f-stack/dpdk/drivers/crypto/mlx5/mlx5_crypto.c

1034 lines
30 KiB
C
Raw Normal View History

2022-09-06 04:00:10 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2021 NVIDIA Corporation & Affiliates
*/
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_eal_paging.h>
#include <rte_errno.h>
#include <rte_log.h>
#include <rte_bus_pci.h>
#include <rte_memory.h>
#include <mlx5_glue.h>
#include <mlx5_common.h>
#include <mlx5_devx_cmds.h>
#include <mlx5_common_os.h>
#include "mlx5_crypto_utils.h"
#include "mlx5_crypto.h"
#define MLX5_CRYPTO_DRIVER_NAME crypto_mlx5
#define MLX5_CRYPTO_LOG_NAME pmd.crypto.mlx5
#define MLX5_CRYPTO_MAX_QPS 128
#define MLX5_CRYPTO_MAX_SEGS 56
#define MLX5_CRYPTO_FEATURE_FLAGS \
(RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_HW_ACCELERATED | \
RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | \
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | \
RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT | \
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | \
RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY | \
RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS)
TAILQ_HEAD(mlx5_crypto_privs, mlx5_crypto_priv) mlx5_crypto_priv_list =
TAILQ_HEAD_INITIALIZER(mlx5_crypto_priv_list);
static pthread_mutex_t priv_list_lock;
int mlx5_crypto_logtype;
uint8_t mlx5_crypto_driver_id;
const struct rte_cryptodev_capabilities mlx5_crypto_caps[] = {
{ /* AES XTS */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_XTS,
.block_size = 16,
.key_size = {
.min = 32,
.max = 64,
.increment = 32
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
},
.dataunit_set =
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES |
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES |
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES,
}, }
}, }
},
};
static const char mlx5_crypto_drv_name[] = RTE_STR(MLX5_CRYPTO_DRIVER_NAME);
static const struct rte_driver mlx5_drv = {
.name = mlx5_crypto_drv_name,
.alias = mlx5_crypto_drv_name
};
static struct cryptodev_driver mlx5_cryptodev_driver;
struct mlx5_crypto_session {
uint32_t bs_bpt_eo_es;
/**< bsf_size, bsf_p_type, encryption_order and encryption standard,
* saved in big endian format.
*/
uint32_t bsp_res;
/**< crypto_block_size_pointer and reserved 24 bits saved in big
* endian format.
*/
uint32_t iv_offset:16;
/**< Starting point for Initialisation Vector. */
struct mlx5_crypto_dek *dek; /**< Pointer to dek struct. */
uint32_t dek_id; /**< DEK ID */
} __rte_packed;
static void
mlx5_crypto_dev_infos_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *dev_info)
{
RTE_SET_USED(dev);
if (dev_info != NULL) {
dev_info->driver_id = mlx5_crypto_driver_id;
dev_info->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
dev_info->capabilities = mlx5_crypto_caps;
dev_info->max_nb_queue_pairs = MLX5_CRYPTO_MAX_QPS;
dev_info->min_mbuf_headroom_req = 0;
dev_info->min_mbuf_tailroom_req = 0;
dev_info->sym.max_nb_sessions = 0;
/*
* If 0, the device does not have any limitation in number of
* sessions that can be used.
*/
}
}
static int
mlx5_crypto_dev_configure(struct rte_cryptodev *dev,
struct rte_cryptodev_config *config)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
if (config == NULL) {
DRV_LOG(ERR, "Invalid crypto dev configure parameters.");
return -EINVAL;
}
if ((config->ff_disable & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) != 0) {
DRV_LOG(ERR,
"Disabled symmetric crypto feature is not supported.");
return -ENOTSUP;
}
if (mlx5_crypto_dek_setup(priv) != 0) {
