f-stack/dpdk/drivers/net/bnxt/bnxt_flow.c

1172 lines
30 KiB
C
Raw Normal View History

2019-06-25 11:12:58 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Broadcom
* All rights reserved.
*/
#include <sys/queue.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include <rte_tailq.h>
#include "bnxt.h"
#include "bnxt_filter.h"
#include "bnxt_hwrm.h"
#include "bnxt_vnic.h"
#include "bnxt_util.h"
#include "hsi_struct_def_dpdk.h"
static int
bnxt_flow_args_validate(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
if (!pattern) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL,
"NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL,
"NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL,
"NULL attribute.");
return -rte_errno;
}
return 0;
}
static const struct rte_flow_item *
bnxt_flow_non_void_item(const struct rte_flow_item *cur)
{
while (1) {
if (cur->type != RTE_FLOW_ITEM_TYPE_VOID)
return cur;
cur++;
}
}
static const struct rte_flow_action *
bnxt_flow_non_void_action(const struct rte_flow_action *cur)
{
while (1) {
if (cur->type != RTE_FLOW_ACTION_TYPE_VOID)
return cur;
cur++;
}
}
static int
bnxt_filter_type_check(const struct rte_flow_item pattern[],
struct rte_flow_error *error __rte_unused)
{
const struct rte_flow_item *item =
bnxt_flow_non_void_item(pattern);
int use_ntuple = 1;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
use_ntuple = 1;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
use_ntuple = 0;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
case RTE_FLOW_ITEM_TYPE_IPV6:
case RTE_FLOW_ITEM_TYPE_TCP:
case RTE_FLOW_ITEM_TYPE_UDP:
/* FALLTHROUGH */
/* need ntuple match, reset exact match */
if (!use_ntuple) {
PMD_DRV_LOG(ERR,
"VLAN flow cannot use NTUPLE filter\n");
rte_flow_error_set
(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Cannot use VLAN with NTUPLE");
return -rte_errno;
}
use_ntuple |= 1;
break;
default:
PMD_DRV_LOG(ERR, "Unknown Flow type\n");
use_ntuple |= 1;
}
item++;
}
return use_ntuple;
}
static int
bnxt_validate_and_parse_flow_type(struct bnxt *bp,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
struct rte_flow_error *error,
struct bnxt_filter_info *filter)
{
const struct rte_flow_item *item = bnxt_flow_non_void_item(pattern);
const struct rte_flow_item_vlan *vlan_spec, *vlan_mask;
const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask;
const struct rte_flow_item_tcp *tcp_spec, *tcp_mask;
const struct rte_flow_item_udp *udp_spec, *udp_mask;
const struct rte_flow_item_eth *eth_spec, *eth_mask;
const struct rte_flow_item_nvgre *nvgre_spec;
const struct rte_flow_item_nvgre *nvgre_mask;
const struct rte_flow_item_vxlan *vxlan_spec;
const struct rte_flow_item_vxlan *vxlan_mask;
uint8_t vni_mask[] = {0xFF, 0xFF, 0xFF};
uint8_t tni_mask[] = {0xFF, 0xFF, 0xFF};
const struct rte_flow_item_vf *vf_spec;
uint32_t tenant_id_be = 0;
bool vni_masked = 0;
bool tni_masked = 0;
uint32_t vf = 0;
int use_ntuple;
uint32_t en = 0;
uint32_t en_ethertype;
int dflt_vnic;
use_ntuple = bnxt_filter_type_check(pattern, error);
PMD_DRV_LOG(DEBUG, "Use NTUPLE %d\n", use_ntuple);
if (use_ntuple < 0)
return use_ntuple;
filter->filter_type = use_ntuple ?
HWRM_CFA_NTUPLE_FILTER : HWRM_CFA_EM_FILTER;
en_ethertype = use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE :
EM_FLOW_ALLOC_INPUT_EN_ETHERTYPE;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if (item->last) {
/* last or range is NOT supported as match criteria */
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"No support for range");
return -rte_errno;
}
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"spec/mask is NULL");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth_spec = item->spec;
eth_mask = item->mask;
/* Source MAC address mask cannot be partially set.
