2020-06-18 16:55:50 +00:00
|
|
|
/* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
* Copyright(c) 2001 - 2015 Intel Corporation
|
|
|
|
*/
|
2017-04-21 10:43:26 +00:00
|
|
|
|
|
|
|
#include "e1000_api.h"
|
|
|
|
|
|
|
|
|
|
|
|
STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
|
|
|
|
STATIC void e1000_release_nvm_i210(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
|
u16 *data);
|
|
|
|
STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
|
|
|
|
STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_acquire_nvm_i210 - Request for access to EEPROM
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Acquire the necessary semaphores for exclusive access to the EEPROM.
|
|
|
|
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
|
|
* Return successful if access grant bit set, else clear the request for
|
|
|
|
* EEPROM access and return -E1000_ERR_NVM (-1).
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_acquire_nvm_i210");
|
|
|
|
|
|
|
|
ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_release_nvm_i210 - Release exclusive access to EEPROM
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
|
|
|
|
* then release the semaphores acquired.
|
|
|
|
**/
|
|
|
|
STATIC void e1000_release_nvm_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_release_nvm_i210");
|
|
|
|
|
|
|
|
e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @mask: specifies which semaphore to acquire
|
|
|
|
*
|
|
|
|
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
|
|
|
|
* will also specify which port we're acquiring the lock for.
|
|
|
|
**/
|
|
|
|
s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
|
|
|
|
{
|
|
|
|
u32 swfw_sync;
|
|
|
|
u32 swmask = mask;
|
|
|
|
u32 fwmask = mask << 16;
|
|
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_acquire_swfw_sync_i210");
|
|
|
|
|
|
|
|
while (i < timeout) {
|
|
|
|
if (e1000_get_hw_semaphore_i210(hw)) {
|
|
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
|
|
if (!(swfw_sync & (fwmask | swmask)))
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Firmware currently using resource (fwmask)
|
|
|
|
* or other software thread using resource (swmask)
|
|
|
|
*/
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
msec_delay_irq(5);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == timeout) {
|
|
|
|
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
|
|
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
swfw_sync |= swmask;
|
|
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
|
|
|
|
out:
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_release_swfw_sync_i210 - Release SW/FW semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @mask: specifies which semaphore to acquire
|
|
|
|
*
|
|
|
|
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
|
|
|
|
* will also specify which port we're releasing the lock for.
|
|
|
|
**/
|
|
|
|
void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
|
|
|
|
{
|
|
|
|
u32 swfw_sync;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_release_swfw_sync_i210");
|
|
|
|
|
|
|
|
while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
|
|
|
|
; /* Empty */
|
|
|
|
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
|
|
swfw_sync &= ~mask;
|
|
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Acquire the HW semaphore to access the PHY or NVM
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 swsm;
|
|
|
|
s32 timeout = hw->nvm.word_size + 1;
|
|
|
|
s32 i = 0;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_hw_semaphore_i210");
|
|
|
|
|
|
|
|
/* Get the SW semaphore */
|
|
|
|
while (i < timeout) {
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
if (!(swsm & E1000_SWSM_SMBI))
|
|
|
|
break;
|
|
|
|
|
|
|
|
usec_delay(50);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == timeout) {
|
|
|
|
/* In rare circumstances, the SW semaphore may already be held
|
|
|
|
* unintentionally. Clear the semaphore once before giving up.
