f-stack/dpdk/lib/librte_eal/common/malloc_heap.c

237 lines
6.9 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_memcpy.h>
#include <rte_atomic.h>
#include "malloc_elem.h"
#include "malloc_heap.h"
static unsigned
check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
{
unsigned check_flag = 0;
if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
return 1;
switch (hugepage_sz) {
case RTE_PGSIZE_256K:
check_flag = RTE_MEMZONE_256KB;
break;
case RTE_PGSIZE_2M:
check_flag = RTE_MEMZONE_2MB;
break;
case RTE_PGSIZE_16M:
check_flag = RTE_MEMZONE_16MB;
break;
case RTE_PGSIZE_256M:
check_flag = RTE_MEMZONE_256MB;
break;
case RTE_PGSIZE_512M:
check_flag = RTE_MEMZONE_512MB;
break;
case RTE_PGSIZE_1G:
check_flag = RTE_MEMZONE_1GB;
break;
case RTE_PGSIZE_4G:
check_flag = RTE_MEMZONE_4GB;
break;
case RTE_PGSIZE_16G:
check_flag = RTE_MEMZONE_16GB;
}
return check_flag & flags;
}
/*
* Expand the heap with a memseg.
* This reserves the zone and sets a dummy malloc_elem header at the end
* to prevent overflow. The rest of the zone is added to free list as a single
* large free block
*/
static void
malloc_heap_add_memseg(struct malloc_heap *heap, struct rte_memseg *ms)
{
/* allocate the memory block headers, one at end, one at start */
struct malloc_elem *start_elem = (struct malloc_elem *)ms->addr;
struct malloc_elem *end_elem = RTE_PTR_ADD(ms->addr,
ms->len - MALLOC_ELEM_OVERHEAD);
end_elem = RTE_PTR_ALIGN_FLOOR(end_elem, RTE_CACHE_LINE_SIZE);
const size_t elem_size = (uintptr_t)end_elem - (uintptr_t)start_elem;
malloc_elem_init(start_elem, heap, ms, elem_size);
malloc_elem_mkend(end_elem, start_elem);
malloc_elem_free_list_insert(start_elem);
heap->total_size += elem_size;
}
/*
* Iterates through the freelist for a heap to find a free element
* which can store data of the required size and with the requested alignment.
* If size is 0, find the biggest available elem.
* Returns null on failure, or pointer to element on success.
*/
static struct malloc_elem *
find_suitable_element(struct malloc_heap *heap, size_t size,
unsigned flags, size_t align, size_t bound)
{
size_t idx;
struct malloc_elem *elem, *alt_elem = NULL;
for (idx = malloc_elem_free_list_index(size);
idx < RTE_HEAP_NUM_FREELISTS; idx++) {
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list)) {
if (malloc_elem_can_hold(elem, size, align, bound)) {
if (check_hugepage_sz(flags, elem->ms->hugepage_sz))
return elem;
if (alt_elem == NULL)
alt_elem = elem;
}
}
}
if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
return alt_elem;
return NULL;
}
/*
* Main function to allocate a block of memory from the heap.
* It locks the free list, scans it, and adds a new memseg if the
* scan fails. Once the new memseg is added, it re-scans and should return
* the new element after releasing the lock.
*/
void *
malloc_heap_alloc(struct malloc_heap *heap,
const char *type __attribute__((unused)), size_t size, unsigned flags,
size_t align, size_t bound)
{
struct malloc_elem *elem;
size = RTE_CACHE_LINE_ROUNDUP(size);
align = RTE_CACHE_LINE_ROUNDUP(align);
rte_spinlock_lock(&heap->lock);
elem = find_suitable_element(heap, size, flags, align, bound);
if (elem != NULL) {
elem = malloc_elem_alloc(elem, size, align, bound);
/* increase heap's count of allocated elements */
heap->alloc_count++;
}
rte_spinlock_unlock(&heap->lock);
return elem == NULL ? NULL : (void *)(&elem[1]);
}
/*
* Function to retrieve data for heap on given socket
*/
int
malloc_heap_get_stats(const struct malloc_heap *heap,
struct rte_malloc_socket_stats *socket_stats)
{
size_t idx;
struct malloc_elem *elem;
/* Initialise variables for heap */
socket_stats->free_count = 0;
socket_stats->heap_freesz_bytes = 0;
socket_stats->greatest_free_size = 0;
/* Iterate through free list */
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list))
{
socket_stats->free_count++;
socket_stats->heap_freesz_bytes += elem->size;
if (elem->size > socket_stats->greatest_free_size)
socket_stats->greatest_free_size = elem->size;
}
}
/* Get stats on overall heap and allocated memory on this heap */
socket_stats->heap_totalsz_bytes = heap->total_size;
socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
socket_stats->heap_freesz_bytes);
socket_stats->alloc_count = heap->alloc_count;
return 0;
}
int
rte_eal_malloc_heap_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned ms_cnt;
struct rte_memseg *ms;
if (mcfg == NULL)
return -1;
for (ms = &mcfg->memseg[0], ms_cnt = 0;
(ms_cnt < RTE_MAX_MEMSEG) && (ms->len > 0);
ms_cnt++, ms++) {
#ifdef RTE_LIBRTE_IVSHMEM
/*
* if segment has ioremap address set, it's an IVSHMEM segment and
* it is not memory to allocate from.
*/
if (ms->ioremap_addr != 0)
continue;
#endif
malloc_heap_add_memseg(&mcfg->malloc_heaps[ms->socket_id], ms);
}
return 0;
}