DRV_LOG(ERR, "Dek hash list creation has failed.");
return -ENOMEM;
}
priv->dev_config = *config;
DRV_LOG(DEBUG, "Device %u was configured.", dev->driver_id);
return 0;
}
static void
mlx5_crypto_dev_stop(struct rte_cryptodev *dev)
{
RTE_SET_USED(dev);
}
static int
mlx5_crypto_dev_start(struct rte_cryptodev *dev)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
return mlx5_dev_mempool_subscribe(priv->cdev);
}
static int
mlx5_crypto_dev_close(struct rte_cryptodev *dev)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
mlx5_crypto_dek_unset(priv);
DRV_LOG(DEBUG, "Device %u was closed.", dev->driver_id);
return 0;
}
static unsigned int
mlx5_crypto_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
return sizeof(struct mlx5_crypto_session);
}
static int
mlx5_crypto_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *session,
struct rte_mempool *mp)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
struct mlx5_crypto_session *sess_private_data;
struct rte_crypto_cipher_xform *cipher;
uint8_t encryption_order;
int ret;
if (unlikely(xform->next != NULL)) {
DRV_LOG(ERR, "Xform next is not supported.");
return -ENOTSUP;
}
if (unlikely((xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) ||
(xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_XTS))) {
DRV_LOG(ERR, "Only AES-XTS algorithm is supported.");
return -ENOTSUP;
}
ret = rte_mempool_get(mp, (void *)&sess_private_data);
if (ret != 0) {
DRV_LOG(ERR,
"Failed to get session %p private data from mempool.",
sess_private_data);
return -ENOMEM;
}
cipher = &xform->cipher;
sess_private_data->dek = mlx5_crypto_dek_prepare(priv, cipher);
if (sess_private_data->dek == NULL) {
rte_mempool_put(mp, sess_private_data);
DRV_LOG(ERR, "Failed to prepare dek.");
return -ENOMEM;
}
if (cipher->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_MEMORY;
else
encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_WIRE;
sess_private_data->bs_bpt_eo_es = rte_cpu_to_be_32
(MLX5_BSF_SIZE_64B << MLX5_BSF_SIZE_OFFSET |
MLX5_BSF_P_TYPE_CRYPTO << MLX5_BSF_P_TYPE_OFFSET |
encryption_order << MLX5_ENCRYPTION_ORDER_OFFSET |
MLX5_ENCRYPTION_STANDARD_AES_XTS);
switch (xform->cipher.dataunit_len) {
case 0:
sess_private_data->bsp_res = 0;
break;
case 512:
sess_private_data->bsp_res = rte_cpu_to_be_32
((uint32_t)MLX5_BLOCK_SIZE_512B <<
MLX5_BLOCK_SIZE_OFFSET);
break;
case 4096:
sess_private_data->bsp_res = rte_cpu_to_be_32
((uint32_t)MLX5_BLOCK_SIZE_4096B <<
MLX5_BLOCK_SIZE_OFFSET);
break;
case 1048576:
sess_private_data->bsp_res = rte_cpu_to_be_32
((uint32_t)MLX5_BLOCK_SIZE_1MB <<
MLX5_BLOCK_SIZE_OFFSET);
break;
default:
DRV_LOG(ERR, "Cipher data unit length is not supported.");
return -ENOTSUP;
}
sess_private_data->iv_offset = cipher->iv.offset;
sess_private_data->dek_id =
rte_cpu_to_be_32(sess_private_data->dek->obj->id &
0xffffff);
set_sym_session_private_data(session, dev->driver_id,
sess_private_data);
DRV_LOG(DEBUG, "Session %p was configured.", sess_private_data);
return 0;
}
static void
mlx5_crypto_sym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
struct mlx5_crypto_session *spriv = get_sym_session_private_data(sess,
dev->driver_id);
if (unlikely(spriv == NULL)) {
DRV_LOG(ERR, "Failed to get session %p private data.", spriv);
return;
}
mlx5_crypto_dek_destroy(priv, spriv->dek);
set_sym_session_private_data(sess, dev->driver_id, NULL);
rte_mempool_put(rte_mempool_from_obj(spriv), spriv);
DRV_LOG(DEBUG, "Session %p was cleared.", spriv);
}
static void
mlx5_crypto_indirect_mkeys_release(struct mlx5_crypto_qp *qp, uint16_t n)
{
uint16_t i;
for (i = 0; i < n; i++)