|
|
|
|
*/
|
|
|
|
if (hw->dev_spec._82575.clear_semaphore_once) {
|
|
|
|
hw->dev_spec._82575.clear_semaphore_once = false;
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
for (i = 0; i < timeout; i++) {
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
if (!(swsm & E1000_SWSM_SMBI))
|
|
|
|
break;
|
|
|
|
|
|
|
|
usec_delay(50);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we do not have the semaphore here, we have to give up. */
|
|
|
|
if (i == timeout) {
|
|
|
|
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
|
|
|
|
return -E1000_ERR_NVM;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the FW semaphore. */
|
|
|
|
for (i = 0; i < timeout; i++) {
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
|
|
|
|
|
|
|
|
/* Semaphore acquired if bit latched */
|
|
|
|
if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
|
|
|
|
break;
|
|
|
|
|
|
|
|
usec_delay(50);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == timeout) {
|
|
|
|
/* Release semaphores */
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
DEBUGOUT("Driver can't access the NVM\n");
|
|
|
|
return -E1000_ERR_NVM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @offset: offset of word in the Shadow Ram to read
|
|
|
|
* @words: number of words to read
|
|
|
|
* @data: word read from the Shadow Ram
|
|
|
|
*
|
|
|
|
* Reads a 16 bit word from the Shadow Ram using the EERD register.
|
|
|
|
* Uses necessary synchronization semaphores.
|
|
|
|
**/
|
|
|
|
s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
|
u16 *data)
|
|
|
|
{
|
|
|
|
s32 status = E1000_SUCCESS;
|
|
|
|
u16 i, count;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_read_nvm_srrd_i210");
|
|
|
|
|
|
|
|
/* We cannot hold synchronization semaphores for too long,
|
|
|
|
* because of forceful takeover procedure. However it is more efficient
|
|
|
|
* to read in bursts than synchronizing access for each word. */
|
|
|
|
for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
|
|
|
|
count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
|
|
|
|
E1000_EERD_EEWR_MAX_COUNT : (words - i);
|
|
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
|
|
status = e1000_read_nvm_eerd(hw, offset, count,
|
|
|
|
data + i);
|
|
|
|
hw->nvm.ops.release(hw);
|
|
|
|
} else {
|
|
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (status != E1000_SUCCESS)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @offset: offset within the Shadow RAM to be written to
|
|
|
|
* @words: number of words to write
|
|
|
|
* @data: 16 bit word(s) to be written to the Shadow RAM
|
|
|
|
*
|
|
|
|
* Writes data to Shadow RAM at offset using EEWR register.
|
|
|
|
*
|
|
|
|
* If e1000_update_nvm_checksum is not called after this function , the
|
|
|
|
* data will not be committed to FLASH and also Shadow RAM will most likely
|
|
|
|
* contain an invalid checksum.
|
|
|
|
*
|
|
|
|
* If error code is returned, data and Shadow RAM may be inconsistent - buffer
|
|
|
|
* partially written.
|
|
|
|
**/
|
|
|
|
s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
|
u16 *data)
|
|
|
|
{
|
|
|
|
s32 status = E1000_SUCCESS;
|
|
|
|
u16 i, count;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_write_nvm_srwr_i210");
|
|
|
|
|
|
|
|
/* We cannot hold synchronization semaphores for too long,
|
|
|
|
* because of forceful takeover procedure. However it is more efficient
|
|
|
|
* to write in bursts than synchronizing access for each word. */
|
|
|
|
for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
|
|
|
|
count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
|
|
|
|
E1000_EERD_EEWR_MAX_COUNT : (words - i);
|
|
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
|
|
status = e1000_write_nvm_srwr(hw, offset, count,
|
|
|
|
data + i);
|
|
|
|
hw->nvm.ops.release(hw);
|
|
|
|
} else {
|
|
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (status != E1000_SUCCESS)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @offset: offset within the Shadow Ram to be written to
|
|
|
|
* @words: number of words to write
|
|
|
|
* @data: 16 bit word(s) to be written to the Shadow Ram
|
|
|
|
*
|
|
|
|
* Writes data to Shadow Ram at offset using EEWR register.
|
|
|
|
*
|
|
|
|
* If e1000_update_nvm_checksum is not called after this function , the
|
|
|
|
* Shadow Ram will most likely contain an invalid checksum.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
|
u16 *data)
|
|
|
|
{
|
|
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
u32 i, k, eewr = 0;
|
|
|
|
u32 attempts = 100000;
|
|
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_write_nvm_srwr");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A check for invalid values: offset too large, too many words,
|
|
|
|
* too many words for the offset, and not enough words.
