f-stack/dpdk/drivers/net/qede/qede_rxtx.c

1390 lines
36 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*
* Copyright (c) 2016 QLogic Corporation.
* All rights reserved.
* www.qlogic.com
*
* See LICENSE.qede_pmd for copyright and licensing details.
*/
#include "qede_rxtx.h"
static bool gro_disable = 1; /* mod_param */
static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
{
struct rte_mbuf *new_mb = NULL;
struct eth_rx_bd *rx_bd;
dma_addr_t mapping;
uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (unlikely(!new_mb)) {
PMD_RX_LOG(ERR, rxq,
"Failed to allocate rx buffer "
"sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
rte_mempool_avail_count(rxq->mb_pool),
rte_mempool_in_use_count(rxq->mb_pool));
return -ENOMEM;
}
rxq->sw_rx_ring[idx].mbuf = new_mb;
rxq->sw_rx_ring[idx].page_offset = 0;
mapping = rte_mbuf_data_dma_addr_default(new_mb);
/* Advance PROD and get BD pointer */
rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
rxq->sw_rx_prod++;
return 0;
}
static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
{
uint16_t i;
if (rxq->sw_rx_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_rx_ring[i].mbuf != NULL) {
rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
rxq->sw_rx_ring[i].mbuf = NULL;
}
}
}
}
void qede_rx_queue_release(void *rx_queue)
{
struct qede_rx_queue *rxq = rx_queue;
if (rxq != NULL) {
qede_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_rx_ring);
rxq->sw_rx_ring = NULL;
rte_free(rxq);
rx_queue = NULL;
}
}
int
qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct rte_eth_dev_data *eth_data = dev->data;
struct qede_rx_queue *rxq;
uint16_t pkt_len = (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len;
size_t size;
uint16_t data_size;
int rc;
int i;
PMD_INIT_FUNC_TRACE(edev);
/* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
if (!rte_is_power_of_2(nb_desc)) {
DP_ERR(edev, "Ring size %u is not power of 2\n",
nb_desc);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->rx_queues[queue_idx] != NULL) {
qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the rx queue data structure */
rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq) {
DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
socket_id);
return -ENOMEM;
}
rxq->qdev = qdev;
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
/* Sanity check */
data_size = (uint16_t)rte_pktmbuf_data_room_size(mp) -
RTE_PKTMBUF_HEADROOM;
if (pkt_len > data_size) {
DP_ERR(edev, "MTU %u should not exceed dataroom %u\n",
pkt_len, data_size);
rte_free(rxq);
return -EINVAL;
}
qdev->mtu = pkt_len;
rxq->rx_buf_size = pkt_len + QEDE_ETH_OVERHEAD;
DP_INFO(edev, "MTU = %u ; RX buffer = %u\n",
qdev->mtu, rxq->rx_buf_size);
if (pkt_len > ETHER_MAX_LEN) {
dev->data->dev_conf.rxmode.jumbo_frame = 1;
DP_NOTICE(edev, false, "jumbo frame enabled\n");
} else {
dev->data->dev_conf.rxmode.jumbo_frame = 0;
}
/* Allocate the parallel driver ring for Rx buffers */
size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq->sw_rx_ring) {
DP_NOTICE(edev, false,
"Unable to alloc memory for sw_rx_ring on socket %u\n",
socket_id);
rte_free(rxq);
rxq = NULL;
return -ENOMEM;
}
/* Allocate FW Rx ring */
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_NEXT_PTR,
ECORE_CHAIN_CNT_TYPE_U16,
rxq->nb_rx_desc,
sizeof(struct eth_rx_bd),
&rxq->rx_bd_ring);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(edev, false,
"Unable to alloc memory for rxbd ring on socket %u\n",
socket_id);
rte_free(rxq->sw_rx_ring);
rxq->sw_rx_ring = NULL;
rte_free(rxq);
rxq = NULL;
}
/* Allocate FW completion ring */
