f-stack/dpdk/drivers/regex/mlx5/mlx5_rxp.c

1021 lines
29 KiB
C
Raw Normal View History

2021-02-05 08:48:47 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2020 Mellanox Technologies, Ltd
*/
#include <rte_log.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_regexdev.h>
#include <rte_regexdev_core.h>
#include <rte_regexdev_driver.h>
#include <mlx5_glue.h>
#include <mlx5_devx_cmds.h>
#include <mlx5_prm.h>
#include <mlx5_common_os.h>
#include "mlx5_regex.h"
#include "mlx5_regex_utils.h"
#include "mlx5_rxp_csrs.h"
#include "mlx5_rxp.h"
#define MLX5_REGEX_MAX_MATCHES MLX5_RXP_MAX_MATCHES
#define MLX5_REGEX_MAX_PAYLOAD_SIZE MLX5_RXP_MAX_JOB_LENGTH
#define MLX5_REGEX_MAX_RULES_PER_GROUP UINT32_MAX
#define MLX5_REGEX_MAX_GROUPS MLX5_RXP_MAX_SUBSETS
/* Private Declarations */
static int
rxp_poll_csr_for_value(struct ibv_context *ctx, uint32_t *value,
uint32_t address, uint32_t expected_value,
uint32_t expected_mask, uint32_t timeout_ms, uint8_t id);
static int
mlnx_set_database(struct mlx5_regex_priv *priv, uint8_t id, uint8_t db_to_use);
static int
mlnx_resume_database(struct mlx5_regex_priv *priv, uint8_t id);
static int
mlnx_update_database(struct mlx5_regex_priv *priv, uint8_t id);
static int
program_rxp_rules(struct mlx5_regex_priv *priv,
struct mlx5_rxp_ctl_rules_pgm *rules, uint8_t id);
static int
rxp_init_eng(struct mlx5_regex_priv *priv, uint8_t id);
static int
write_private_rules(struct mlx5_regex_priv *priv,
struct mlx5_rxp_ctl_rules_pgm *rules,
uint8_t id);
static int
write_shared_rules(struct mlx5_regex_priv *priv,
struct mlx5_rxp_ctl_rules_pgm *rules, uint32_t count,
uint8_t db_to_program);
static int
rxp_db_setup(struct mlx5_regex_priv *priv);
static void
rxp_dump_csrs(struct ibv_context *ctx, uint8_t id);
static int
rxp_write_rules_via_cp(struct ibv_context *ctx,
struct mlx5_rxp_rof_entry *rules,
int count, uint8_t id);
static int
rxp_flush_rules(struct ibv_context *ctx, struct mlx5_rxp_rof_entry *rules,
int count, uint8_t id);
static int
rxp_start_engine(struct ibv_context *ctx, uint8_t id);
static int
rxp_stop_engine(struct ibv_context *ctx, uint8_t id);
static void __rte_unused
rxp_dump_csrs(struct ibv_context *ctx __rte_unused, uint8_t id __rte_unused)
{
uint32_t reg, i;
/* Main CSRs*/
for (i = 0; i < MLX5_RXP_CSR_NUM_ENTRIES; i++) {
if (mlx5_devx_regex_register_read(ctx, id,
(MLX5_RXP_CSR_WIDTH * i) +
MLX5_RXP_CSR_BASE_ADDRESS,
&reg)) {
DRV_LOG(ERR, "Failed to read Main CSRs Engine %d!", id);
return;
}
DRV_LOG(DEBUG, "RXP Main CSRs (Eng%d) register (%d): %08x",
id, i, reg);
}
/* RTRU CSRs*/
for (i = 0; i < MLX5_RXP_CSR_NUM_ENTRIES; i++) {
if (mlx5_devx_regex_register_read(ctx, id,
(MLX5_RXP_CSR_WIDTH * i) +
MLX5_RXP_RTRU_CSR_BASE_ADDRESS,
&reg)) {
DRV_LOG(ERR, "Failed to read RTRU CSRs Engine %d!", id);
return;
}
DRV_LOG(DEBUG, "RXP RTRU CSRs (Eng%d) register (%d): %08x",
id, i, reg);
}
/* STAT CSRs */
for (i = 0; i < MLX5_RXP_CSR_NUM_ENTRIES; i++) {
if (mlx5_devx_regex_register_read(ctx, id,
(MLX5_RXP_CSR_WIDTH * i) +
MLX5_RXP_STATS_CSR_BASE_ADDRESS,
&reg)) {
DRV_LOG(ERR, "Failed to read STAT CSRs Engine %d!", id);
return;
}
DRV_LOG(DEBUG, "RXP STAT CSRs (Eng%d) register (%d): %08x",
id, i, reg);
}
}
int
mlx5_regex_info_get(struct rte_regexdev *dev __rte_unused,
struct rte_regexdev_info *info)
{
info->max_matches = MLX5_REGEX_MAX_MATCHES;
info->max_payload_size = MLX5_REGEX_MAX_PAYLOAD_SIZE;
info->max_rules_per_group = MLX5_REGEX_MAX_RULES_PER_GROUP;
info->max_groups = MLX5_REGEX_MAX_GROUPS;
info->max_queue_pairs = 1;
info->regexdev_capa = RTE_REGEXDEV_SUPP_PCRE_GREEDY_F |
RTE_REGEXDEV_CAPA_QUEUE_PAIR_OOS_F;
info->rule_flags = 0;
info->max_queue_pairs = 10;
return 0;
}
/**
* Actual writing of RXP instructions to RXP via CSRs.