if (qp->mkey[i])
claim_zero(mlx5_devx_cmd_destroy(qp->mkey[i]));
}
static void
mlx5_crypto_qp_release(struct mlx5_crypto_qp *qp)
{
if (qp == NULL)
return;
mlx5_devx_qp_destroy(&qp->qp_obj);
mlx5_mr_btree_free(&qp->mr_ctrl.cache_bh);
mlx5_devx_cq_destroy(&qp->cq_obj);
rte_free(qp);
}
static int
mlx5_crypto_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
mlx5_crypto_indirect_mkeys_release(qp, qp->entries_n);
mlx5_crypto_qp_release(qp);
dev->data->queue_pairs[qp_id] = NULL;
return 0;
}
static __rte_noinline uint32_t
mlx5_crypto_get_block_size(struct rte_crypto_op *op)
{
uint32_t bl = op->sym->cipher.data.length;
switch (bl) {
case (1 << 20):
return RTE_BE32(MLX5_BLOCK_SIZE_1MB << MLX5_BLOCK_SIZE_OFFSET);
case (1 << 12):
return RTE_BE32(MLX5_BLOCK_SIZE_4096B <<
MLX5_BLOCK_SIZE_OFFSET);
case (1 << 9):
return RTE_BE32(MLX5_BLOCK_SIZE_512B << MLX5_BLOCK_SIZE_OFFSET);
default:
DRV_LOG(ERR, "Unknown block size: %u.", bl);
return UINT32_MAX;
}
}
static __rte_always_inline uint32_t
mlx5_crypto_klm_set(struct mlx5_crypto_qp *qp, struct rte_mbuf *mbuf,
struct mlx5_wqe_dseg *klm, uint32_t offset,
uint32_t *remain)
{
uint32_t data_len = (rte_pktmbuf_data_len(mbuf) - offset);
uintptr_t addr = rte_pktmbuf_mtod_offset(mbuf, uintptr_t, offset);
if (data_len > *remain)
data_len = *remain;
*remain -= data_len;
klm->bcount = rte_cpu_to_be_32(data_len);
klm->pbuf = rte_cpu_to_be_64(addr);
klm->lkey = mlx5_mr_mb2mr(&qp->mr_ctrl, mbuf);
return klm->lkey;
}
static __rte_always_inline uint32_t
mlx5_crypto_klms_set(struct mlx5_crypto_qp *qp, struct rte_crypto_op *op,
struct rte_mbuf *mbuf, struct mlx5_wqe_dseg *klm)
{
uint32_t remain_len = op->sym->cipher.data.length;
uint32_t nb_segs = mbuf->nb_segs;
uint32_t klm_n = 1u;
/* First mbuf needs to take the cipher offset. */
if (unlikely(mlx5_crypto_klm_set(qp, mbuf, klm,
op->sym->cipher.data.offset, &remain_len) == UINT32_MAX)) {
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return 0;
}
while (remain_len) {
nb_segs--;
mbuf = mbuf->next;
if (unlikely(mbuf == NULL || nb_segs == 0)) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return 0;
}
if (unlikely(mlx5_crypto_klm_set(qp, mbuf, ++klm, 0,
&remain_len) == UINT32_MAX)) {
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return 0;
}
klm_n++;
}
return klm_n;
}
static __rte_always_inline int
mlx5_crypto_wqe_set(struct mlx5_crypto_priv *priv,
struct mlx5_crypto_qp *qp,
struct rte_crypto_op *op,
struct mlx5_umr_wqe *umr)
{
struct mlx5_crypto_session *sess = get_sym_session_private_data
(op->sym->session, mlx5_crypto_driver_id);
struct mlx5_wqe_cseg *cseg = &umr->ctr;
struct mlx5_wqe_mkey_cseg *mkc = &umr->mkc;
struct mlx5_wqe_dseg *klms = &umr->kseg[0];
struct mlx5_wqe_umr_bsf_seg *bsf = ((struct mlx5_wqe_umr_bsf_seg *)
RTE_PTR_ADD(umr, priv->umr_wqe_size)) - 1;
uint32_t ds;
bool ipl = op->sym->m_dst == NULL || op->sym->m_dst == op->sym->m_src;
/* Set UMR WQE. */
uint32_t klm_n = mlx5_crypto_klms_set(qp, op,
ipl ? op->sym->m_src : op->sym->m_dst, klms);
if (unlikely(klm_n == 0))
return 0;
bsf->bs_bpt_eo_es = sess->bs_bpt_eo_es;
if (unlikely(!sess->bsp_res)) {
bsf->bsp_res = mlx5_crypto_get_block_size(op);
if (unlikely(bsf->bsp_res == UINT32_MAX)) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return 0;
}
} else {
bsf->bsp_res = sess->bsp_res;
}
bsf->raw_data_size = rte_cpu_to_be_32(op->sym->cipher.data.length);
memcpy(bsf->xts_initial_tweak,
rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv_offset), 16);
bsf->res_dp = sess->dek_id;
mkc->len = rte_cpu_to_be_64(op->sym->cipher.data.length);
cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) | MLX5_OPCODE_UMR);
qp->db_pi += priv->umr_wqe_stride;
/* Set RDMA_WRITE WQE. */
cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
klms = RTE_PTR_ADD(cseg, sizeof(struct mlx5_rdma_write_wqe));
if (!ipl) {
klm_n = mlx5_crypto_klms_set(qp, op, op->sym->m_src, klms);
if (unlikely(klm_n == 0))
return 0;
} else {
memcpy(klms, &umr->kseg[0], sizeof(*klms) * klm_n);
}
ds = 2 + klm_n;
cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) | ds);
cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
MLX5_OPCODE_RDMA_WRITE);
ds = RTE_ALIGN(ds, 4);
qp->db_pi += ds >> 2;
/* Set NOP WQE if needed. */
if (priv->max_rdmar_ds > ds) {
cseg += ds;
ds = priv->max_rdmar_ds - ds;
cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) | ds);
cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
MLX5_OPCODE_NOP);
qp->db_pi += ds >> 2; /* Here, DS is 4 aligned for sure. */
}
qp->wqe = (uint8_t *)cseg;
return 1;
}
static uint16_t
mlx5_crypto_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct mlx5_crypto_qp *qp = queue_pair;
struct mlx5_crypto_priv *priv = qp->priv;
struct mlx5_umr_wqe *umr;
struct rte_crypto_op *op;
uint16_t mask = qp->entries_n - 1;
uint16_t remain = qp->entries_n - (qp->pi - qp->ci);
uint32_t idx;
if (remain < nb_ops)
nb_ops = remain;
else
remain = nb_ops;
if (unlikely(remain == 0))
return 0;
do {
idx = qp->pi & mask;
op = *ops++;
umr = RTE_PTR_ADD(qp->qp_obj.umem_buf,
priv->wqe_set_size * idx);
if (unlikely(mlx5_crypto_wqe_set(priv, qp, op, umr) == 0)) {
qp->stats.enqueue_err_count++;
if (remain != nb_ops) {
qp->stats.enqueued_count -= remain;
break;
}
return 0;
}
qp->ops[idx] = op;
qp->pi++;
} while (--remain);
qp->stats.enqueued_count += nb_ops;
mlx5_doorbell_ring(&priv->uar.bf_db, *(volatile uint64_t *)qp->wqe,
qp->db_pi, &qp->qp_obj.db_rec[MLX5_SND_DBR],
!priv->uar.dbnc);
return nb_ops;
}
static __rte_noinline void
mlx5_crypto_cqe_err_handle(struct mlx5_crypto_qp *qp, struct rte_crypto_op *op)
{
const uint32_t idx = qp->ci & (qp->entries_n - 1);
volatile struct mlx5_err_cqe *cqe = (volatile struct mlx5_err_cqe *)
&qp->cq_obj.cqes[idx];
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
qp->stats.dequeue_err_count++;
DRV_LOG(ERR, "CQE ERR:%x.\n", rte_be_to_cpu_32(cqe->syndrome));
}
static uint16_t
mlx5_crypto_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct mlx5_crypto_qp *qp = queue_pair;
volatile struct mlx5_cqe *restrict cqe;
struct rte_crypto_op *restrict op;
const unsigned int cq_size = qp->entries_n;
const unsigned int mask = cq_size - 1;
uint32_t idx;
uint32_t next_idx = qp->ci & mask;
const uint16_t max = RTE_MIN((uint16_t)(qp->pi - qp->ci), nb_ops);
uint16_t i = 0;
int ret;
if (unlikely(max == 0))
return 0;
do {
idx = next_idx;
next_idx = (qp->ci + 1) & mask;
op = qp->ops[idx];
cqe = &qp->cq_obj.cqes[idx];
ret = check_cqe(cqe, cq_size, qp->ci);
rte_io_rmb();
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (unlikely(ret != MLX5_CQE_STATUS_HW_OWN))
mlx5_crypto_cqe_err_handle(qp, op);
break;
}
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
ops[i++] = op;
qp->ci++;
} while (i < max);
if (likely(i != 0)) {
rte_io_wmb();
qp->cq_obj.db_rec[0] = rte_cpu_to_be_32(qp->ci);
qp->stats.dequeued_count += i;
}
return i;
}
static void
mlx5_crypto_qp_init(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp)
{
uint32_t i;
for (i = 0 ; i < qp->entries_n; i++) {
struct mlx5_wqe_cseg *cseg = RTE_PTR_ADD(qp->qp_obj.umem_buf,
i * priv->wqe_set_size);
struct mlx5_wqe_umr_cseg *ucseg = (struct mlx5_wqe_umr_cseg *)