|
|
|
|
*/
|
|
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
|
|
(words == 0)) {
|
|
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
|
|
ret_val = -E1000_ERR_NVM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < words; i++) {
|
|
|
|
eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
|
|
|
|
(data[i] << E1000_NVM_RW_REG_DATA) |
|
|
|
|
E1000_NVM_RW_REG_START;
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, E1000_SRWR, eewr);
|
|
|
|
|
|
|
|
for (k = 0; k < attempts; k++) {
|
|
|
|
if (E1000_NVM_RW_REG_DONE &
|
|
|
|
E1000_READ_REG(hw, E1000_SRWR)) {
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
usec_delay(5);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
DEBUGOUT("Shadow RAM write EEWR timed out\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** e1000_read_invm_word_i210 - Reads OTP
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @address: the word address (aka eeprom offset) to read
|
|
|
|
* @data: pointer to the data read
|
|
|
|
*
|
|
|
|
* Reads 16-bit words from the OTP. Return error when the word is not
|
|
|
|
* stored in OTP.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
|
|
|
|
{
|
|
|
|
s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
|
|
|
|
u32 invm_dword;
|
|
|
|
u16 i;
|
|
|
|
u8 record_type, word_address;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_read_invm_word_i210");
|
|
|
|
|
|
|
|
for (i = 0; i < E1000_INVM_SIZE; i++) {
|
|
|
|
invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
|
|
|
|
/* Get record type */
|
|
|
|
record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
|
|
|
|
if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
|
|
|
|
break;
|
|
|
|
if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
|
|
|
|
i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
|
|
|
|
if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
|
|
|
|
i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
|
|
|
|
if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
|
|
|
|
word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
|
|
|
|
if (word_address == address) {
|
|
|
|
*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
|
|
|
|
DEBUGOUT2("Read INVM Word 0x%02x = %x",
|
|
|
|
address, *data);
|
|
|
|
status = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (status != E1000_SUCCESS)
|
|
|
|
DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @address: the word address (aka eeprom offset) to read
|
|
|
|
* @data: pointer to the data read
|
|
|
|
*
|
|
|
|
* Wrapper function to return data formerly found in the NVM.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
|
|
|
|
u16 E1000_UNUSEDARG words, u16 *data)
|
|
|
|
{
|
|
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
UNREFERENCED_1PARAMETER(words);
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_read_invm_i210");
|
|
|
|
|
|
|
|
/* Only the MAC addr is required to be present in the iNVM */
|
|
|
|
switch (offset) {
|
|
|
|
case NVM_MAC_ADDR:
|
|
|
|
ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
|
|
|
|
ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
|
|
|
|
&data[1]);
|
|
|
|
ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
|
|
|
|
&data[2]);
|
|
|
|
if (ret_val != E1000_SUCCESS)
|
|
|
|
DEBUGOUT("MAC Addr not found in iNVM\n");
|
|
|
|
break;
|
|
|
|
case NVM_INIT_CTRL_2:
|
|
|
|
ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
*data = NVM_INIT_CTRL_2_DEFAULT_I211;
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case NVM_INIT_CTRL_4:
|
|
|
|
ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
*data = NVM_INIT_CTRL_4_DEFAULT_I211;
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case NVM_LED_1_CFG:
|
|
|
|
ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
*data = NVM_LED_1_CFG_DEFAULT_I211;
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case NVM_LED_0_2_CFG:
|
|
|
|
ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
*data = NVM_LED_0_2_CFG_DEFAULT_I211;
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case NVM_ID_LED_SETTINGS:
|
|
|
|
ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
*data = ID_LED_RESERVED_FFFF;
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case NVM_SUB_DEV_ID:
|
|
|
|
*data = hw->subsystem_device_id;
|
|
|
|
break;
|
|
|
|
case NVM_SUB_VEN_ID:
|
|
|
|
*data = hw->subsystem_vendor_id;
|
|
|
|
break;
|
|
|
|
case NVM_DEV_ID:
|
|
|
|
*data = hw->device_id;
|
|
|
|
break;
|
|
|
|
case NVM_VEN_ID:
|
|
|
|
*data = hw->vendor_id;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
|
|
|
|
*data = NVM_RESERVED_WORD;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_read_invm_version - Reads iNVM version and image type
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @invm_ver: version structure for the version read
|
|
|
|
*
|
|
|
|
* Reads iNVM version and image type.