*/
static int
rxp_write_rules_via_cp(struct ibv_context *ctx,
struct mlx5_rxp_rof_entry *rules,
int count, uint8_t id)
{
int i, ret = 0;
uint32_t tmp;
for (i = 0; i < count; i++) {
tmp = (uint32_t)rules[i].value;
ret |= mlx5_devx_regex_register_write(ctx, id,
MLX5_RXP_RTRU_CSR_DATA_0,
tmp);
tmp = (uint32_t)(rules[i].value >> 32);
ret |= mlx5_devx_regex_register_write(ctx, id,
MLX5_RXP_RTRU_CSR_DATA_0 +
MLX5_RXP_CSR_WIDTH, tmp);
tmp = rules[i].addr;
ret |= mlx5_devx_regex_register_write(ctx, id,
MLX5_RXP_RTRU_CSR_ADDR,
tmp);
if (ret) {
DRV_LOG(ERR, "Failed to copy instructions to RXP.");
return -1;
}
}
DRV_LOG(DEBUG, "Written %d instructions", count);
return 0;
}
static int
rxp_flush_rules(struct ibv_context *ctx, struct mlx5_rxp_rof_entry *rules,
int count, uint8_t id)
{
uint32_t val, fifo_depth;
int ret;
ret = rxp_write_rules_via_cp(ctx, rules, count, id);
if (ret < 0) {
DRV_LOG(ERR, "Failed to write rules via CSRs.");
return -1;
}
ret = mlx5_devx_regex_register_read(ctx, id,
MLX5_RXP_RTRU_CSR_CAPABILITY,
&fifo_depth);
if (ret) {
DRV_LOG(ERR, "CSR read failed!");
return -1;
}
ret = rxp_poll_csr_for_value(ctx, &val, MLX5_RXP_RTRU_CSR_FIFO_STAT,
count, ~0,
MLX5_RXP_POLL_CSR_FOR_VALUE_TIMEOUT, id);
if (ret < 0) {
if (ret == -EBUSY)
DRV_LOG(ERR, "Rules not rx by RXP: credit: %d, depth:"
" %d", val, fifo_depth);
else
DRV_LOG(ERR, "CSR poll failed, can't read value!");
return ret;
}
DRV_LOG(DEBUG, "RTRU FIFO depth: 0x%x", fifo_depth);
ret = mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
&val);
if (ret) {
DRV_LOG(ERR, "CSR read failed!");
return -1;
}
val |= MLX5_RXP_RTRU_CSR_CTRL_GO;
ret = mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
val);
if (ret) {
DRV_LOG(ERR, "CSR write failed!");
return -1;
}
ret = rxp_poll_csr_for_value(ctx, &val, MLX5_RXP_RTRU_CSR_STATUS,
MLX5_RXP_RTRU_CSR_STATUS_UPDATE_DONE,
MLX5_RXP_RTRU_CSR_STATUS_UPDATE_DONE,
MLX5_RXP_POLL_CSR_FOR_VALUE_TIMEOUT, id);
if (ret < 0) {
if (ret == -EBUSY)
DRV_LOG(ERR, "Rules update timeout: 0x%08X", val);
else
DRV_LOG(ERR, "CSR poll failed, can't read value!");
return ret;
}
if (mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
&val)) {
DRV_LOG(ERR, "CSR read failed!");
return -1;
}
val &= ~(MLX5_RXP_RTRU_CSR_CTRL_GO);
if (mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
val)) {
DRV_LOG(ERR, "CSR write failed!");
return -1;
}
DRV_LOG(DEBUG, "RXP Flush rules finished.");
return 0;
}
static int
rxp_poll_csr_for_value(struct ibv_context *ctx, uint32_t *value,
uint32_t address, uint32_t expected_value,
uint32_t expected_mask, uint32_t timeout_ms, uint8_t id)
{
unsigned int i;
int ret;
ret = -EBUSY;
for (i = 0; i < timeout_ms; i++) {
if (mlx5_devx_regex_register_read(ctx, id, address, value))
return -1;
if ((*value & expected_mask) == expected_value) {
ret = 0;
break;
}
rte_delay_us(1000);
}
return ret;
}
static int
rxp_start_engine(struct ibv_context *ctx, uint8_t id)
{
uint32_t ctrl;
int ret;
ret = mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_CSR_CTRL, &ctrl);
if (ret)
return ret;
ctrl |= MLX5_RXP_CSR_CTRL_GO;
