f-stack/dpdk/drivers/dma/idxd/idxd_common.c

636 lines
19 KiB
C
Raw Normal View History

2022-09-06 04:00:10 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2021 Intel Corporation
*/
#include <x86intrin.h>
#include <rte_malloc.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_prefetch.h>
#include "idxd_internal.h"
#define IDXD_PMD_NAME_STR "dmadev_idxd"
/* systems with DSA all support AVX2 so allow our data-path functions to
* always use at least that instruction set
*/
#ifndef __AVX2__
#define __use_avx2 __attribute__((target("avx2")))
#else
#define __use_avx2
#endif
__use_avx2
static __rte_always_inline rte_iova_t
__desc_idx_to_iova(struct idxd_dmadev *idxd, uint16_t n)
{
return idxd->desc_iova + (n * sizeof(struct idxd_hw_desc));
}
__use_avx2
static __rte_always_inline void
__idxd_movdir64b(volatile void *dst, const struct idxd_hw_desc *src)
{
asm volatile (".byte 0x66, 0x0f, 0x38, 0xf8, 0x02"
:
: "a" (dst), "d" (src)
: "memory");
}
__use_avx2
static __rte_always_inline void
__submit(struct idxd_dmadev *idxd)
{
rte_prefetch1(&idxd->batch_comp_ring[idxd->batch_idx_read]);
if (idxd->batch_size == 0)
return;
/* write completion to batch comp ring */
rte_iova_t comp_addr = idxd->batch_iova +
(idxd->batch_idx_write * sizeof(struct idxd_completion));
if (idxd->batch_size == 1) {
/* submit batch directly */
struct idxd_hw_desc desc =
idxd->desc_ring[idxd->batch_start & idxd->desc_ring_mask];
desc.completion = comp_addr;
desc.op_flags |= IDXD_FLAG_REQUEST_COMPLETION;
_mm_sfence(); /* fence before writing desc to device */
__idxd_movdir64b(idxd->portal, &desc);
} else {
const struct idxd_hw_desc batch_desc = {
.op_flags = (idxd_op_batch << IDXD_CMD_OP_SHIFT) |
IDXD_FLAG_COMPLETION_ADDR_VALID |
IDXD_FLAG_REQUEST_COMPLETION,
.desc_addr = __desc_idx_to_iova(idxd,
idxd->batch_start & idxd->desc_ring_mask),
.completion = comp_addr,
.size = idxd->batch_size,
};
_mm_sfence(); /* fence before writing desc to device */
__idxd_movdir64b(idxd->portal, &batch_desc);
}
if (++idxd->batch_idx_write > idxd->max_batches)
idxd->batch_idx_write = 0;
idxd->stats.submitted += idxd->batch_size;
idxd->batch_start += idxd->batch_size;
idxd->batch_size = 0;
idxd->batch_idx_ring[idxd->batch_idx_write] = idxd->batch_start;
_mm256_store_si256((void *)&idxd->batch_comp_ring[idxd->batch_idx_write],
_mm256_setzero_si256());
}
__use_avx2
static __rte_always_inline int
__idxd_write_desc(struct idxd_dmadev *idxd,
const uint32_t op_flags,
const rte_iova_t src,
const rte_iova_t dst,
const uint32_t size,
const uint32_t flags)
{
uint16_t mask = idxd->desc_ring_mask;
uint16_t job_id = idxd->batch_start + idxd->batch_size;
/* we never wrap batches, so we only mask the start and allow start+size to overflow */
uint16_t write_idx = (idxd->batch_start & mask) + idxd->batch_size;
/* first check batch ring space then desc ring space */
if ((idxd->batch_idx_read == 0 && idxd->batch_idx_write == idxd->max_batches) ||
idxd->batch_idx_write + 1 == idxd->batch_idx_read)
return -ENOSPC;
if (((write_idx + 1) & mask) == (idxd->ids_returned & mask))
return -ENOSPC;
/* write desc. Note: descriptors don't wrap, but the completion address does */
const uint64_t op_flags64 = (uint64_t)(op_flags | IDXD_FLAG_COMPLETION_ADDR_VALID) << 32;
const uint64_t comp_addr = __desc_idx_to_iova(idxd, write_idx & mask);
_mm256_store_si256((void *)&idxd->desc_ring[write_idx],
_mm256_set_epi64x(dst, src, comp_addr, op_flags64));
_mm256_store_si256((void *)&idxd->desc_ring[write_idx].size,
_mm256_set_epi64x(0, 0, 0, size));
idxd->batch_size++;
rte_prefetch0_write(&idxd->desc_ring[write_idx + 1]);
if (flags & RTE_DMA_OP_FLAG_SUBMIT)
__submit(idxd);
return job_id;
}
__use_avx2
int
idxd_enqueue_copy(void *dev_private, uint16_t qid __rte_unused, rte_iova_t src,
rte_iova_t dst, unsigned int length, uint64_t flags)
{
/* we can take advantage of the fact that the fence flag in dmadev and DSA are the same,
* but check it at compile time to be sure.