|
|
|
|
**/
|
|
|
|
s32 e1000_read_invm_version(struct e1000_hw *hw,
|
|
|
|
struct e1000_fw_version *invm_ver)
|
|
|
|
{
|
|
|
|
u32 *record = NULL;
|
|
|
|
u32 *next_record = NULL;
|
|
|
|
u32 i = 0;
|
|
|
|
u32 invm_dword = 0;
|
|
|
|
u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
|
|
|
|
E1000_INVM_RECORD_SIZE_IN_BYTES);
|
|
|
|
u32 buffer[E1000_INVM_SIZE];
|
|
|
|
s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
|
|
|
|
u16 version = 0;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_read_invm_version");
|
|
|
|
|
|
|
|
/* Read iNVM memory */
|
|
|
|
for (i = 0; i < E1000_INVM_SIZE; i++) {
|
|
|
|
invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
|
|
|
|
buffer[i] = invm_dword;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read version number */
|
|
|
|
for (i = 1; i < invm_blocks; i++) {
|
|
|
|
record = &buffer[invm_blocks - i];
|
|
|
|
next_record = &buffer[invm_blocks - i + 1];
|
|
|
|
|
|
|
|
/* Check if we have first version location used */
|
|
|
|
if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
|
|
|
|
version = 0;
|
|
|
|
status = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Check if we have second version location used */
|
|
|
|
else if ((i == 1) &&
|
|
|
|
((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
|
|
|
|
version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
|
|
|
|
status = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Check if we have odd version location
|
|
|
|
* used and it is the last one used
|
|
|
|
*/
|
|
|
|
else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
|
|
|
|
((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
|
|
|
|
(i != 1))) {
|
|
|
|
version = (*next_record & E1000_INVM_VER_FIELD_TWO)
|
|
|
|
>> 13;
|
|
|
|
status = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Check if we have even version location
|
|
|
|
* used and it is the last one used
|
|
|
|
*/
|
|
|
|
else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
|
|
|
|
((*record & 0x3) == 0)) {
|
|
|
|
version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
|
|
|
|
status = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (status == E1000_SUCCESS) {
|
|
|
|
invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
|
|
|
|
>> E1000_INVM_MAJOR_SHIFT;
|
|
|
|
invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
|
|
|
|
}
|
|
|
|
/* Read Image Type */
|
|
|
|
for (i = 1; i < invm_blocks; i++) {
|
|
|
|
record = &buffer[invm_blocks - i];
|
|
|
|
next_record = &buffer[invm_blocks - i + 1];
|
|
|
|
|
|
|
|
/* Check if we have image type in first location used */
|
|
|
|
if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
|
|
|
|
invm_ver->invm_img_type = 0;
|
|
|
|
status = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Check if we have image type in first location used */
|
|
|
|
else if ((((*record & 0x3) == 0) &&
|
|
|
|
((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
|
|
|
|
((((*record & 0x3) != 0) && (i != 1)))) {
|
|
|
|
invm_ver->invm_img_type =
|
|
|
|
(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
|
|
|
|
status = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
|
|
**/
|
|
|
|
s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 status = E1000_SUCCESS;
|
|
|
|
s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_validate_nvm_checksum_i210");
|
|
|
|
|
|
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Replace the read function with semaphore grabbing with
|
|
|
|
* the one that skips this for a while.