(cseg + 1);
struct mlx5_wqe_umr_bsf_seg *bsf =
(struct mlx5_wqe_umr_bsf_seg *)(RTE_PTR_ADD(cseg,
priv->umr_wqe_size)) - 1;
struct mlx5_wqe_rseg *rseg;
/* Init UMR WQE. */
cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) |
(priv->umr_wqe_size / MLX5_WSEG_SIZE));
cseg->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
MLX5_COMP_MODE_OFFSET);
cseg->misc = rte_cpu_to_be_32(qp->mkey[i]->id);
ucseg->if_cf_toe_cq_res = RTE_BE32(1u << MLX5_UMRC_IF_OFFSET);
ucseg->mkey_mask = RTE_BE64(1u << 0); /* Mkey length bit. */
ucseg->ko_to_bs = rte_cpu_to_be_32
((MLX5_CRYPTO_KLM_SEGS_NUM(priv->umr_wqe_size) <<
MLX5_UMRC_KO_OFFSET) | (4 << MLX5_UMRC_TO_BS_OFFSET));
bsf->keytag = priv->keytag;
/* Init RDMA WRITE WQE. */
cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
cseg->flags = RTE_BE32((MLX5_COMP_ALWAYS <<
MLX5_COMP_MODE_OFFSET) |
MLX5_WQE_CTRL_INITIATOR_SMALL_FENCE);
rseg = (struct mlx5_wqe_rseg *)(cseg + 1);
rseg->rkey = rte_cpu_to_be_32(qp->mkey[i]->id);
}
}
static int
mlx5_crypto_indirect_mkeys_prepare(struct mlx5_crypto_priv *priv,
struct mlx5_crypto_qp *qp)
{
struct mlx5_umr_wqe *umr;
uint32_t i;
struct mlx5_devx_mkey_attr attr = {
.pd = priv->cdev->pdn,
.umr_en = 1,
.crypto_en = 1,
.set_remote_rw = 1,
.klm_num = MLX5_CRYPTO_KLM_SEGS_NUM(priv->umr_wqe_size),
};
for (umr = (struct mlx5_umr_wqe *)qp->qp_obj.umem_buf, i = 0;
i < qp->entries_n; i++, umr = RTE_PTR_ADD(umr, priv->wqe_set_size)) {
attr.klm_array = (struct mlx5_klm *)&umr->kseg[0];
qp->mkey[i] = mlx5_devx_cmd_mkey_create(priv->cdev->ctx, &attr);
if (!qp->mkey[i])
goto error;
}
return 0;
error:
DRV_LOG(ERR, "Failed to allocate indirect mkey.");
mlx5_crypto_indirect_mkeys_release(qp, i);
return -1;
}
static int
mlx5_crypto_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
struct mlx5_devx_qp_attr attr = {0};
struct mlx5_crypto_qp *qp;
uint16_t log_nb_desc = rte_log2_u32(qp_conf->nb_descriptors);
uint32_t ret;
uint32_t alloc_size = sizeof(*qp);
uint32_t log_wqbb_n;
struct mlx5_devx_cq_attr cq_attr = {
.uar_page_id = mlx5_os_get_devx_uar_page_id(priv->uar.obj),
};
if (dev->data->queue_pairs[qp_id] != NULL)
mlx5_crypto_queue_pair_release(dev, qp_id);
alloc_size = RTE_ALIGN(alloc_size, RTE_CACHE_LINE_SIZE);
alloc_size += (sizeof(struct rte_crypto_op *) +
sizeof(struct mlx5_devx_obj *)) *
RTE_BIT32(log_nb_desc);
qp = rte_zmalloc_socket(__func__, alloc_size, RTE_CACHE_LINE_SIZE,
socket_id);
if (qp == NULL) {
DRV_LOG(ERR, "Failed to allocate QP memory.");
rte_errno = ENOMEM;
return -rte_errno;
}
if (mlx5_devx_cq_create(priv->cdev->ctx, &qp->cq_obj, log_nb_desc,
&cq_attr, socket_id) != 0) {
DRV_LOG(ERR, "Failed to create CQ.");
goto error;
}
log_wqbb_n = rte_log2_u32(RTE_BIT32(log_nb_desc) *
(priv->wqe_set_size / MLX5_SEND_WQE_BB));
attr.pd = priv->cdev->pdn;
attr.uar_index = mlx5_os_get_devx_uar_page_id(priv->uar.obj);
attr.cqn = qp->cq_obj.cq->id;
attr.num_of_receive_wqes = 0;
attr.num_of_send_wqbbs = RTE_BIT32(log_wqbb_n);
attr.ts_format =
mlx5_ts_format_conv(priv->cdev->config.hca_attr.qp_ts_format);
ret = mlx5_devx_qp_create(priv->cdev->ctx, &qp->qp_obj,
attr.num_of_send_wqbbs * MLX5_WQE_SIZE,
&attr, socket_id);
if (ret) {
DRV_LOG(ERR, "Failed to create QP.");
goto error;
}
if (mlx5_mr_ctrl_init(&qp->mr_ctrl, &priv->cdev->mr_scache.dev_gen,
priv->dev_config.socket_id) != 0) {
DRV_LOG(ERR, "Cannot allocate MR Btree for qp %u.",
(uint32_t)qp_id);
rte_errno = ENOMEM;
goto error;
}
/*
* In Order to configure self loopback, when calling devx qp2rts the
* remote QP id that is used is the id of the same QP.