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
rxq->nb_rx_desc,
sizeof(union eth_rx_cqe),
&rxq->rx_comp_ring);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(edev, false,
"Unable to alloc memory for cqe ring on socket %u\n",
socket_id);
/* TBD: Freeing RX BD ring */
rte_free(rxq->sw_rx_ring);
rxq->sw_rx_ring = NULL;
rte_free(rxq);
}
/* Allocate buffers for the Rx ring */
for (i = 0; i < rxq->nb_rx_desc; i++) {
rc = qede_alloc_rx_buffer(rxq);
if (rc) {
DP_NOTICE(edev, false,
"RX buffer allocation failed at idx=%d\n", i);
goto err4;
}
}
dev->data->rx_queues[queue_idx] = rxq;
if (!qdev->rx_queues)
qdev->rx_queues = (struct qede_rx_queue **)dev->data->rx_queues;
DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
queue_idx, nb_desc, qdev->mtu, socket_id);
return 0;
err4:
qede_rx_queue_release(rxq);
return -ENOMEM;
}
static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
{
unsigned int i;
PMD_TX_LOG(DEBUG, txq, "releasing %u mbufs\n", txq->nb_tx_desc);
if (txq->sw_tx_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_tx_ring[i].mbuf != NULL) {
rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
txq->sw_tx_ring[i].mbuf = NULL;
}
}
}
}
void qede_tx_queue_release(void *tx_queue)
{
struct qede_tx_queue *txq = tx_queue;
if (txq != NULL) {
qede_tx_queue_release_mbufs(txq);
if (txq->sw_tx_ring) {
rte_free(txq->sw_tx_ring);
txq->sw_tx_ring = NULL;
}
rte_free(txq);
}
tx_queue = NULL;
}
int
qede_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qede_tx_queue *txq;
int rc;
PMD_INIT_FUNC_TRACE(edev);
if (!rte_is_power_of_2(nb_desc)) {
DP_ERR(edev, "Ring size %u is not power of 2\n",
nb_desc);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->tx_queues[queue_idx] != NULL) {
qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
DP_ERR(edev,
"Unable to allocate memory for txq on socket %u",
socket_id);
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->qdev = qdev;
txq->port_id = dev->data->port_id;
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
txq->nb_tx_desc,
sizeof(union eth_tx_bd_types),
&txq->tx_pbl);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev,
"Unable to allocate memory for txbd ring on socket %u",
socket_id);
qede_tx_queue_release(txq);
return -ENOMEM;
}
/* Allocate software ring */
txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
(sizeof(struct qede_tx_entry) *
txq->nb_tx_desc),
RTE_CACHE_LINE_SIZE, socket_id);
if (!txq->sw_tx_ring) {
DP_ERR(edev,
"Unable to allocate memory for txbd ring on socket %u",
socket_id);
qede_tx_queue_release(txq);
return -ENOMEM;
}
txq->queue_id = queue_idx;
txq->nb_tx_avail = txq->nb_tx_desc;
txq->tx_free_thresh =
tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
(txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
dev->data->tx_queues[queue_idx] = txq;
if (!qdev->tx_queues)
qdev->tx_queues = (struct qede_tx_queue **)dev->data->tx_queues;
txq->txq_counter = 0;
DP_INFO(edev,
"txq %u num_desc %u tx_free_thresh %u socket %u\n",
queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
return 0;
}
/* This function inits fp content and resets the SB, RXQ and TXQ arrays */
static void qede_init_fp(struct qede_dev *qdev)
{
struct qede_fastpath *fp;
int rss_id, txq_index, tc;
memset((void *)qdev->fp_array, 0, (QEDE_RSS_CNT(qdev) *
sizeof(*qdev->fp_array)));
memset((void *)qdev->sb_array, 0, (QEDE_RSS_CNT(qdev) *
sizeof(*qdev->sb_array)));
for_each_rss(rss_id) {
fp = &qdev->fp_array[rss_id];
fp->qdev = qdev;
fp->rss_id = rss_id;
/* Point rxq to generic rte queues that was created
* as part of queue creation.