ctrl |= MLX5_RXP_CSR_CTRL_DISABLE_L2C;
ret = mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_CSR_CTRL, ctrl);
return ret;
}
static int
rxp_stop_engine(struct ibv_context *ctx, uint8_t id)
{
uint32_t ctrl;
int ret;
ret = mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_CSR_CTRL, &ctrl);
if (ret)
return ret;
ctrl &= ~MLX5_RXP_CSR_CTRL_GO;
ret = mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_CSR_CTRL, ctrl);
return ret;
}
static int
rxp_init_rtru(struct ibv_context *ctx, uint8_t id, uint32_t init_bits)
{
uint32_t ctrl_value;
uint32_t poll_value;
uint32_t expected_value;
uint32_t expected_mask;
int ret;
/* Read the rtru ctrl CSR. */
ret = mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
&ctrl_value);
if (ret)
return -1;
/* Clear any previous init modes. */
ctrl_value &= ~(MLX5_RXP_RTRU_CSR_CTRL_INIT_MODE_MASK);
if (ctrl_value & MLX5_RXP_RTRU_CSR_CTRL_INIT) {
ctrl_value &= ~(MLX5_RXP_RTRU_CSR_CTRL_INIT);
mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
ctrl_value);
}
/* Set the init_mode bits in the rtru ctrl CSR. */
ctrl_value |= init_bits;
mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
ctrl_value);
/* Need to sleep for a short period after pulsing the rtru init bit. */
rte_delay_us(20000);
/* Poll the rtru status CSR until all the init done bits are set. */
DRV_LOG(DEBUG, "waiting for RXP rule memory to complete init");
/* Set the init bit in the rtru ctrl CSR. */
ctrl_value |= MLX5_RXP_RTRU_CSR_CTRL_INIT;
mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
ctrl_value);
/* Clear the init bit in the rtru ctrl CSR */
ctrl_value &= ~MLX5_RXP_RTRU_CSR_CTRL_INIT;
mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
ctrl_value);
/* Check that the following bits are set in the RTRU_CSR. */
if (init_bits == MLX5_RXP_RTRU_CSR_CTRL_INIT_MODE_L1_L2) {
/* Must be incremental mode */
expected_value = MLX5_RXP_RTRU_CSR_STATUS_L1C_INIT_DONE |
MLX5_RXP_RTRU_CSR_STATUS_L2C_INIT_DONE;
} else {
expected_value = MLX5_RXP_RTRU_CSR_STATUS_IM_INIT_DONE |
MLX5_RXP_RTRU_CSR_STATUS_L1C_INIT_DONE |
MLX5_RXP_RTRU_CSR_STATUS_L2C_INIT_DONE;
}
expected_mask = expected_value;
ret = rxp_poll_csr_for_value(ctx, &poll_value,
MLX5_RXP_RTRU_CSR_STATUS,
expected_value, expected_mask,
MLX5_RXP_CSR_STATUS_TRIAL_TIMEOUT, id);
if (ret)
return ret;
DRV_LOG(DEBUG, "rule memory initialise: 0x%08X", poll_value);
/* Clear the init bit in the rtru ctrl CSR */
ctrl_value &= ~(MLX5_RXP_RTRU_CSR_CTRL_INIT);
mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_RTRU_CSR_CTRL,
ctrl_value);
return 0;
}
static int
rxp_parse_rof(const char *buf, uint32_t len,
struct mlx5_rxp_ctl_rules_pgm **rules)
{
static const char del[] = "\n\r";
char *line;
char *tmp;
char *cur_pos;
uint32_t lines = 0;
uint32_t entries;
struct mlx5_rxp_rof_entry *curentry;
tmp = rte_malloc("", len, 0);
if (!tmp)
return -ENOMEM;
memcpy(tmp, buf, len);
line = strtok(tmp, del);
while (line) {
if (line[0] != '#' && line[0] != '\0')
lines++;
line = strtok(NULL, del);
}
*rules = rte_malloc("", lines * sizeof(*curentry) + sizeof(**rules), 0);