* Should be All 0's or all 1's.
* Destination MAC address mask must not be partially
* set. Should be all 1's or all 0's.
*/
if ((!is_zero_ether_addr(&eth_mask->src) &&
!is_broadcast_ether_addr(&eth_mask->src)) ||
(!is_zero_ether_addr(&eth_mask->dst) &&
!is_broadcast_ether_addr(&eth_mask->dst))) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"MAC_addr mask not valid");
return -rte_errno;
}
/* Mask is not allowed. Only exact matches are */
if (eth_mask->type &&
eth_mask->type != RTE_BE16(0xffff)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"ethertype mask not valid");
return -rte_errno;
}
if (is_broadcast_ether_addr(&eth_mask->dst)) {
rte_memcpy(filter->dst_macaddr,
&eth_spec->dst, 6);
en |= use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR :
EM_FLOW_ALLOC_INPUT_EN_DST_MACADDR;
}
if (is_broadcast_ether_addr(&eth_mask->src)) {
rte_memcpy(filter->src_macaddr,
&eth_spec->src, 6);
en |= use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_MACADDR :
EM_FLOW_ALLOC_INPUT_EN_SRC_MACADDR;
} /*
* else {
* PMD_DRV_LOG(ERR, "Handle this condition\n");
* }
*/
if (eth_mask->type) {
filter->ethertype =
rte_be_to_cpu_16(eth_spec->type);
en |= en_ethertype;
}
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
vlan_spec = item->spec;
vlan_mask = item->mask;
if (en & en_ethertype) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VLAN TPID matching is not"
" supported");
return -rte_errno;
}
if (vlan_mask->tci &&
vlan_mask->tci == RTE_BE16(0x0fff)) {
/* Only the VLAN ID can be matched. */
filter->l2_ovlan =
rte_be_to_cpu_16(vlan_spec->tci &
RTE_BE16(0x0fff));
en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
} else {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VLAN mask is invalid");
return -rte_errno;
}
if (vlan_mask->inner_type &&
vlan_mask->inner_type != RTE_BE16(0xffff)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"inner ethertype mask not"
" valid");
return -rte_errno;
}
if (vlan_mask->inner_type) {
filter->ethertype =
rte_be_to_cpu_16(vlan_spec->inner_type);
en |= en_ethertype;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
/* If mask is not involved, we could use EM filters. */
ipv4_spec = item->spec;
ipv4_mask = item->mask;
/* Only IP DST and SRC fields are maskable. */
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.type_of_service ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset ||
ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.next_proto_id ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv4 mask.");
return -rte_errno;
}
filter->dst_ipaddr[0] = ipv4_spec->hdr.dst_addr;
filter->src_ipaddr[0] = ipv4_spec->hdr.src_addr;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR |
EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR;
if (ipv4_mask->hdr.src_addr) {
filter->src_ipaddr_mask[0] =
ipv4_mask->hdr.src_addr;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
}
if (ipv4_mask->hdr.dst_addr) {
filter->dst_ipaddr_mask[0] =
ipv4_mask->hdr.dst_addr;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
}
filter->ip_addr_type = use_ntuple ?