*/
fp->rxq = qdev->rx_queues[rss_id];
fp->sb_info = &qdev->sb_array[rss_id];
for (tc = 0; tc < qdev->num_tc; tc++) {
txq_index = tc * QEDE_RSS_CNT(qdev) + rss_id;
fp->txqs[tc] = qdev->tx_queues[txq_index];
fp->txqs[tc]->queue_id = txq_index;
/* Updating it to main structure */
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
"qdev", rss_id);
}
}
qdev->gro_disable = gro_disable;
}
void qede_free_fp_arrays(struct qede_dev *qdev)
{
/* It asseumes qede_free_mem_load() is called before */
if (qdev->fp_array != NULL) {
rte_free(qdev->fp_array);
qdev->fp_array = NULL;
}
if (qdev->sb_array != NULL) {
rte_free(qdev->sb_array);
qdev->sb_array = NULL;
}
}
int qede_alloc_fp_array(struct qede_dev *qdev)
{
struct qede_fastpath *fp;
struct ecore_dev *edev = &qdev->edev;
int i;
qdev->fp_array = rte_calloc("fp", QEDE_RSS_CNT(qdev),
sizeof(*qdev->fp_array),
RTE_CACHE_LINE_SIZE);
if (!qdev->fp_array) {
DP_ERR(edev, "fp array allocation failed\n");
return -ENOMEM;
}
qdev->sb_array = rte_calloc("sb", QEDE_RSS_CNT(qdev),
sizeof(*qdev->sb_array),
RTE_CACHE_LINE_SIZE);
if (!qdev->sb_array) {
DP_ERR(edev, "sb array allocation failed\n");
rte_free(qdev->fp_array);
return -ENOMEM;
}
return 0;
}
/* This function allocates fast-path status block memory */
static int
qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
uint16_t sb_id)
{
struct ecore_dev *edev = &qdev->edev;
struct status_block *sb_virt;
dma_addr_t sb_phys;
int rc;
sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys, sizeof(*sb_virt));
if (!sb_virt) {
DP_ERR(edev, "Status block allocation failed\n");
return -ENOMEM;
}
rc = qdev->ops->common->sb_init(edev, sb_info,
sb_virt, sb_phys, sb_id,
QED_SB_TYPE_L2_QUEUE);
if (rc) {
DP_ERR(edev, "Status block initialization failed\n");
/* TBD: No dma_free_coherent possible */
return rc;
}
return 0;
}
static int qede_alloc_mem_fp(struct qede_dev *qdev, struct qede_fastpath *fp)
{
return qede_alloc_mem_sb(qdev, fp->sb_info, fp->rss_id);
}
static void qede_shrink_txq(struct qede_dev *qdev, uint16_t num_rss)
{
/* @@@TBD - this should also re-set the qed interrupts */
}
/* This function allocates all qede memory at NIC load. */
static int qede_alloc_mem_load(struct qede_dev *qdev)
{
int rc = 0, rss_id;
struct ecore_dev *edev = &qdev->edev;
for (rss_id = 0; rss_id < QEDE_RSS_CNT(qdev); rss_id++) {
struct qede_fastpath *fp = &qdev->fp_array[rss_id];
rc = qede_alloc_mem_fp(qdev, fp);
if (rc)
break;
}
if (rss_id != QEDE_RSS_CNT(qdev)) {
/* Failed allocating memory for all the queues */
if (!rss_id) {
DP_ERR(edev,
"Failed to alloc memory for leading queue\n");
rc = -ENOMEM;
} else {
DP_NOTICE(edev, false,
"Failed to allocate memory for all of "
"RSS queues\n"
"Desired: %d queues, allocated: %d queues\n",
QEDE_RSS_CNT(qdev), rss_id);
qede_shrink_txq(qdev, rss_id);
}
qdev->num_rss = rss_id;
}
return 0;
}
static inline void
qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
{
uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
struct eth_rx_prod_data rx_prods = { 0 };
/* Update producers */
rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
/* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
*/
rte_wmb();
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
(uint32_t *)&rx_prods);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the napi lock is released and another qede_poll is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
rte_wmb();
PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u\n", bd_prod, cqe_prod);
}
static inline uint32_t
qede_rxfh_indir_default(uint32_t index, uint32_t n_rx_rings)
{
return index % n_rx_rings;
}
static void qede_prandom_bytes(uint32_t *buff, size_t bytes)
{
unsigned int i;
srand((unsigned int)time(NULL));
for (i = 0; i < ECORE_RSS_KEY_SIZE; i++)
buff[i] = rand();
}
static int
qede_config_rss(struct rte_eth_dev *eth_dev,
struct qed_update_vport_rss_params *rss_params)
{
struct rte_eth_rss_conf rss_conf;
enum rte_eth_rx_mq_mode mode = eth_dev->data->dev_conf.rxmode.mq_mode;
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
uint8_t rss_caps;
unsigned int i;
uint64_t hf;
uint32_t *key;
rss_conf = eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
key = (uint32_t *)rss_conf.rss_key;
hf = rss_conf.rss_hf;
PMD_INIT_FUNC_TRACE(edev);
/* Check if RSS conditions are met.
* Note: Even though its meaningless to enable RSS with one queue, it
* could be used to produce RSS Hash, so skipping that check.