|
|
|
|
* We have semaphore taken already here.
|
|
|
|
*/
|
|
|
|
read_op_ptr = hw->nvm.ops.read;
|
|
|
|
hw->nvm.ops.read = e1000_read_nvm_eerd;
|
|
|
|
|
|
|
|
status = e1000_validate_nvm_checksum_generic(hw);
|
|
|
|
|
|
|
|
/* Revert original read operation. */
|
|
|
|
hw->nvm.ops.read = read_op_ptr;
|
|
|
|
|
|
|
|
hw->nvm.ops.release(hw);
|
|
|
|
} else {
|
|
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_update_nvm_checksum_i210 - Update EEPROM checksum
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
|
|
* value to the EEPROM. Next commit EEPROM data onto the Flash.
|
|
|
|
**/
|
|
|
|
s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
u16 checksum = 0;
|
|
|
|
u16 i, nvm_data;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_update_nvm_checksum_i210");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the first word from the EEPROM. If this times out or fails, do
|
|
|
|
* not continue or we could be in for a very long wait while every
|
|
|
|
* EEPROM read fails
|
|
|
|
*/
|
|
|
|
ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
DEBUGOUT("EEPROM read failed\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
|
|
/*
|
|
|
|
* Do not use hw->nvm.ops.write, hw->nvm.ops.read
|
|
|
|
* because we do not want to take the synchronization
|
|
|
|
* semaphores twice here.
|
|
|
|
*/
|
|
|
|
|
|
|
|
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
|
|
|
|
ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
|
|
|
|
if (ret_val) {
|
|
|
|
hw->nvm.ops.release(hw);
|
|
|
|
DEBUGOUT("NVM Read Error while updating checksum.\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
checksum += nvm_data;
|
|
|
|
}
|
|
|
|
checksum = (u16) NVM_SUM - checksum;
|
|
|
|
ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
|
|
|
|
&checksum);
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
|
|
hw->nvm.ops.release(hw);
|
|
|
|
DEBUGOUT("NVM Write Error while updating checksum.\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
hw->nvm.ops.release(hw);
|
|
|
|
|
|
|
|
ret_val = e1000_update_flash_i210(hw);
|
|
|
|
} else {
|
|
|
|
ret_val = E1000_ERR_SWFW_SYNC;
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_flash_presence_i210 - Check if flash device is detected.
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
u32 eec = 0;
|
|
|
|
bool ret_val = false;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_flash_presence_i210");
|
|
|
|
|
|
|
|
eec = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
|
|
|
|
if (eec & E1000_EECD_FLASH_DETECTED_I210)
|
|
|
|
ret_val = true;
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_update_flash_i210 - Commit EEPROM to the flash
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
s32 e1000_update_flash_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
u32 flup;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_update_flash_i210");
|
|
|
|
|
|
|
|
ret_val = e1000_pool_flash_update_done_i210(hw);
|
|
|
|
if (ret_val == -E1000_ERR_NVM) {
|
|
|
|
DEBUGOUT("Flash update time out\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
|
|
|
|
E1000_WRITE_REG(hw, E1000_EECD, flup);
|
|
|
|
|
|
|
|
ret_val = e1000_pool_flash_update_done_i210(hw);
|
|
|
|
if (ret_val == E1000_SUCCESS)
|
|
|
|
DEBUGOUT("Flash update complete\n");
|
|
|
|
else
|
|
|
|
DEBUGOUT("Flash update time out\n");
|
|
|
|
|
|
|
|
out:
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
|
|
u32 i, reg;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_pool_flash_update_done_i210");
|
|
|
|
|
|
|
|
for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
|
|
|
|
reg = E1000_READ_REG(hw, E1000_EECD);
|
|
|
|
if (reg & E1000_EECD_FLUDONE_I210) {
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
usec_delay(5);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Initialize the i210/i211 NVM parameters and function pointers.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_init_nvm_params_i210");