*/
RTE_BUILD_BUG_ON(RTE_DMA_OP_FLAG_FENCE != IDXD_FLAG_FENCE);
uint32_t memmove = (idxd_op_memmove << IDXD_CMD_OP_SHIFT) |
IDXD_FLAG_CACHE_CONTROL | (flags & IDXD_FLAG_FENCE);
return __idxd_write_desc(dev_private, memmove, src, dst, length,
flags);
}
__use_avx2
int
idxd_enqueue_fill(void *dev_private, uint16_t qid __rte_unused, uint64_t pattern,
rte_iova_t dst, unsigned int length, uint64_t flags)
{
uint32_t fill = (idxd_op_fill << IDXD_CMD_OP_SHIFT) |
IDXD_FLAG_CACHE_CONTROL | (flags & IDXD_FLAG_FENCE);
return __idxd_write_desc(dev_private, fill, pattern, dst, length,
flags);
}
__use_avx2
int
idxd_submit(void *dev_private, uint16_t qid __rte_unused)
{
__submit(dev_private);
return 0;
}
__use_avx2
static enum rte_dma_status_code
get_comp_status(struct idxd_completion *c)
{
uint8_t st = c->status;
switch (st) {
/* successful descriptors are not written back normally */
case IDXD_COMP_STATUS_INCOMPLETE:
case IDXD_COMP_STATUS_SUCCESS:
return RTE_DMA_STATUS_SUCCESSFUL;
case IDXD_COMP_STATUS_INVALID_OPCODE:
return RTE_DMA_STATUS_INVALID_OPCODE;
case IDXD_COMP_STATUS_INVALID_SIZE:
return RTE_DMA_STATUS_INVALID_LENGTH;
case IDXD_COMP_STATUS_SKIPPED:
return RTE_DMA_STATUS_NOT_ATTEMPTED;
default:
return RTE_DMA_STATUS_ERROR_UNKNOWN;
}
}
__use_avx2
int
idxd_vchan_status(const struct rte_dma_dev *dev, uint16_t vchan __rte_unused,
enum rte_dma_vchan_status *status)
{
struct idxd_dmadev *idxd = dev->fp_obj->dev_private;
uint16_t last_batch_write = idxd->batch_idx_write == 0 ? idxd->max_batches :
idxd->batch_idx_write - 1;
uint8_t bstatus = (idxd->batch_comp_ring[last_batch_write].status != 0);
/* An IDXD device will always be either active or idle.
* RTE_DMA_VCHAN_HALTED_ERROR is therefore not supported by IDXD.
*/
*status = bstatus ? RTE_DMA_VCHAN_IDLE : RTE_DMA_VCHAN_ACTIVE;
return 0;
}
__use_avx2
static __rte_always_inline int
batch_ok(struct idxd_dmadev *idxd, uint16_t max_ops, enum rte_dma_status_code *status)
{
uint16_t ret;
uint8_t bstatus;
if (max_ops == 0)
return 0;
/* first check if there are any unreturned handles from last time */
if (idxd->ids_avail != idxd->ids_returned) {
ret = RTE_MIN((uint16_t)(idxd->ids_avail - idxd->ids_returned), max_ops);
idxd->ids_returned += ret;
if (status)
memset(status, RTE_DMA_STATUS_SUCCESSFUL, ret * sizeof(*status));
return ret;
}
if (idxd->batch_idx_read == idxd->batch_idx_write)
return 0;
bstatus = idxd->batch_comp_ring[idxd->batch_idx_read].status;
/* now check if next batch is complete and successful */
if (bstatus == IDXD_COMP_STATUS_SUCCESS) {
/* since the batch idx ring stores the start of each batch, pre-increment to lookup
* start of next batch.
*/
if (++idxd->batch_idx_read > idxd->max_batches)
idxd->batch_idx_read = 0;
idxd->ids_avail = idxd->batch_idx_ring[idxd->batch_idx_read];
ret = RTE_MIN((uint16_t)(idxd->ids_avail - idxd->ids_returned), max_ops);
idxd->ids_returned += ret;
if (status)
memset(status, RTE_DMA_STATUS_SUCCESSFUL, ret * sizeof(*status));
return ret;
}
/* check if batch is incomplete */
else if (bstatus == IDXD_COMP_STATUS_INCOMPLETE)
return 0;
return -1; /* error case */
}
__use_avx2
static inline uint16_t
batch_completed(struct idxd_dmadev *idxd, uint16_t max_ops, bool *has_error)
{
uint16_t i;
uint16_t b_start, b_end, next_batch;
int ret = batch_ok(idxd, max_ops, NULL);
if (ret >= 0)
return ret;
/* ERROR case, not successful, not incomplete */
/* Get the batch size, and special case size 1.