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_IP_ADDR_TYPE_IPV4 :
HWRM_CFA_EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
if (ipv4_spec->hdr.next_proto_id) {
filter->ip_protocol =
ipv4_spec->hdr.next_proto_id;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
else
en |= EM_FLOW_ALLOC_INPUT_EN_IP_PROTO;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ipv6_spec = item->spec;
ipv6_mask = item->mask;
/* Only IP DST and SRC fields are maskable. */
if (ipv6_mask->hdr.vtc_flow ||
ipv6_mask->hdr.payload_len ||
ipv6_mask->hdr.proto ||
ipv6_mask->hdr.hop_limits) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv6 mask.");
return -rte_errno;
}
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR |
EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR;
rte_memcpy(filter->src_ipaddr,
ipv6_spec->hdr.src_addr, 16);
rte_memcpy(filter->dst_ipaddr,
ipv6_spec->hdr.dst_addr, 16);
if (!bnxt_check_zero_bytes(ipv6_mask->hdr.src_addr,
16)) {
rte_memcpy(filter->src_ipaddr_mask,
ipv6_mask->hdr.src_addr, 16);
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
}
if (!bnxt_check_zero_bytes(ipv6_mask->hdr.dst_addr,
16)) {
rte_memcpy(filter->dst_ipaddr_mask,
ipv6_mask->hdr.dst_addr, 16);
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
}
filter->ip_addr_type = use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6 :
EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp_spec = item->spec;
tcp_mask = item->mask;
/* Check TCP mask. Only DST & SRC ports are maskable */
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TCP mask");
return -rte_errno;
}
filter->src_port = tcp_spec->hdr.src_port;
filter->dst_port = tcp_spec->hdr.dst_port;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT |
EM_FLOW_ALLOC_INPUT_EN_DST_PORT;
if (tcp_mask->hdr.dst_port) {
filter->dst_port_mask = tcp_mask->hdr.dst_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
}
if (tcp_mask->hdr.src_port) {
filter->src_port_mask = tcp_mask->hdr.src_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp_spec = item->spec;
udp_mask = item->mask;
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid UDP mask");
return -rte_errno;
}
filter->src_port = udp_spec->hdr.src_port;
filter->dst_port = udp_spec->hdr.dst_port;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT |
EM_FLOW_ALLOC_INPUT_EN_DST_PORT;
if (udp_mask->hdr.dst_port) {
filter->dst_port_mask = udp_mask->hdr.dst_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
}
if (udp_mask->hdr.src_port) {
filter->src_port_mask = udp_mask->hdr.src_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
}
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan_spec = item->spec;
vxlan_mask = item->mask;
/* Check if VXLAN item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!vxlan_spec && vxlan_mask) ||
(vxlan_spec && !vxlan_mask)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return -rte_errno;
}
if (vxlan_spec->rsvd1 || vxlan_spec->rsvd0[0] ||
vxlan_spec->rsvd0[1] || vxlan_spec->rsvd0[2] ||
vxlan_spec->flags != 0x8) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return -rte_errno;
}
/* Check if VNI is masked. */
if (vxlan_spec && vxlan_mask) {
vni_masked =
!!memcmp(vxlan_mask->vni, vni_mask,
RTE_DIM(vni_mask));
if (vni_masked) {
rte_flow_error_set
(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VNI mask");
return -rte_errno;
}
rte_memcpy(((uint8_t *)&tenant_id_be + 1),
vxlan_spec->vni, 3);
filter->vni =
rte_be_to_cpu_32(tenant_id_be);
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
}
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
nvgre_spec = item->spec;
nvgre_mask = item->mask;
/* Check if NVGRE item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!nvgre_spec && nvgre_mask) ||
(nvgre_spec && !nvgre_mask)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return -rte_errno;
}
if (nvgre_spec->c_k_s_rsvd0_ver != 0x2000 ||
nvgre_spec->protocol != 0x6558) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return -rte_errno;
}
if (nvgre_spec && nvgre_mask) {
tni_masked =
!!memcmp(nvgre_mask->tni, tni_mask,
RTE_DIM(tni_mask));
if (tni_masked) {
rte_flow_error_set
(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TNI mask");
return -rte_errno;
}
rte_memcpy(((uint8_t *)&tenant_id_be + 1),
nvgre_spec->tni, 3);
filter->vni =
rte_be_to_cpu_32(tenant_id_be);
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
}
break;
case RTE_FLOW_ITEM_TYPE_VF:
vf_spec = item->spec;
vf = vf_spec->id;
if (!BNXT_PF(bp)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Configuring on a VF!");
return -rte_errno;
}
if (vf >= bp->pdev->max_vfs) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Incorrect VF id!");
return -rte_errno;
}
if (!attr->transfer) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Matching VF traffic without"
" affecting it (transfer attribute)"
" is unsupported");
return -rte_errno;
}
filter->mirror_vnic_id =
dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf);
if (dflt_vnic < 0) {
/* This simply indicates there's no driver
* loaded. This is not an error.