|
|
|
|
|
|
|
|
ret_val = e1000_init_nvm_params_82575(hw);
|
|
|
|
nvm->ops.acquire = e1000_acquire_nvm_i210;
|
|
|
|
nvm->ops.release = e1000_release_nvm_i210;
|
|
|
|
nvm->ops.valid_led_default = e1000_valid_led_default_i210;
|
|
|
|
if (e1000_get_flash_presence_i210(hw)) {
|
|
|
|
hw->nvm.type = e1000_nvm_flash_hw;
|
|
|
|
nvm->ops.read = e1000_read_nvm_srrd_i210;
|
|
|
|
nvm->ops.write = e1000_write_nvm_srwr_i210;
|
|
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_i210;
|
|
|
|
nvm->ops.update = e1000_update_nvm_checksum_i210;
|
|
|
|
} else {
|
|
|
|
hw->nvm.type = e1000_nvm_invm;
|
|
|
|
nvm->ops.read = e1000_read_invm_i210;
|
|
|
|
nvm->ops.write = e1000_null_write_nvm;
|
|
|
|
nvm->ops.validate = e1000_null_ops_generic;
|
|
|
|
nvm->ops.update = e1000_null_ops_generic;
|
|
|
|
}
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_function_pointers_i210 - Init func ptrs.
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Called to initialize all function pointers and parameters.
|
|
|
|
**/
|
|
|
|
void e1000_init_function_pointers_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
e1000_init_function_pointers_82575(hw);
|
|
|
|
hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_valid_led_default_i210 - Verify a valid default LED config
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @data: pointer to the NVM (EEPROM)
|
|
|
|
*
|
|
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_valid_led_default_i210");
|
|
|
|
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
|
|
if (ret_val) {
|
|
|
|
DEBUGOUT("NVM Read Error\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
|
|
|
|
switch (hw->phy.media_type) {
|
|
|
|
case e1000_media_type_internal_serdes:
|
|
|
|
*data = ID_LED_DEFAULT_I210_SERDES;
|
|
|
|
break;
|
|
|
|
case e1000_media_type_copper:
|
|
|
|
default:
|
|
|
|
*data = ID_LED_DEFAULT_I210;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __e1000_access_xmdio_reg - Read/write XMDIO register
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @address: XMDIO address to program
|
|
|
|
* @dev_addr: device address to program
|
|
|
|
* @data: pointer to value to read/write from/to the XMDIO address
|
|
|
|
* @read: boolean flag to indicate read or write
|
|
|
|
**/
|
|
|
|
STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
|
|
|
|
u8 dev_addr, u16 *data, bool read)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("__e1000_access_xmdio_reg");
|
|
|
|
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
|
|
|
|
dev_addr);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
if (read)
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
|
|
|
|
else
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
/* Recalibrate the device back to 0 */
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
|
|
|
|
if (ret_val)
|
|
|
|
return ret_val;
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_read_xmdio_reg - Read XMDIO register
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @addr: XMDIO address to program
|
|
|
|
* @dev_addr: device address to program
|
|
|
|
* @data: value to be read from the EMI address
|
|
|
|
**/
|
|
|
|
s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_read_xmdio_reg");
|
|
|
|
|
|
|
|
return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_write_xmdio_reg - Write XMDIO register
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
* @addr: XMDIO address to program
|
|
|
|
* @dev_addr: device address to program
|
|
|
|
* @data: value to be written to the XMDIO address
|
|
|
|
**/
|
|
|
|
s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
|
|
|
|
{
|
|
|
|
DEBUGFUNC("e1000_read_xmdio_reg");
|
|
|
|
|
|
|
|
return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_pll_workaround_i210
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Works around an errata in the PLL circuit where it occasionally
|
|