*/
if (!(mode & ETH_MQ_RX_RSS)) {
DP_INFO(edev, "RSS flag is not set\n");
return -EINVAL;
}
DP_INFO(edev, "RSS flag is set\n");
if (rss_conf.rss_hf == 0)
DP_NOTICE(edev, false, "RSS hash function = 0, disables RSS\n");
if (rss_conf.rss_key != NULL)
memcpy(qdev->rss_params.rss_key, rss_conf.rss_key,
rss_conf.rss_key_len);
memset(rss_params, 0, sizeof(*rss_params));
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++)
rss_params->rss_ind_table[i] = qede_rxfh_indir_default(i,
QEDE_RSS_CNT(qdev));
/* key and protocols */
if (rss_conf.rss_key == NULL)
qede_prandom_bytes(rss_params->rss_key,
sizeof(rss_params->rss_key));
else
memcpy(rss_params->rss_key, rss_conf.rss_key,
rss_conf.rss_key_len);
rss_caps = 0;
rss_caps |= (hf & ETH_RSS_IPV4) ? ECORE_RSS_IPV4 : 0;
rss_caps |= (hf & ETH_RSS_IPV6) ? ECORE_RSS_IPV6 : 0;
rss_caps |= (hf & ETH_RSS_IPV6_EX) ? ECORE_RSS_IPV6 : 0;
rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? ECORE_RSS_IPV4_TCP : 0;
rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? ECORE_RSS_IPV6_TCP : 0;
rss_caps |= (hf & ETH_RSS_IPV6_TCP_EX) ? ECORE_RSS_IPV6_TCP : 0;
rss_params->rss_caps = rss_caps;
DP_INFO(edev, "RSS check passes\n");
return 0;
}
static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qed_update_vport_rss_params *rss_params = &qdev->rss_params;
struct qed_dev_info *qed_info = &qdev->dev_info.common;
struct qed_update_vport_params vport_update_params;
struct qed_start_vport_params start = { 0 };
int vlan_removal_en = 1;
int rc, tc, i;
if (!qdev->num_rss) {
DP_ERR(edev,
"Cannot update V-VPORT as active as "
"there are no Rx queues\n");
return -EINVAL;
}
start.remove_inner_vlan = vlan_removal_en;
start.gro_enable = !qdev->gro_disable;
start.mtu = qdev->mtu;
start.vport_id = 0;
start.drop_ttl0 = true;
start.clear_stats = clear_stats;
rc = qdev->ops->vport_start(edev, &start);
if (rc) {
DP_ERR(edev, "Start V-PORT failed %d\n", rc);
return rc;
}
DP_INFO(edev,
"Start vport ramrod passed, vport_id = %d,"
" MTU = %d, vlan_removal_en = %d\n",
start.vport_id, qdev->mtu, vlan_removal_en);
for_each_rss(i) {
struct qede_fastpath *fp = &qdev->fp_array[i];
dma_addr_t p_phys_table;
uint16_t page_cnt;
p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0); /* @DPDK */
rc = qdev->ops->q_rx_start(edev, i, i, 0,
fp->sb_info->igu_sb_id,
RX_PI,
fp->rxq->rx_buf_size,
fp->rxq->rx_bd_ring.p_phys_addr,
p_phys_table,
page_cnt,
&fp->rxq->hw_rxq_prod_addr);
if (rc) {
DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
return rc;
}
fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
qede_update_rx_prod(qdev, fp->rxq);
for (tc = 0; tc < qdev->num_tc; tc++) {
struct qede_tx_queue *txq = fp->txqs[tc];
int txq_index = tc * QEDE_RSS_CNT(qdev) + i;
p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
rc = qdev->ops->q_tx_start(edev, i, txq_index,
0,
fp->sb_info->igu_sb_id,
TX_PI(tc),
p_phys_table, page_cnt,
&txq->doorbell_addr);
if (rc) {
DP_ERR(edev, "Start txq %u failed %d\n",
txq_index, rc);
return rc;
}
txq->hw_cons_ptr =
&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_DEST, DB_DEST_XCM);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
DB_AGG_CMD_SET);
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_AGG_VAL_SEL,
DQ_XCM_ETH_TX_BD_PROD_CMD);
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
}
}
/* Prepare and send the vport enable */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = start.vport_id;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 1;
/* @DPDK */
if (qed_info->mf_mode == MF_NPAR && qed_info->tx_switching) {
/* TBD: Check SRIOV enabled for VF */
vport_update_params.update_tx_switching_flg = 1;
vport_update_params.tx_switching_flg = 1;
}
if (!qede_config_rss(eth_dev, rss_params)) {
vport_update_params.update_rss_flg = 1;
qdev->rss_enabled = 1;
DP_INFO(edev, "Updating RSS flag\n");
} else {
qdev->rss_enabled = 0;
DP_INFO(edev, "Not Updating RSS flag\n");
}
rte_memcpy(&vport_update_params.rss_params, rss_params,
sizeof(*rss_params));
rc = qdev->ops->vport_update(edev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Update V-PORT failed %d\n", rc);
return rc;
}
return 0;
}
#ifdef ENC_SUPPORTED
static bool qede_tunn_exist(uint16_t flag)
{
return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
}
static inline uint8_t qede_check_tunn_csum(uint16_t flag)
{
uint8_t tcsum = 0;