*/
rte_flow_error_set
(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Unable to get default VNIC for VF");
return -rte_errno;
}
filter->mirror_vnic_id = dflt_vnic;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID;
break;
default:
break;
}
item++;
}
filter->enables = en;
return 0;
}
/* Parse attributes */
static int
bnxt_flow_parse_attr(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
/* Must be input direction */
if (!attr->ingress) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr,
"Only support ingress.");
return -rte_errno;
}
/* Not supported */
if (attr->egress) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr,
"No support for egress.");
return -rte_errno;
}
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr,
"No support for priority.");
return -rte_errno;
}
/* Not supported */
if (attr->group) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr,
"No support for group.");
return -rte_errno;
}
return 0;
}
struct bnxt_filter_info *
bnxt_get_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf,
struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter1, *f0;
struct bnxt_vnic_info *vnic0;
int rc;
vnic0 = &bp->vnic_info[0];
f0 = STAILQ_FIRST(&vnic0->filter);
/* This flow has same DST MAC as the port/l2 filter. */
if (memcmp(f0->l2_addr, nf->dst_macaddr, ETHER_ADDR_LEN) == 0)
return f0;
/* This flow needs DST MAC which is not same as port/l2 */
PMD_DRV_LOG(DEBUG, "Create L2 filter for DST MAC\n");
filter1 = bnxt_get_unused_filter(bp);
if (filter1 == NULL)
return NULL;
filter1->flags = HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
filter1->enables = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
L2_FILTER_ALLOC_INPUT_EN_L2_ADDR_MASK;
memcpy(filter1->l2_addr, nf->dst_macaddr, ETHER_ADDR_LEN);
memset(filter1->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id,
filter1);
if (rc) {
bnxt_free_filter(bp, filter1);
return NULL;
}
return filter1;
}
static int
bnxt_validate_and_parse_flow(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
const struct rte_flow_attr *attr,
struct rte_flow_error *error,
struct bnxt_filter_info *filter)
{
const struct rte_flow_action *act =
bnxt_flow_non_void_action(actions);
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
const struct rte_flow_action_queue *act_q;
const struct rte_flow_action_vf *act_vf;
struct bnxt_vnic_info *vnic, *vnic0;
struct bnxt_filter_info *filter1;
uint32_t vf = 0;
int dflt_vnic;
int rc;
if (bp->eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) {
PMD_DRV_LOG(ERR, "Cannot create flow on RSS queues\n");
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"Cannot create flow on RSS queues");
rc = -rte_errno;
goto ret;
}
rc =
bnxt_validate_and_parse_flow_type(bp, attr, pattern, error, filter);
if (rc != 0)
goto ret;
rc = bnxt_flow_parse_attr(attr, error);
if (rc != 0)
goto ret;
/* Since we support ingress attribute only - right now. */
if (filter->filter_type == HWRM_CFA_EM_FILTER)
filter->flags = HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_PATH_RX;
switch (act->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
/* Allow this flow. Redirect to a VNIC. */
act_q = (const struct rte_flow_action_queue *)act->conf;
if (act_q->index >= bp->rx_nr_rings) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Invalid queue ID.");
rc = -rte_errno;
goto ret;
}
PMD_DRV_LOG(DEBUG, "Queue index %d\n", act_q->index);
vnic0 = &bp->vnic_info[0];
vnic = &bp->vnic_info[act_q->index];
if (vnic == NULL) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"No matching VNIC for queue ID.");
rc = -rte_errno;
goto ret;
}
filter->dst_id = vnic->fw_vnic_id;
filter1 = bnxt_get_l2_filter(bp, filter, vnic);
if (filter1 == NULL) {
rc = -ENOSPC;
goto ret;
}
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
PMD_DRV_LOG(DEBUG, "VNIC found\n");
break;
case RTE_FLOW_ACTION_TYPE_DROP:
vnic0 = &bp->vnic_info[0];
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
if (filter1 == NULL) {
rc = -ENOSPC;
goto ret;
}
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
if (filter->filter_type == HWRM_CFA_EM_FILTER)
filter->flags =
HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_DROP;
else
filter->flags =
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
vnic0 = &bp->vnic_info[0];
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
if (filter1 == NULL) {
rc = -ENOSPC;
goto ret;
}
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_METER;
break;
case RTE_FLOW_ACTION_TYPE_VF:
act_vf = (const struct rte_flow_action_vf *)act->conf;
vf = act_vf->id;
if (!BNXT_PF(bp)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Configuring on a VF!");
rc = -rte_errno;
goto ret;
}
if (vf >= bp->pdev->max_vfs) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Incorrect VF id!");
rc = -rte_errno;
goto ret;
}
filter->mirror_vnic_id =
dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf);
if (dflt_vnic < 0) {
/* This simply indicates there's no driver loaded.