*/
if (mlx5_devx_qp2rts(&qp->qp_obj, qp->qp_obj.qp->id))
goto error;
qp->mkey = (struct mlx5_devx_obj **)RTE_ALIGN((uintptr_t)(qp + 1),
RTE_CACHE_LINE_SIZE);
qp->ops = (struct rte_crypto_op **)(qp->mkey + RTE_BIT32(log_nb_desc));
qp->entries_n = 1 << log_nb_desc;
if (mlx5_crypto_indirect_mkeys_prepare(priv, qp)) {
DRV_LOG(ERR, "Cannot allocate indirect memory regions.");
rte_errno = ENOMEM;
goto error;
}
mlx5_crypto_qp_init(priv, qp);
qp->priv = priv;
dev->data->queue_pairs[qp_id] = qp;
return 0;
error:
mlx5_crypto_qp_release(qp);
return -1;
}
static void
mlx5_crypto_stats_get(struct rte_cryptodev *dev,
struct rte_cryptodev_stats *stats)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
stats->enqueued_count += qp->stats.enqueued_count;
stats->dequeued_count += qp->stats.dequeued_count;
stats->enqueue_err_count += qp->stats.enqueue_err_count;
stats->dequeue_err_count += qp->stats.dequeue_err_count;
}
}
static void
mlx5_crypto_stats_reset(struct rte_cryptodev *dev)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
memset(&qp->stats, 0, sizeof(qp->stats));
}
}
static struct rte_cryptodev_ops mlx5_crypto_ops = {
.dev_configure = mlx5_crypto_dev_configure,
.dev_start = mlx5_crypto_dev_start,
.dev_stop = mlx5_crypto_dev_stop,
.dev_close = mlx5_crypto_dev_close,
.dev_infos_get = mlx5_crypto_dev_infos_get,
.stats_get = mlx5_crypto_stats_get,
.stats_reset = mlx5_crypto_stats_reset,
.queue_pair_setup = mlx5_crypto_queue_pair_setup,
.queue_pair_release = mlx5_crypto_queue_pair_release,
.sym_session_get_size = mlx5_crypto_sym_session_get_size,
.sym_session_configure = mlx5_crypto_sym_session_configure,
.sym_session_clear = mlx5_crypto_sym_session_clear,
.sym_get_raw_dp_ctx_size = NULL,
.sym_configure_raw_dp_ctx = NULL,
};
static int
mlx5_crypto_args_check_handler(const char *key, const char *val, void *opaque)
{
struct mlx5_crypto_devarg_params *devarg_prms = opaque;
struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
unsigned long tmp;
FILE *file;
int ret;
int i;
if (strcmp(key, "class") == 0)
return 0;
if (strcmp(key, "wcs_file") == 0) {
file = fopen(val, "rb");
if (file == NULL) {
rte_errno = ENOTSUP;
return -rte_errno;
}
for (i = 0 ; i < MLX5_CRYPTO_CREDENTIAL_SIZE ; i++) {
ret = fscanf(file, "%02hhX", &attr->credential[i]);
if (ret <= 0) {
fclose(file);
DRV_LOG(ERR,
"Failed to read credential from file.");
rte_errno = EINVAL;
return -rte_errno;
}
}
fclose(file);
devarg_prms->login_devarg = true;
return 0;
}
errno = 0;
tmp = strtoul(val, NULL, 0);
if (errno) {
DRV_LOG(WARNING, "%s: \"%s\" is an invalid integer.", key, val);
return -errno;
}
if (strcmp(key, "max_segs_num") == 0) {
if (!tmp) {
DRV_LOG(ERR, "max_segs_num must be greater than 0.");
rte_errno = EINVAL;
return -rte_errno;
}
devarg_prms->max_segs_num = (uint32_t)tmp;
} else if (strcmp(key, "import_kek_id") == 0) {
attr->session_import_kek_ptr = (uint32_t)tmp;
} else if (strcmp(key, "credential_id") == 0) {
attr->credential_pointer = (uint32_t)tmp;
} else if (strcmp(key, "keytag") == 0) {
devarg_prms->keytag = tmp;
} else {
DRV_LOG(WARNING, "Invalid key %s.", key);
}
return 0;
}
static int
mlx5_crypto_parse_devargs(struct rte_devargs *devargs,
struct mlx5_crypto_devarg_params *devarg_prms)
{
struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
struct rte_kvargs *kvlist;
/* Default values. */
attr->credential_pointer = 0;
attr->session_import_kek_ptr = 0;
devarg_prms->keytag = 0;
devarg_prms->max_segs_num = 8;
if (devargs == NULL) {
DRV_LOG(ERR,
"No login devargs in order to enable crypto operations in the device.");
rte_errno = EINVAL;
return -1;
}
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL) {
DRV_LOG(ERR, "Failed to parse devargs.");
rte_errno = EINVAL;
return -1;
}
if (rte_kvargs_process(kvlist, NULL, mlx5_crypto_args_check_handler,
devarg_prms) != 0) {
DRV_LOG(ERR, "Devargs handler function Failed.");
rte_kvargs_free(kvlist);
rte_errno = EINVAL;
return -1;
}
rte_kvargs_free(kvlist);
if (devarg_prms->login_devarg == false) {
DRV_LOG(ERR,
"No login credential devarg in order to enable crypto operations "
"in the device.");
rte_errno = EINVAL;
return -1;
}
return 0;
}
/*
* Calculate UMR WQE size and RDMA Write WQE size with the
* following limitations:
* - Each WQE size is multiple of 64.