uint16_t csum_flag = 0;
if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
}
csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
if (csum_flag & flag)
return QEDE_CSUM_ERROR;
return QEDE_CSUM_UNNECESSARY | tcsum;
}
#else
static inline uint8_t qede_tunn_exist(uint16_t flag)
{
return 0;
}
static inline uint8_t qede_check_tunn_csum(uint16_t flag)
{
return 0;
}
#endif
static inline uint8_t qede_check_notunn_csum(uint16_t flag)
{
uint8_t csum = 0;
uint16_t csum_flag = 0;
if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
csum = QEDE_CSUM_UNNECESSARY;
}
csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
if (csum_flag & flag)
return QEDE_CSUM_ERROR;
return csum;
}
static inline uint8_t qede_check_csum(uint16_t flag)
{
if (likely(!qede_tunn_exist(flag)))
return qede_check_notunn_csum(flag);
else
return qede_check_tunn_csum(flag);
}
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
{
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons++;
}
static inline void
qede_reuse_page(struct qede_dev *qdev,
struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
{
struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
struct qede_rx_entry *curr_prod;
dma_addr_t new_mapping;
curr_prod = &rxq->sw_rx_ring[idx];
*curr_prod = *curr_cons;
new_mapping = rte_mbuf_data_dma_addr_default(curr_prod->mbuf) +
curr_prod->page_offset;
rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
rxq->sw_rx_prod++;
}
static inline void
qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
struct qede_dev *qdev, uint8_t count)
{
struct qede_rx_entry *curr_cons;
for (; count > 0; count--) {
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
qede_reuse_page(qdev, rxq, curr_cons);
qede_rx_bd_ring_consume(rxq);
}
}
static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
{
uint32_t p_type;
/* TBD - L4 indications needed ? */
uint16_t protocol = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & flags);
/* protocol = 3 means LLC/SNAP over Ethernet */
if (unlikely(protocol == 0 || protocol == 3))
p_type = RTE_PTYPE_UNKNOWN;
else if (protocol == 1)
p_type = RTE_PTYPE_L3_IPV4;
else if (protocol == 2)
p_type = RTE_PTYPE_L3_IPV6;
return RTE_PTYPE_L2_ETHER | p_type;
}
uint16_t
qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct qede_rx_queue *rxq = p_rxq;
struct qede_dev *qdev = rxq->qdev;
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp = &qdev->fp_array[rxq->queue_id];
uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
uint16_t rx_pkt = 0;
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_reg_cqe *fp_cqe;
register struct rte_mbuf *rx_mb = NULL;
enum eth_rx_cqe_type cqe_type;
uint16_t len, pad;
uint16_t preload_idx;
uint8_t csum_flag;
uint16_t parse_flag;
enum rss_hash_type htype;
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
rte_rmb();
if (hw_comp_cons == sw_comp_cons)
return 0;
while (sw_comp_cons != hw_comp_cons) {
/* Get the CQE from the completion ring */
cqe =
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
PMD_RX_LOG(DEBUG, rxq, "Got a slowath CQE\n");
qdev->ops->eth_cqe_completion(edev, fp->rss_id,
(struct eth_slow_path_rx_cqe *)cqe);
goto next_cqe;
}
/* Get the data from the SW ring */
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
assert(rx_mb != NULL);
/* non GRO */
fp_cqe = &cqe->fast_path_regular;
len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
pad = fp_cqe->placement_offset;
assert((len + pad) <= rx_mb->buf_len);
PMD_RX_LOG(DEBUG, rxq,
"CQE type = 0x%x, flags = 0x%x, vlan = 0x%x"
" len = %u, parsing_flags = %d\n",
cqe_type, fp_cqe->bitfields,
rte_le_to_cpu_16(fp_cqe->vlan_tag),
len, rte_le_to_cpu_16(fp_cqe->pars_flags.flags));
/* If this is an error packet then drop it */
parse_flag =
rte_le_to_cpu_16(cqe->fast_path_regular.pars_flags.flags);
csum_flag = qede_check_csum(parse_flag);
if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
PMD_RX_LOG(ERR, rxq,
"CQE in CONS = %u has error, flags = 0x%x "
"dropping incoming packet\n",
sw_comp_cons, parse_flag);
rxq->rx_hw_errors++;
qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
goto next_cqe;
}
if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
PMD_RX_LOG(ERR, rxq,
"New buffer allocation failed,"
"dropping incoming packet\n");
qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
rte_eth_devices[rxq->port_id].