* This is not an error.
*/
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Unable to get default VNIC for VF");
rc = -rte_errno;
goto ret;
}
filter->mirror_vnic_id = dflt_vnic;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID;
vnic0 = &bp->vnic_info[0];
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
if (filter1 == NULL) {
rc = -ENOSPC;
goto ret;
}
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Invalid action.");
rc = -rte_errno;
goto ret;
}
if (filter1) {
bnxt_free_filter(bp, filter1);
filter1->fw_l2_filter_id = -1;
}
act = bnxt_flow_non_void_action(++act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Invalid action.");
rc = -rte_errno;
goto ret;
}
ret:
return rc;
}
static int
bnxt_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_filter_info *filter;
int ret = 0;
ret = bnxt_flow_args_validate(attr, pattern, actions, error);
if (ret != 0)
return ret;
filter = bnxt_get_unused_filter(bp);
if (filter == NULL) {
PMD_DRV_LOG(ERR, "Not enough resources for a new flow.\n");
return -ENOMEM;
}
ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr,
error, filter);
/* No need to hold on to this filter if we are just validating flow */
filter->fw_l2_filter_id = UINT64_MAX;
bnxt_free_filter(bp, filter);
return ret;
}
static int
bnxt_match_filter(struct bnxt *bp, struct bnxt_filter_info *nf)
{
struct bnxt_filter_info *mf;
struct rte_flow *flow;
int i;
for (i = bp->nr_vnics - 1; i >= 0; i--) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
STAILQ_FOREACH(flow, &vnic->flow_list, next) {
mf = flow->filter;
if (mf->filter_type == nf->filter_type &&
mf->flags == nf->flags &&
mf->src_port == nf->src_port &&
mf->src_port_mask == nf->src_port_mask &&
mf->dst_port == nf->dst_port &&
mf->dst_port_mask == nf->dst_port_mask &&
mf->ip_protocol == nf->ip_protocol &&
mf->ip_addr_type == nf->ip_addr_type &&
mf->ethertype == nf->ethertype &&
mf->vni == nf->vni &&
mf->tunnel_type == nf->tunnel_type &&
mf->l2_ovlan == nf->l2_ovlan &&
mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
mf->l2_ivlan == nf->l2_ivlan &&
mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
!memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
!memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
ETHER_ADDR_LEN) &&
!memcmp(mf->src_macaddr, nf->src_macaddr,
ETHER_ADDR_LEN) &&
!memcmp(mf->dst_macaddr, nf->dst_macaddr,
ETHER_ADDR_LEN) &&
!memcmp(mf->src_ipaddr, nf->src_ipaddr,
sizeof(nf->src_ipaddr)) &&
!memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
sizeof(nf->src_ipaddr_mask)) &&
!memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
sizeof(nf->dst_ipaddr)) &&
!memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
sizeof(nf->dst_ipaddr_mask))) {
if (mf->dst_id == nf->dst_id)
return -EEXIST;
/*
* Same Flow, Different queue
* Clear the old ntuple filter
* Reuse the matching L2 filter
* ID for the new filter
*/
nf->fw_l2_filter_id = mf->fw_l2_filter_id;
if (nf->filter_type == HWRM_CFA_EM_FILTER)
bnxt_hwrm_clear_em_filter(bp, mf);
if (nf->filter_type == HWRM_CFA_NTUPLE_FILTER)
bnxt_hwrm_clear_ntuple_filter(bp, mf);
/* Free the old filter, update flow
* with new filter
*/
bnxt_free_filter(bp, mf);
flow->filter = nf;
return -EXDEV;
}
}
}
return 0;
}
static struct rte_flow *
bnxt_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_filter_info *filter;
struct bnxt_vnic_info *vnic = NULL;
bool update_flow = false;
struct rte_flow *flow;
unsigned int i;
int ret = 0;
flow = rte_zmalloc("bnxt_flow", sizeof(struct rte_flow), 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to allocate memory");
