme, &prop->data);
case FME_PWR_PROP_RTL:
return fme_pwr_get_rtl(fme, &prop->data);
case FME_PWR_PROP_XEON_LIMIT:
return fme_pwr_get_xeon_limit(fme, &prop->data);
case FME_PWR_PROP_FPGA_LIMIT:
return fme_pwr_get_fpga_limit(fme, &prop->data);
case FME_PWR_PROP_REVISION:
return fme_pwr_get_revision(fme, &prop->data);
}
return -ENOENT;
}
static int fme_power_mgmt_set_prop(struct feature *feature,
struct feature_prop *prop)
{
struct ifpga_fme_hw *fme = feature->parent;
switch (prop->prop_id) {
case FME_PWR_PROP_THRESHOLD1:
return fme_pwr_set_threshold1(fme, prop->data);
case FME_PWR_PROP_THRESHOLD2:
return fme_pwr_set_threshold2(fme, prop->data);
}
return -ENOENT;
}
struct feature_ops fme_power_mgmt_ops = {
.init = fme_power_mgmt_init,
.uinit = fme_power_mgmt_uinit,
.get_prop = fme_power_mgmt_get_prop,
.set_prop = fme_power_mgmt_set_prop,
};