data->rx_mbuf_alloc_failed++;
rxq->rx_alloc_errors++;
break;
}
qede_rx_bd_ring_consume(rxq);
/* Prefetch next mbuf while processing current one. */
preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
if (fp_cqe->bd_num != 1)
PMD_RX_LOG(DEBUG, rxq,
"Jumbo-over-BD packet not supported\n");
/* Update MBUF fields */
rx_mb->ol_flags = 0;
rx_mb->data_off = pad + RTE_PKTMBUF_HEADROOM;
rx_mb->nb_segs = 1;
rx_mb->data_len = len;
rx_mb->pkt_len = len;
rx_mb->port = rxq->port_id;
rx_mb->packet_type = qede_rx_cqe_to_pkt_type(parse_flag);
htype = (uint8_t)GET_FIELD(fp_cqe->bitfields,
ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
if (qdev->rss_enabled && htype) {
rx_mb->ol_flags |= PKT_RX_RSS_HASH;
rx_mb->hash.rss = rte_le_to_cpu_32(fp_cqe->rss_hash);
PMD_RX_LOG(DEBUG, rxq, "Hash result 0x%x\n",
rx_mb->hash.rss);
}
rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
if (CQE_HAS_VLAN(parse_flag)) {
rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
rx_mb->ol_flags |= PKT_RX_VLAN_PKT;
}
if (CQE_HAS_OUTER_VLAN(parse_flag)) {
/* FW does not provide indication of Outer VLAN tag,
* which is always stripped, so vlan_tci_outer is set
* to 0. Here vlan_tag represents inner VLAN tag.
*/
rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
rx_mb->ol_flags |= PKT_RX_QINQ_PKT;
}
rx_pkts[rx_pkt] = rx_mb;
rx_pkt++;
next_cqe:
ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
if (rx_pkt == nb_pkts) {
PMD_RX_LOG(DEBUG, rxq,
"Budget reached nb_pkts=%u received=%u\n",
rx_pkt, nb_pkts);
break;
}
}
qede_update_rx_prod(qdev, rxq);
PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d\n", rx_pkt, rte_lcore_id());
return rx_pkt;
}
static inline int
qede_free_tx_pkt(struct ecore_dev *edev, struct qede_tx_queue *txq)
{
uint16_t idx = TX_CONS(txq);
struct eth_tx_bd *tx_data_bd;
struct rte_mbuf *mbuf = txq->sw_tx_ring[idx].mbuf;
if (unlikely(!mbuf)) {
PMD_TX_LOG(ERR, txq,
"null mbuf nb_tx_desc %u nb_tx_avail %u "
"sw_tx_cons %u sw_tx_prod %u\n",
txq->nb_tx_desc, txq->nb_tx_avail, idx,
TX_PROD(txq));
return -1;
}
/* Free now */
rte_pktmbuf_free_seg(mbuf);
txq->sw_tx_ring[idx].mbuf = NULL;
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
return 0;
}
static inline uint16_t
qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq)
{
uint16_t tx_compl = 0;
uint16_t hw_bd_cons;
int rc;
hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
rte_compiler_barrier();
while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) {
rc = qede_free_tx_pkt(edev, txq);
if (rc) {
DP_NOTICE(edev, false,
"hw_bd_cons = %d, chain_cons=%d\n",
hw_bd_cons,
ecore_chain_get_cons_idx(&txq->tx_pbl));
break;
}
txq->sw_tx_cons++; /* Making TXD available */
tx_compl++;
}
PMD_TX_LOG(DEBUG, txq, "Tx compl %u sw_tx_cons %u avail %u\n",
tx_compl, txq->sw_tx_cons, txq->nb_tx_avail);
return tx_compl;
}
uint16_t
qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct qede_tx_queue *txq = p_txq;
struct qede_dev *qdev = txq->qdev;
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp = &qdev->fp_array[txq->queue_id];
struct eth_tx_1st_bd *first_bd;
uint16_t nb_tx_pkts;
uint16_t nb_pkt_sent = 0;
uint16_t bd_prod;
uint16_t idx;
uint16_t tx_count;
if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u\n",
nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
(void)qede_process_tx_compl(edev, txq);
}
nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail / MAX_NUM_TX_BDS));