return flow;
}
ret = bnxt_flow_args_validate(attr, pattern, actions, error);
if (ret != 0) {
PMD_DRV_LOG(ERR, "Not a validate flow.\n");
goto free_flow;
}
filter = bnxt_get_unused_filter(bp);
if (filter == NULL) {
PMD_DRV_LOG(ERR, "Not enough resources for a new flow.\n");
goto free_flow;
}
ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr,
error, filter);
if (ret != 0)
goto free_filter;
ret = bnxt_match_filter(bp, filter);
if (ret == -EEXIST) {
PMD_DRV_LOG(DEBUG, "Flow already exists.\n");
/* Clear the filter that was created as part of
* validate_and_parse_flow() above
*/
bnxt_hwrm_clear_l2_filter(bp, filter);
goto free_filter;
} else if (ret == -EXDEV) {
PMD_DRV_LOG(DEBUG, "Flow with same pattern exists\n");
PMD_DRV_LOG(DEBUG, "Updating with different destination\n");
update_flow = true;
}
if (filter->filter_type == HWRM_CFA_EM_FILTER) {
filter->enables |=
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
ret = bnxt_hwrm_set_em_filter(bp, filter->dst_id, filter);
}
if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) {
filter->enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
ret = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id, filter);
}
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
if (filter->dst_id == vnic->fw_vnic_id)
break;
}
if (!ret) {
flow->filter = filter;
flow->vnic = vnic;
if (update_flow) {
ret = -EXDEV;
goto free_flow;
}
PMD_DRV_LOG(ERR, "Successfully created flow.\n");
STAILQ_INSERT_TAIL(&vnic->flow_list, flow, next);
return flow;
}
free_filter:
bnxt_free_filter(bp, filter);
free_flow:
if (ret == -EEXIST)
rte_flow_error_set(error, ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Matching Flow exists.");
else if (ret == -EXDEV)
rte_flow_error_set(error, ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Flow with pattern exists, updating destination queue");
else
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow.");
rte_free(flow);
flow = NULL;
return flow;
}
static int
bnxt_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_filter_info *filter = flow->filter;
struct bnxt_vnic_info *vnic = flow->vnic;
int ret = 0;
ret = bnxt_match_filter(bp, filter);
if (ret == 0)
PMD_DRV_LOG(ERR, "Could not find matching flow\n");
if (filter->filter_type == HWRM_CFA_EM_FILTER)
ret = bnxt_hwrm_clear_em_filter(bp, filter);
if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
ret = bnxt_hwrm_clear_ntuple_filter(bp, filter);
else
ret = bnxt_hwrm_clear_l2_filter(bp, filter);
if (!ret) {
STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next);
rte_free(flow);
} else {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to destroy flow.");
}
return ret;
}
static int
bnxt_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_vnic_info *vnic;
struct rte_flow *flow;
unsigned int i;
int ret = 0;
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
STAILQ_FOREACH(flow, &vnic->flow_list, next) {
struct bnxt_filter_info *filter = flow->filter;
if (filter->filter_type == HWRM_CFA_EM_FILTER)
ret = bnxt_hwrm_clear_em_filter(bp, filter);
if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
ret = bnxt_hwrm_clear_ntuple_filter(bp, filter);
if (ret) {
rte_flow_error_set
(error,
-ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Failed to flush flow in HW.");
return -rte_errno;
}
STAILQ_REMOVE(&vnic->flow_list, flow,
rte_flow, next);
rte_free(flow);
}
}
return ret;
}
const struct rte_flow_ops bnxt_flow_ops = {
.validate = bnxt_flow_validate,
.create = bnxt_flow_create,
.destroy = bnxt_flow_destroy,
.flush = bnxt_flow_flush,
};