if (!(*rules)) {
rte_free(tmp);
return -ENOMEM;
}
memset(*rules, 0, lines * sizeof(curentry) + sizeof(**rules));
curentry = (*rules)->rules;
(*rules)->hdr.cmd = MLX5_RXP_CTL_RULES_PGM;
entries = 0;
memcpy(tmp, buf, len);
line = strtok(tmp, del);
while (line) {
if (line[0] == '#' || line[0] == '\0') {
line = strtok(NULL, del);
continue;
}
curentry->type = strtoul(line, &cur_pos, 10);
if (cur_pos == line || cur_pos[0] != ',')
goto parse_error;
cur_pos++;
curentry->addr = strtoul(cur_pos, &cur_pos, 16);
if (cur_pos[0] != ',')
goto parse_error;
cur_pos++;
curentry->value = strtoull(cur_pos, &cur_pos, 16);
if (cur_pos[0] != '\0' && cur_pos[0] != '\n')
goto parse_error;
curentry++;
entries++;
if (entries > lines)
goto parse_error;
line = strtok(NULL, del);
}
(*rules)->count = entries;
(*rules)->hdr.len = entries * sizeof(*curentry) + sizeof(**rules);
rte_free(tmp);
return 0;
parse_error:
rte_free(tmp);
if (*rules)
rte_free(*rules);
return -EINVAL;
}
static int
mlnx_set_database(struct mlx5_regex_priv *priv, uint8_t id, uint8_t db_to_use)
{
int ret;
uint32_t umem_id;
ret = mlx5_devx_regex_database_stop(priv->ctx, id);
if (ret < 0) {
DRV_LOG(ERR, "stop engine failed!");
return ret;
}
umem_id = mlx5_os_get_umem_id(priv->db[db_to_use].umem.umem);
ret = mlx5_devx_regex_database_program(priv->ctx, id, umem_id, 0);
if (ret < 0) {
DRV_LOG(ERR, "program db failed!");
return ret;
}
return 0;
}
static int
mlnx_resume_database(struct mlx5_regex_priv *priv, uint8_t id)
{
mlx5_devx_regex_database_resume(priv->ctx, id);
return 0;
}
/*
* Assign db memory for RXP programming.
*/
static int
mlnx_update_database(struct mlx5_regex_priv *priv, uint8_t id)
{
unsigned int i;
uint8_t db_free = MLX5_RXP_DB_NOT_ASSIGNED;
uint8_t eng_assigned = MLX5_RXP_DB_NOT_ASSIGNED;
/* Check which database rxp_eng is currently located if any? */
for (i = 0; i < (priv->nb_engines + MLX5_RXP_EM_COUNT);
i++) {
if (priv->db[i].db_assigned_to_eng_num == id) {
eng_assigned = i;
break;
}
}
/*
* If private mode then, we can keep the same db ptr as RXP will be
* programming EM itself if necessary, however need to see if
* programmed yet.
*/
if ((priv->prog_mode == MLX5_RXP_PRIVATE_PROG_MODE) &&
(eng_assigned != MLX5_RXP_DB_NOT_ASSIGNED))
return eng_assigned;
/* Check for inactive db memory to use. */
for (i = 0; i < (priv->nb_engines + MLX5_RXP_EM_COUNT);
i++) {
if (priv->db[i].active == true)
continue; /* Already in use, so skip db. */
/* Set this db to active now as free to use. */
priv->db[i].active = true;
/* Now unassign last db index in use by RXP Eng. */
if (eng_assigned != MLX5_RXP_DB_NOT_ASSIGNED) {
priv->db[eng_assigned].active = false;
priv->db[eng_assigned].db_assigned_to_eng_num =
MLX5_RXP_DB_NOT_ASSIGNED;
/* Set all DB memory to 0's before setting up DB. */
memset(priv->db[i].ptr, 0x00, MLX5_MAX_DB_SIZE);
}
/* Now reassign new db index with RXP Engine. */
priv->db[i].db_assigned_to_eng_num = id;
db_free = i;
break;
}
if (db_free == MLX5_RXP_DB_NOT_ASSIGNED)
return -1;
return db_free;
}
/*
* Program RXP instruction db to RXP engine/s.