if (unlikely(nb_tx_pkts == 0)) {
PMD_TX_LOG(DEBUG, txq, "Out of BDs nb_pkts=%u avail=%u\n",
nb_pkts, txq->nb_tx_avail);
return 0;
}
tx_count = nb_tx_pkts;
while (nb_tx_pkts--) {
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = TX_PROD(txq);
struct rte_mbuf *mbuf = *tx_pkts++;
txq->sw_tx_ring[idx].mbuf = mbuf;
first_bd = (struct eth_tx_1st_bd *)
ecore_chain_produce(&txq->tx_pbl);
first_bd->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
/* Map MBUF linear data for DMA and set in the first BD */
QEDE_BD_SET_ADDR_LEN(first_bd, rte_mbuf_data_dma_addr(mbuf),
mbuf->data_len);
/* Descriptor based VLAN insertion */
if (mbuf->ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
first_bd->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
/* Offload the IP checksum in the hardware */
if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
}
/* L4 checksum offload (tcp or udp) */
if (mbuf->ol_flags & (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
/* IPv6 + extn. -> later */
}
first_bd->data.nbds = MAX_NUM_TX_BDS;
txq->sw_tx_prod++;
rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
txq->nb_tx_avail--;
bd_prod =
rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
nb_pkt_sent++;
}
/* Write value of prod idx into bd_prod */
txq->tx_db.data.bd_prod = bd_prod;
rte_wmb();
rte_compiler_barrier();
DIRECT_REG_WR(edev, txq->doorbell_addr, txq->tx_db.raw);
rte_wmb();
/* Check again for Tx completions */
(void)qede_process_tx_compl(edev, txq);
PMD_TX_LOG(DEBUG, txq, "to_send=%u can_send=%u sent=%u core=%d\n",
nb_pkts, tx_count, nb_pkt_sent, rte_lcore_id());
return nb_pkt_sent;
}
int qede_dev_start(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qed_link_output link_output;
int rc;
DP_INFO(edev, "port %u\n", eth_dev->data->port_id);
if (qdev->state == QEDE_START) {
DP_INFO(edev, "device already started\n");
return 0;
}
if (qdev->state == QEDE_CLOSE) {
rc = qede_alloc_fp_array(qdev);
qede_init_fp(qdev);
rc = qede_alloc_mem_load(qdev);
DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
QEDE_RSS_CNT(qdev), qdev->num_tc);
} else if (qdev->state == QEDE_STOP) {
DP_INFO(edev, "restarting port %u\n", eth_dev->data->port_id);
} else {
DP_INFO(edev, "unknown state port %u\n",
eth_dev->data->port_id);
return -EINVAL;
}
rc = qede_start_queues(eth_dev, true);
if (rc) {
DP_ERR(edev, "Failed to start queues\n");
/* TBD: free */
return rc;
}
DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
qede_dev_set_link_state(eth_dev, true);
/* Query whether link is already-up */
memset(&link_output, 0, sizeof(link_output));
qdev->ops->common->get_link(edev, &link_output);
DP_NOTICE(edev, false, "link status: %s\n",
link_output.link_up ? "up" : "down");
qdev->state = QEDE_START;
qede_config_rx_mode(eth_dev);
DP_INFO(edev, "dev_state is QEDE_START\n");
return 0;
}
static int qede_drain_txq(struct qede_dev *qdev,
struct qede_tx_queue *txq, bool allow_drain)
{
struct ecore_dev *edev = &qdev->edev;
int rc, cnt = 1000;
while (txq->sw_tx_cons != txq->sw_tx_prod) {
qede_process_tx_compl(edev, txq);
if (!cnt) {
if (allow_drain) {
DP_NOTICE(edev, false,
"Tx queue[%u] is stuck,"
"requesting MCP to drain\n",
txq->queue_id);
rc = qdev->ops->common->drain(edev);
if (rc)
return rc;
return qede_drain_txq(qdev, txq, false);
}
DP_NOTICE(edev, false,
"Timeout waiting for tx queue[%d]:"
"PROD=%d, CONS=%d\n",
txq->queue_id, txq->sw_tx_prod,
txq->sw_tx_cons);