* - The summarize of both UMR WQE and RDMA_W WQE is a power of 2.
* - The number of entries in the UMR WQE's KLM list is multiple of 4.
*/
static void
mlx5_crypto_get_wqe_sizes(uint32_t segs_num, uint32_t *umr_size,
uint32_t *rdmaw_size)
{
uint32_t diff, wqe_set_size;
*umr_size = MLX5_CRYPTO_UMR_WQE_STATIC_SIZE +
RTE_ALIGN(segs_num, 4) *
sizeof(struct mlx5_wqe_dseg);
/* Make sure UMR WQE size is multiple of WQBB. */
*umr_size = RTE_ALIGN(*umr_size, MLX5_SEND_WQE_BB);
*rdmaw_size = sizeof(struct mlx5_rdma_write_wqe) +
sizeof(struct mlx5_wqe_dseg) *
(segs_num <= 2 ? 2 : 2 +
RTE_ALIGN(segs_num - 2, 4));
/* Make sure RDMA_WRITE WQE size is multiple of WQBB. */
*rdmaw_size = RTE_ALIGN(*rdmaw_size, MLX5_SEND_WQE_BB);
wqe_set_size = *rdmaw_size + *umr_size;
diff = rte_align32pow2(wqe_set_size) - wqe_set_size;
/* Make sure wqe_set size is power of 2. */
if (diff)
*umr_size += diff;
}
static uint8_t
mlx5_crypto_max_segs_num(uint16_t max_wqe_size)
{
int klms_sizes = max_wqe_size - MLX5_CRYPTO_UMR_WQE_STATIC_SIZE;
uint32_t max_segs_cap = RTE_ALIGN_FLOOR(klms_sizes, MLX5_SEND_WQE_BB) /
sizeof(struct mlx5_wqe_dseg);
MLX5_ASSERT(klms_sizes >= MLX5_SEND_WQE_BB);
while (max_segs_cap) {
uint32_t umr_wqe_size, rdmw_wqe_size;
mlx5_crypto_get_wqe_sizes(max_segs_cap, &umr_wqe_size,
&rdmw_wqe_size);
if (umr_wqe_size <= max_wqe_size &&
rdmw_wqe_size <= max_wqe_size)
break;
max_segs_cap -= 4;
}
return max_segs_cap;
}
static int
mlx5_crypto_configure_wqe_size(struct mlx5_crypto_priv *priv,
uint16_t max_wqe_size, uint32_t max_segs_num)
{
uint32_t rdmw_wqe_size, umr_wqe_size;
mlx5_crypto_get_wqe_sizes(max_segs_num, &umr_wqe_size,
&rdmw_wqe_size);
priv->wqe_set_size = rdmw_wqe_size + umr_wqe_size;
if (umr_wqe_size > max_wqe_size ||
rdmw_wqe_size > max_wqe_size) {
DRV_LOG(ERR, "Invalid max_segs_num: %u. should be %u or lower.",
max_segs_num,
mlx5_crypto_max_segs_num(max_wqe_size));
rte_errno = EINVAL;
return -EINVAL;
}
priv->umr_wqe_size = (uint16_t)umr_wqe_size;
priv->umr_wqe_stride = priv->umr_wqe_size / MLX5_SEND_WQE_BB;
priv->max_rdmar_ds = rdmw_wqe_size / sizeof(struct mlx5_wqe_dseg);
return 0;
}
static int
mlx5_crypto_dev_probe(struct mlx5_common_device *cdev)
{
struct rte_cryptodev *crypto_dev;
struct mlx5_devx_obj *login;
struct mlx5_crypto_priv *priv;
struct mlx5_crypto_devarg_params devarg_prms = { 0 };
struct rte_cryptodev_pmd_init_params init_params = {
.name = "",
.private_data_size = sizeof(struct mlx5_crypto_priv),
.socket_id = cdev->dev->numa_node,
.max_nb_queue_pairs =
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS,
};
const char *ibdev_name = mlx5_os_get_ctx_device_name(cdev->ctx);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DRV_LOG(ERR, "Non-primary process type is not supported.");
rte_errno = ENOTSUP;
return -rte_errno;
}
if (!cdev->config.hca_attr.crypto || !cdev->config.hca_attr.aes_xts) {
DRV_LOG(ERR, "Not enough capabilities to support crypto "
"operations, maybe old FW/OFED version?");
rte_errno = ENOTSUP;
return -ENOTSUP;
}
ret = mlx5_crypto_parse_devargs(cdev->dev->devargs, &devarg_prms);
if (ret) {
DRV_LOG(ERR, "Failed to parse devargs.");
return -rte_errno;
}