*/
static int
program_rxp_rules(struct mlx5_regex_priv *priv,
struct mlx5_rxp_ctl_rules_pgm *rules, uint8_t id)
{
int ret, db_free;
uint32_t rule_cnt;
rule_cnt = rules->count;
db_free = mlnx_update_database(priv, id);
if (db_free < 0) {
DRV_LOG(ERR, "Failed to setup db memory!");
return db_free;
}
if (priv->prog_mode == MLX5_RXP_PRIVATE_PROG_MODE) {
/* Register early to ensure RXP writes to EM use valid addr. */
ret = mlnx_set_database(priv, id, db_free);
if (ret < 0) {
DRV_LOG(ERR, "Failed to register db memory!");
return ret;
}
}
ret = write_private_rules(priv, rules, id);
if (ret < 0) {
DRV_LOG(ERR, "Failed to write rules!");
return ret;
}
if (priv->prog_mode == MLX5_RXP_SHARED_PROG_MODE) {
/* Write external rules directly to EM. */
rules->count = rule_cnt;
/* Now write external instructions to EM. */
ret = write_shared_rules(priv, rules, rules->hdr.len, db_free);
if (ret < 0) {
DRV_LOG(ERR, "Failed to write EM rules!");
return ret;
}
ret = mlnx_set_database(priv, id, db_free);
if (ret < 0) {
DRV_LOG(ERR, "Failed to register db memory!");
return ret;
}
}
ret = mlnx_resume_database(priv, id);
if (ret < 0) {
DRV_LOG(ERR, "Failed to resume engine!");
return ret;
}
DRV_LOG(DEBUG, "Programmed RXP Engine %d\n", id);
rules->count = rule_cnt;
return 0;
}
static int
rxp_init_eng(struct mlx5_regex_priv *priv, uint8_t id)
{
uint32_t ctrl;
uint32_t reg;
struct ibv_context *ctx = priv->ctx;
int ret;
ret = mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_CSR_CTRL, &ctrl);
if (ret)
return ret;
if (ctrl & MLX5_RXP_CSR_CTRL_INIT) {
ctrl &= ~MLX5_RXP_CSR_CTRL_INIT;
ret = mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_CSR_CTRL,
ctrl);
if (ret)
return ret;
}
ctrl |= MLX5_RXP_CSR_CTRL_INIT;
ret = mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_CSR_CTRL, ctrl);
if (ret)
return ret;
ctrl &= ~MLX5_RXP_CSR_CTRL_INIT;
ret = mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_CSR_CTRL, ctrl);
if (ret)
return ret;
rte_delay_us(20000);
ret = rxp_poll_csr_for_value(ctx, &ctrl, MLX5_RXP_CSR_STATUS,
MLX5_RXP_CSR_STATUS_INIT_DONE,
MLX5_RXP_CSR_STATUS_INIT_DONE,
MLX5_RXP_CSR_STATUS_TRIAL_TIMEOUT, id);
if (ret)
return ret;
ret = mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_CSR_CTRL, &ctrl);
if (ret)
return ret;
ctrl &= ~MLX5_RXP_CSR_CTRL_INIT;
ret = mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_CSR_CTRL,
ctrl);
if (ret)
return ret;
ret = rxp_init_rtru(ctx, id, MLX5_RXP_RTRU_CSR_CTRL_INIT_MODE_IM_L1_L2);
if (ret)
return ret;
ret = mlx5_devx_regex_register_read(ctx, id, MLX5_RXP_CSR_CAPABILITY_5,
&reg);
if (ret)
return ret;
DRV_LOG(DEBUG, "max matches: %d, DDOS threshold: %d", reg >> 16,
reg & 0xffff);
if ((reg >> 16) >= priv->nb_max_matches)
ret = mlx5_devx_regex_register_write(ctx, id,
MLX5_RXP_CSR_MAX_MATCH,
priv->nb_max_matches);
else
ret = mlx5_devx_regex_register_write(ctx, id,
MLX5_RXP_CSR_MAX_MATCH,
(reg >> 16));
ret |= mlx5_devx_regex_register_write(ctx, id, MLX5_RXP_CSR_MAX_PREFIX,
(reg & 0xFFFF));
ret |= mlx5_devx_regex_register_write(ctx, id,
MLX5_RXP_CSR_MAX_LATENCY, 0);
ret |= mlx5_devx_regex_register_write(ctx, id,
MLX5_RXP_CSR_MAX_PRI_THREAD, 0);
return ret;
}
static int
write_private_rules(struct mlx5_regex_priv *priv,
struct mlx5_rxp_ctl_rules_pgm *rules,
uint8_t id)
{
unsigned int pending;
uint32_t block, reg, val, rule_cnt, rule_offset, rtru_max_num_entries;
int ret = 1;
if (priv->prog_mode == MLX5_RXP_MODE_NOT_DEFINED)
return -EINVAL;
if (rules->hdr.len == 0 || rules->hdr.cmd < MLX5_RXP_CTL_RULES_PGM ||
rules->hdr.cmd > MLX5_RXP_CTL_RULES_PGM_INCR)
return -EINVAL;
/* For a non-incremental rules program, re-init the RXP. */
if (rules->hdr.cmd == MLX5_RXP_CTL_RULES_PGM) {
ret = rxp_init_eng(priv, id);
if (ret < 0)
return ret;
} else if (rules->hdr.cmd == MLX5_RXP_CTL_RULES_PGM_INCR) {
/* Flush RXP L1 and L2 cache by using MODE_L1_L2. */
ret = rxp_init_rtru(priv->ctx, id,
MLX5_RXP_RTRU_CSR_CTRL_INIT_MODE_L1_L2);
if (ret < 0)
return ret;
}
if (rules->count == 0)
return -EINVAL;
/* Confirm the RXP is initialised. */
if (mlx5_devx_regex_register_read(priv->ctx, id,
MLX5_RXP_CSR_STATUS, &val)) {
DRV_LOG(ERR, "Failed to read from RXP!");
return -ENODEV;
}
if (!(val & MLX5_RXP_CSR_STATUS_INIT_DONE)) {
DRV_LOG(ERR, "RXP not initialised...");
return -EBUSY;
}
/* Get the RTRU maximum number of entries allowed. */