|
|
* provides the wrong clock frequency after power up.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
|
|
|
|
u16 nvm_word, phy_word, pci_word, tmp_nvm;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Get and set needed register values */
|
|
|
|
wuc = E1000_READ_REG(hw, E1000_WUC);
|
|
|
|
mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
|
|
|
|
reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
|
|
|
|
E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
|
|
|
|
|
|
|
|
/* Get data from NVM, or set default */
|
|
|
|
ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
|
|
|
|
&nvm_word);
|
|
|
|
if (ret_val != E1000_SUCCESS)
|
|
|
|
nvm_word = E1000_INVM_DEFAULT_AL;
|
|
|
|
tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
|
2019-06-25 11:12:58 +00:00
|
|
|
phy_word = E1000_PHY_PLL_UNCONF;
|
2017-04-21 10:43:26 +00:00
|
|
|
for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
|
|
|
|
/* check current state directly from internal PHY */
|
|
|
|
e1000_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE |
|
|
|
|
E1000_PHY_PLL_FREQ_REG), &phy_word);
|
|
|
|
if ((phy_word & E1000_PHY_PLL_UNCONF)
|
|
|
|
!= E1000_PHY_PLL_UNCONF) {
|
|
|
|
ret_val = E1000_SUCCESS;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
ret_val = -E1000_ERR_PHY;
|
|
|
|
}
|
|
|
|
/* directly reset the internal PHY */
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
|
|
|
|
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
|
|
ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
|
|
reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
|
|
|
|
E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
|
|
|
|
|
|
|
|
e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
|
|
|
|
pci_word |= E1000_PCI_PMCSR_D3;
|
|
|
|
e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
|
|
|
|
msec_delay(1);
|
|
|
|
pci_word &= ~E1000_PCI_PMCSR_D3;
|
|
|
|
e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
|
|
|
|
reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
|
|
|
|
E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
|
|
|
|
|
|
|
|
/* restore WUC register */
|
|
|
|
E1000_WRITE_REG(hw, E1000_WUC, wuc);
|
|
|
|
}
|
|
|
|
/* restore MDICNFG setting */
|
|
|
|
E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_get_cfg_done_i210 - Read config done bit
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Read the management control register for the config done bit for
|
|
|
|
* completion status. NOTE: silicon which is EEPROM-less will fail trying
|
|
|
|
* to read the config done bit, so an error is *ONLY* logged and returns
|
|
|
|
* E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
|
|
|
|
* would not be able to be reset or change link.
|
|
|
|
**/
|
|
|
|
STATIC s32 e1000_get_cfg_done_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 timeout = PHY_CFG_TIMEOUT;
|
|
|
|
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_get_cfg_done_i210");
|
|
|
|
|
|
|
|
while (timeout) {
|
|
|
|
if (E1000_READ_REG(hw, E1000_EEMNGCTL_I210) & mask)
|
|
|
|
break;
|
|
|
|
msec_delay(1);
|
|
|
|
timeout--;
|
|
|
|
}
|
|
|
|
if (!timeout)
|
|
|
|
DEBUGOUT("MNG configuration cycle has not completed.\n");
|
|
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* e1000_init_hw_i210 - Init hw for I210/I211
|
|
|
|
* @hw: pointer to the HW structure
|
|
|
|
*
|
|
|
|
* Called to initialize hw for i210 hw family.
|
|
|
|
**/
|
|
|
|
s32 e1000_init_hw_i210(struct e1000_hw *hw)
|
|
|
|
{
|
|
|
|
s32 ret_val;
|
|
|
|
|
|
|
|
DEBUGFUNC("e1000_init_hw_i210");
|
|
|
|
if ((hw->mac.type >= e1000_i210) &&
|
|
|
|
!(e1000_get_flash_presence_i210(hw))) {
|
|
|
|
ret_val = e1000_pll_workaround_i210(hw);
|
|
|
|
if (ret_val != E1000_SUCCESS)
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
hw->phy.ops.get_cfg_done = e1000_get_cfg_done_i210;
|
|
|
|
ret_val = e1000_init_hw_82575(hw);
|
|
|
|
return ret_val;
|
|
|
|
}
|