crypto_dev = rte_cryptodev_pmd_create(ibdev_name, cdev->dev,
&init_params);
if (crypto_dev == NULL) {
DRV_LOG(ERR, "Failed to create device \"%s\".", ibdev_name);
return -ENODEV;
}
DRV_LOG(INFO,
"Crypto device %s was created successfully.", ibdev_name);
crypto_dev->dev_ops = &mlx5_crypto_ops;
crypto_dev->dequeue_burst = mlx5_crypto_dequeue_burst;
crypto_dev->enqueue_burst = mlx5_crypto_enqueue_burst;
crypto_dev->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
crypto_dev->driver_id = mlx5_crypto_driver_id;
priv = crypto_dev->data->dev_private;
priv->cdev = cdev;
priv->crypto_dev = crypto_dev;
if (mlx5_devx_uar_prepare(cdev, &priv->uar) != 0) {
rte_cryptodev_pmd_destroy(priv->crypto_dev);
return -1;
}
login = mlx5_devx_cmd_create_crypto_login_obj(cdev->ctx,
&devarg_prms.login_attr);
if (login == NULL) {
DRV_LOG(ERR, "Failed to configure login.");
mlx5_devx_uar_release(&priv->uar);
rte_cryptodev_pmd_destroy(priv->crypto_dev);
return -rte_errno;
}
priv->login_obj = login;
priv->keytag = rte_cpu_to_be_64(devarg_prms.keytag);
ret = mlx5_crypto_configure_wqe_size(priv,
cdev->config.hca_attr.max_wqe_sz_sq, devarg_prms.max_segs_num);
if (ret) {
claim_zero(mlx5_devx_cmd_destroy(priv->login_obj));
mlx5_devx_uar_release(&priv->uar);
rte_cryptodev_pmd_destroy(priv->crypto_dev);
return -1;
}
DRV_LOG(INFO, "Max number of segments: %u.",
(unsigned int)RTE_MIN(
MLX5_CRYPTO_KLM_SEGS_NUM(priv->umr_wqe_size),
(uint16_t)(priv->max_rdmar_ds - 2)));
pthread_mutex_lock(&priv_list_lock);
TAILQ_INSERT_TAIL(&mlx5_crypto_priv_list, priv, next);
pthread_mutex_unlock(&priv_list_lock);
rte_cryptodev_pmd_probing_finish(crypto_dev);
return 0;
}
static int
mlx5_crypto_dev_remove(struct mlx5_common_device *cdev)
{
struct mlx5_crypto_priv *priv = NULL;
pthread_mutex_lock(&priv_list_lock);
TAILQ_FOREACH(priv, &mlx5_crypto_priv_list, next)
if (priv->crypto_dev->device == cdev->dev)
break;
if (priv)
TAILQ_REMOVE(&mlx5_crypto_priv_list, priv, next);
pthread_mutex_unlock(&priv_list_lock);
if (priv) {
claim_zero(mlx5_devx_cmd_destroy(priv->login_obj));
mlx5_devx_uar_release(&priv->uar);
rte_cryptodev_pmd_destroy(priv->crypto_dev);
}
return 0;
}
static const struct rte_pci_id mlx5_crypto_pci_id_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX6)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX6DX)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX6DXBF)
},
{
.vendor_id = 0
}
};
static struct mlx5_class_driver mlx5_crypto_driver = {
.drv_class = MLX5_CLASS_CRYPTO,
.name = RTE_STR(MLX5_CRYPTO_DRIVER_NAME),
.id_table = mlx5_crypto_pci_id_map,
.probe = mlx5_crypto_dev_probe,
.remove = mlx5_crypto_dev_remove,
};
RTE_INIT(rte_mlx5_crypto_init)
{
pthread_mutex_init(&priv_list_lock, NULL);
mlx5_common_init();
if (mlx5_glue != NULL)
mlx5_class_driver_register(&mlx5_crypto_driver);
}
RTE_PMD_REGISTER_CRYPTO_DRIVER(mlx5_cryptodev_driver, mlx5_drv,
mlx5_crypto_driver_id);
RTE_LOG_REGISTER_DEFAULT(mlx5_crypto_logtype, NOTICE)
RTE_PMD_EXPORT_NAME(MLX5_CRYPTO_DRIVER_NAME, __COUNTER__);
RTE_PMD_REGISTER_PCI_TABLE(MLX5_CRYPTO_DRIVER_NAME, mlx5_crypto_pci_id_map);
RTE_PMD_REGISTER_KMOD_DEP(MLX5_CRYPTO_DRIVER_NAME, "* ib_uverbs & mlx5_core & mlx5_ib");