if (mlx5_devx_regex_register_read(priv->ctx, id,
MLX5_RXP_RTRU_CSR_CAPABILITY, &rtru_max_num_entries)) {
DRV_LOG(ERR, "Failed to read RTRU capability!");
return -ENODEV;
}
rtru_max_num_entries = (rtru_max_num_entries & 0x00FF);
rule_cnt = 0;
pending = 0;
while (rules->count > 0) {
if ((rules->rules[rule_cnt].type == MLX5_RXP_ROF_ENTRY_INST) ||
(rules->rules[rule_cnt].type == MLX5_RXP_ROF_ENTRY_IM) ||
(rules->rules[rule_cnt].type == MLX5_RXP_ROF_ENTRY_EM)) {
if ((rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_EM) &&
(priv->prog_mode == MLX5_RXP_SHARED_PROG_MODE)) {
/* Skip EM rules programming. */
if (pending > 0) {
/* Flush any rules that are pending. */
rule_offset = (rule_cnt - pending);
ret = rxp_flush_rules(priv->ctx,
&rules->rules[rule_offset],
pending, id);
if (ret < 0) {
DRV_LOG(ERR, "Flushing rules.");
return -ENODEV;
}
pending = 0;
}
rule_cnt++;
} else {
pending++;
rule_cnt++;
/*
* If parsing the last rule, or if reached the
* maximum number of rules for this batch, then
* flush the rules batch to the RXP.
*/
if ((rules->count == 1) ||
(pending == rtru_max_num_entries)) {
rule_offset = (rule_cnt - pending);
ret = rxp_flush_rules(priv->ctx,
&rules->rules[rule_offset],
pending, id);
if (ret < 0) {
DRV_LOG(ERR, "Flushing rules.");
return -ENODEV;
}
pending = 0;
}
}
} else if ((rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_EQ) ||
(rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_GTE) ||
(rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_LTE) ||
(rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_CHECKSUM) ||
(rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_CHECKSUM_EX_EM)) {
if (pending) {
/* Flush rules before checking reg values. */
rule_offset = (rule_cnt - pending);
ret = rxp_flush_rules(priv->ctx,
&rules->rules[rule_offset],
pending, id);
if (ret < 0) {
DRV_LOG(ERR, "Failed to flush rules.");
return -ENODEV;
}
}
block = (rules->rules[rule_cnt].addr >> 16) & 0xFFFF;
if (block == 0)
reg = MLX5_RXP_CSR_BASE_ADDRESS;
else if (block == 1)
reg = MLX5_RXP_RTRU_CSR_BASE_ADDRESS;
else {
DRV_LOG(ERR, "Invalid ROF register 0x%08X!",
rules->rules[rule_cnt].addr);
return -EINVAL;
}
reg += (rules->rules[rule_cnt].addr & 0xFFFF) *
MLX5_RXP_CSR_WIDTH;
ret = mlx5_devx_regex_register_read(priv->ctx, id,
reg, &val);
if (ret) {
DRV_LOG(ERR, "RXP CSR read failed!");
return ret;
}
if ((priv->prog_mode == MLX5_RXP_SHARED_PROG_MODE) &&
((rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_CHECKSUM_EX_EM) &&
(val != rules->rules[rule_cnt].value))) {
DRV_LOG(ERR, "Unexpected value for register:");
DRV_LOG(ERR, "reg %x" PRIu32 " got %x" PRIu32,
rules->rules[rule_cnt].addr, val);
DRV_LOG(ERR, "expected %" PRIx64 ".",
rules->rules[rule_cnt].value);
return -EINVAL;
} else if ((priv->prog_mode ==
MLX5_RXP_PRIVATE_PROG_MODE) &&
(rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_CHECKSUM) &&
(val != rules->rules[rule_cnt].value)) {
DRV_LOG(ERR, "Unexpected value for register:");
DRV_LOG(ERR, "reg %x" PRIu32 " got %x" PRIu32,
rules->rules[rule_cnt].addr, val);
DRV_LOG(ERR, "expected %" PRIx64 ".",
rules->rules[rule_cnt].value);
return -EINVAL;
} else if ((rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_EQ) &&
(val != rules->rules[rule_cnt].value)) {
DRV_LOG(ERR, "Unexpected value for register:");
DRV_LOG(ERR, "reg %x" PRIu32 " got %x" PRIu32,
rules->rules[rule_cnt].addr, val);
DRV_LOG(ERR, "expected %" PRIx64 ".",
rules->rules[rule_cnt].value);
return -EINVAL;
} else if ((rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_GTE) &&
(val < rules->rules[rule_cnt].value)) {
DRV_LOG(ERR, "Unexpected value reg 0x%08X,",
rules->rules[rule_cnt].addr);
DRV_LOG(ERR, "got %X, expected >= %" PRIx64 ".",
val, rules->rules[rule_cnt].value);
return -EINVAL;
} else if ((rules->rules[rule_cnt].type ==
MLX5_RXP_ROF_ENTRY_LTE) &&
(val > rules->rules[rule_cnt].value)) {
DRV_LOG(ERR, "Unexpected value reg 0x%08X,",
rules->rules[rule_cnt].addr);
DRV_LOG(ERR, "got %08X expected <= %" PRIx64,
val, rules->rules[rule_cnt].value);
return -EINVAL;
}
rule_cnt++;
pending = 0;
} else {
DRV_LOG(ERR, "Error: Invalid rule type %d!",
rules->rules[rule_cnt].type);
return -EINVAL;
}
rules->count--;
}
return ret;
}
/*
* Shared memory programming mode, here all external db instructions are written
* to EM via the host.