return -ENODEV;
}
cnt--;
DELAY(1000);
rte_compiler_barrier();
}
/* FW finished processing, wait for HW to transmit all tx packets */
DELAY(2000);
return 0;
}
static int qede_stop_queues(struct qede_dev *qdev)
{
struct qed_update_vport_params vport_update_params;
struct ecore_dev *edev = &qdev->edev;
int rc, tc, i;
/* Disable the vport */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = 0;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 0;
vport_update_params.update_rss_flg = 0;
DP_INFO(edev, "vport_update\n");
rc = qdev->ops->vport_update(edev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Failed to update vport\n");
return rc;
}
DP_INFO(edev, "Flushing tx queues\n");
/* Flush Tx queues. If needed, request drain from MCP */
for_each_rss(i) {
struct qede_fastpath *fp = &qdev->fp_array[i];
for (tc = 0; tc < qdev->num_tc; tc++) {
struct qede_tx_queue *txq = fp->txqs[tc];
rc = qede_drain_txq(qdev, txq, true);
if (rc)
return rc;
}
}
/* Stop all Queues in reverse order */
for (i = QEDE_RSS_CNT(qdev) - 1; i >= 0; i--) {
struct qed_stop_rxq_params rx_params;
/* Stop the Tx Queue(s) */
for (tc = 0; tc < qdev->num_tc; tc++) {
struct qed_stop_txq_params tx_params;
tx_params.rss_id = i;
tx_params.tx_queue_id = tc * QEDE_RSS_CNT(qdev) + i;
DP_INFO(edev, "Stopping tx queues\n");
rc = qdev->ops->q_tx_stop(edev, &tx_params);
if (rc) {
DP_ERR(edev, "Failed to stop TXQ #%d\n",
tx_params.tx_queue_id);
return rc;
}
}
/* Stop the Rx Queue */
memset(&rx_params, 0, sizeof(rx_params));
rx_params.rss_id = i;
rx_params.rx_queue_id = i;
rx_params.eq_completion_only = 1;
DP_INFO(edev, "Stopping rx queues\n");
rc = qdev->ops->q_rx_stop(edev, &rx_params);
if (rc) {
DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
return rc;
}
}
DP_INFO(edev, "Stopping vports\n");
/* Stop the vport */
rc = qdev->ops->vport_stop(edev, 0);
if (rc)
DP_ERR(edev, "Failed to stop VPORT\n");
return rc;
}
void qede_reset_fp_rings(struct qede_dev *qdev)
{
uint16_t rss_id;
uint8_t tc;
for_each_rss(rss_id) {
DP_INFO(&qdev->edev, "reset fp chain for rss %u\n", rss_id);
struct qede_fastpath *fp = &qdev->fp_array[rss_id];
ecore_chain_reset(&fp->rxq->rx_bd_ring);
ecore_chain_reset(&fp->rxq->rx_comp_ring);
for (tc = 0; tc < qdev->num_tc; tc++) {
struct qede_tx_queue *txq = fp->txqs[tc];
ecore_chain_reset(&txq->tx_pbl);
}
}
}
/* This function frees all memory of a single fp */
static void qede_free_mem_fp(struct qede_dev *qdev, struct qede_fastpath *fp)
{
uint8_t tc;
qede_rx_queue_release(fp->rxq);
for (tc = 0; tc < qdev->num_tc; tc++)
qede_tx_queue_release(fp->txqs[tc]);
}
void qede_free_mem_load(struct qede_dev *qdev)
{
uint8_t rss_id;
for_each_rss(rss_id) {
struct qede_fastpath *fp = &qdev->fp_array[rss_id];
qede_free_mem_fp(qdev, fp);
}
/* qdev->num_rss = 0; */
}
/*
* Stop an Ethernet device. The device can be restarted with a call to
* rte_eth_dev_start().
* Do not change link state and do not release sw structures.
*/
void qede_dev_stop(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
int rc;
DP_INFO(edev, "port %u\n", eth_dev->data->port_id);
if (qdev->state != QEDE_START) {
DP_INFO(edev, "device not yet started\n");
return;
}
rc = qede_stop_queues(qdev);
if (rc)
DP_ERR(edev, "Didn't succeed to close queues\n");
DP_INFO(edev, "Stopped queues\n");
qdev->ops->fastpath_stop(edev);
qede_reset_fp_rings(qdev);
qdev->state = QEDE_STOP;
DP_INFO(edev, "dev_state is QEDE_STOP\n");
}