*/
static int
write_shared_rules(struct mlx5_regex_priv *priv,
struct mlx5_rxp_ctl_rules_pgm *rules, uint32_t count,
uint8_t db_to_program)
{
uint32_t rule_cnt, rof_rule_addr;
uint64_t tmp_write_swap[4];
if (priv->prog_mode == MLX5_RXP_MODE_NOT_DEFINED)
return -EINVAL;
if ((rules->count == 0) || (count == 0))
return -EINVAL;
rule_cnt = 0;
/*
* Note the following section of code carries out a 32byte swap of
* instruction to coincide with HW 32byte swap. This may need removed
* in new variants of this programming function!
*/
while (rule_cnt < rules->count) {
if ((rules->rules[rule_cnt].type == MLX5_RXP_ROF_ENTRY_EM) &&
(priv->prog_mode == MLX5_RXP_SHARED_PROG_MODE)) {
/*
* Note there are always blocks of 8 instructions for
* 7's written sequentially. However there is no
* guarantee that all blocks are sequential!
*/
if (count >= (rule_cnt + MLX5_RXP_INST_BLOCK_SIZE)) {
/*
* Ensure memory write not exceeding boundary
* Check essential to ensure 0x10000 offset
* accounted for!
*/
if ((uint8_t *)((uint8_t *)
priv->db[db_to_program].ptr +
((rules->rules[rule_cnt + 7].addr <<
MLX5_RXP_INST_OFFSET))) >=
((uint8_t *)((uint8_t *)
priv->db[db_to_program].ptr +
MLX5_MAX_DB_SIZE))) {
DRV_LOG(ERR, "DB exceeded memory!");
return -ENODEV;
}
/*
* Rule address Offset to align with RXP
* external instruction offset.
*/
rof_rule_addr = (rules->rules[rule_cnt].addr <<
MLX5_RXP_INST_OFFSET);
/* 32 byte instruction swap (sw work around)! */
tmp_write_swap[0] = le64toh(
rules->rules[(rule_cnt + 4)].value);
tmp_write_swap[1] = le64toh(
rules->rules[(rule_cnt + 5)].value);
tmp_write_swap[2] = le64toh(
rules->rules[(rule_cnt + 6)].value);
tmp_write_swap[3] = le64toh(
rules->rules[(rule_cnt + 7)].value);
/* Write only 4 of the 8 instructions. */
memcpy((uint8_t *)((uint8_t *)
priv->db[db_to_program].ptr +
rof_rule_addr), &tmp_write_swap,
(sizeof(uint64_t) * 4));
/* Write 1st 4 rules of block after last 4. */
rof_rule_addr = (rules->rules[
(rule_cnt + 4)].addr <<
MLX5_RXP_INST_OFFSET);
tmp_write_swap[0] = le64toh(
rules->rules[(rule_cnt + 0)].value);
tmp_write_swap[1] = le64toh(
rules->rules[(rule_cnt + 1)].value);
tmp_write_swap[2] = le64toh(
rules->rules[(rule_cnt + 2)].value);
tmp_write_swap[3] = le64toh(
rules->rules[(rule_cnt + 3)].value);
memcpy((uint8_t *)((uint8_t *)
priv->db[db_to_program].ptr +
rof_rule_addr), &tmp_write_swap,
(sizeof(uint64_t) * 4));
} else
return -1;
/* Fast forward as already handled block of 8. */
rule_cnt += MLX5_RXP_INST_BLOCK_SIZE;
} else
rule_cnt++; /* Must be something other than EM rule. */
}
return 0;
}
static int
rxp_db_setup(struct mlx5_regex_priv *priv)
{
int ret;
uint8_t i;
/* Setup database memories for both RXP engines + reprogram memory. */
for (i = 0; i < (priv->nb_engines + MLX5_RXP_EM_COUNT); i++) {
priv->db[i].ptr = rte_malloc("", MLX5_MAX_DB_SIZE, 0);
if (!priv->db[i].ptr) {
DRV_LOG(ERR, "Failed to alloc db memory!");
ret = ENODEV;
goto tidyup_error;
}
/* Register the memory. */
priv->db[i].umem.umem = mlx5_glue->devx_umem_reg(priv->ctx,
priv->db[i].ptr,
MLX5_MAX_DB_SIZE, 7);
if (!priv->db[i].umem.umem) {
DRV_LOG(ERR, "Failed to register memory!");
ret = ENODEV;
goto tidyup_error;
}
/* Ensure set all DB memory to 0's before setting up DB. */
memset(priv->db[i].ptr, 0x00, MLX5_MAX_DB_SIZE);
/* No data currently in database. */
priv->db[i].len = 0;
priv->db[i].active = false;
priv->db[i].db_assigned_to_eng_num = MLX5_RXP_DB_NOT_ASSIGNED;
}
return 0;
tidyup_error:
for (i = 0; i < (priv->nb_engines + MLX5_RXP_EM_COUNT); i++) {
if (priv->db[i].ptr)
rte_free(priv->db[i].ptr);
if (priv->db[i].umem.umem)
mlx5_glue->devx_umem_dereg(priv->db[i].umem.umem);
}
return -ret;
}
int
mlx5_regex_rules_db_import(struct rte_regexdev *dev,
const char *rule_db, uint32_t rule_db_len)
{
struct mlx5_regex_priv *priv = dev->data->dev_private;
struct mlx5_rxp_ctl_rules_pgm *rules = NULL;
uint32_t id;
int ret;
if (priv->prog_mode == MLX5_RXP_MODE_NOT_DEFINED) {
DRV_LOG(ERR, "RXP programming mode not set!");
return -1;
}
if (rule_db == NULL) {
DRV_LOG(ERR, "Database empty!");
return -ENODEV;
}
if (rule_db_len == 0)
return -EINVAL;
ret = rxp_parse_rof(rule_db, rule_db_len, &rules);
if (ret) {
DRV_LOG(ERR, "Can't parse ROF file.");
return ret;
}
/* Need to ensure RXP not busy before stop! */
for (id = 0; id < priv->nb_engines; id++) {
ret = rxp_stop_engine(priv->ctx, id);
if (ret) {
DRV_LOG(ERR, "Can't stop engine.");
ret = -ENODEV;
goto tidyup_error;
}
ret = program_rxp_rules(priv, rules, id);
if (ret < 0) {
DRV_LOG(ERR, "Failed to program rxp rules.");
ret = -ENODEV;
goto tidyup_error;
}
ret = rxp_start_engine(priv->ctx, id);
if (ret) {
DRV_LOG(ERR, "Can't start engine.");
ret = -ENODEV;
goto tidyup_error;
}
}
rte_free(rules);
return 0;
tidyup_error:
rte_free(rules);
return ret;
}
int
mlx5_regex_configure(struct rte_regexdev *dev,
const struct rte_regexdev_config *cfg)
{
struct mlx5_regex_priv *priv = dev->data->dev_private;
int ret;
if (priv->prog_mode == MLX5_RXP_MODE_NOT_DEFINED)
return -1;
priv->nb_queues = cfg->nb_queue_pairs;
dev->data->dev_conf.nb_queue_pairs = priv->nb_queues;
priv->qps = rte_zmalloc(NULL, sizeof(struct mlx5_regex_qp) *
priv->nb_queues, 0);
if (!priv->nb_queues) {
DRV_LOG(ERR, "can't allocate qps memory");
rte_errno = ENOMEM;
return -rte_errno;
}
priv->nb_max_matches = cfg->nb_max_matches;
/* Setup rxp db memories. */
if (rxp_db_setup(priv)) {
DRV_LOG(ERR, "Failed to setup RXP db memory");
rte_errno = ENOMEM;
return -rte_errno;
}
if (cfg->rule_db != NULL) {
ret = mlx5_regex_rules_db_import(dev, cfg->rule_db,
cfg->rule_db_len);
if (ret < 0) {
DRV_LOG(ERR, "Failed to program rxp rules.");
rte_errno = ENODEV;
goto configure_error;
}
} else
DRV_LOG(DEBUG, "Regex config without rules programming!");
return 0;
configure_error:
if (priv->qps)
rte_free(priv->qps);
return -rte_errno;
}