* once we identify the actual failure job, return other jobs, then update
* the batch ring indexes to make it look like the first job of the batch has failed.
* Subsequent calls here will always return zero packets, and the error must be cleared by
* calling the completed_status() function.
*/
next_batch = (idxd->batch_idx_read + 1);
if (next_batch > idxd->max_batches)
next_batch = 0;
b_start = idxd->batch_idx_ring[idxd->batch_idx_read];
b_end = idxd->batch_idx_ring[next_batch];
if (b_end - b_start == 1) { /* not a batch */
*has_error = true;
return 0;
}
for (i = b_start; i < b_end; i++) {
struct idxd_completion *c = (void *)&idxd->desc_ring[i & idxd->desc_ring_mask];
if (c->status > IDXD_COMP_STATUS_SUCCESS) /* ignore incomplete(0) and success(1) */
break;
}
ret = RTE_MIN((uint16_t)(i - idxd->ids_returned), max_ops);
if (ret < max_ops)
*has_error = true; /* we got up to the point of error */
idxd->ids_avail = idxd->ids_returned += ret;
/* to ensure we can call twice and just return 0, set start of batch to where we finished */
idxd->batch_comp_ring[idxd->batch_idx_read].completed_size -= ret;
idxd->batch_idx_ring[idxd->batch_idx_read] += ret;
if (idxd->batch_idx_ring[next_batch] - idxd->batch_idx_ring[idxd->batch_idx_read] == 1) {
/* copy over the descriptor status to the batch ring as if no batch */
uint16_t d_idx = idxd->batch_idx_ring[idxd->batch_idx_read] & idxd->desc_ring_mask;
struct idxd_completion *desc_comp = (void *)&idxd->desc_ring[d_idx];
idxd->batch_comp_ring[idxd->batch_idx_read].status = desc_comp->status;
}
return ret;
}
__use_avx2
static uint16_t
batch_completed_status(struct idxd_dmadev *idxd, uint16_t max_ops, enum rte_dma_status_code *status)
{
uint16_t next_batch;
int ret = batch_ok(idxd, max_ops, status);
if (ret >= 0)
return ret;
/* ERROR case, not successful, not incomplete */
/* Get the batch size, and special case size 1.
*/
next_batch = (idxd->batch_idx_read + 1);
if (next_batch > idxd->max_batches)
next_batch = 0;
const uint16_t b_start = idxd->batch_idx_ring[idxd->batch_idx_read];
const uint16_t b_end = idxd->batch_idx_ring[next_batch];
const uint16_t b_len = b_end - b_start;
if (b_len == 1) {/* not a batch */
*status = get_comp_status(&idxd->batch_comp_ring[idxd->batch_idx_read]);
if (status != RTE_DMA_STATUS_SUCCESSFUL)
idxd->stats.errors++;
idxd->ids_avail++;
idxd->ids_returned++;
idxd->batch_idx_read = next_batch;
return 1;
}
/* not a single-element batch, need to process more.
* Scenarios:
* 1. max_ops >= batch_size - can fit everything, simple case
* - loop through completed ops and then add on any not-attempted ones
* 2. max_ops < batch_size - can't fit everything, more complex case
* - loop through completed/incomplete and stop when hit max_ops
* - adjust the batch descriptor to update where we stopped, with appropriate bcount
* - if bcount is to be exactly 1, update the batch descriptor as it will be treated as
* non-batch next time.
*/
const uint16_t bcount = idxd->batch_comp_ring[idxd->batch_idx_read].completed_size;
for (ret = 0; ret < b_len && ret < max_ops; ret++) {
struct idxd_completion *c = (void *)
&idxd->desc_ring[(b_start + ret) & idxd->desc_ring_mask];
status[ret] = (ret < bcount) ? get_comp_status(c) : RTE_DMA_STATUS_NOT_ATTEMPTED;
if (status[ret] != RTE_DMA_STATUS_SUCCESSFUL)
idxd->stats.errors++;
}
idxd->ids_avail = idxd->ids_returned += ret;
/* everything fit */
if (ret == b_len) {
idxd->batch_idx_read = next_batch;
return ret;
}
/* set up for next time, update existing batch descriptor & start idx at batch_idx_read */
idxd->batch_idx_ring[idxd->batch_idx_read] += ret;
if (ret > bcount) {
/* we have only incomplete ones - set batch completed size to 0 */
struct idxd_completion *comp = &idxd->batch_comp_ring[idxd->batch_idx_read];
comp->completed_size = 0;
/* if there is only one descriptor left, job skipped so set flag appropriately */
if (b_len - ret == 1)
comp->status = IDXD_COMP_STATUS_SKIPPED;
} else {
struct idxd_completion *comp = &idxd->batch_comp_ring[idxd->batch_idx_read];
comp->completed_size -= ret;
/* if there is only one descriptor left, copy status info straight to desc */
if (comp->completed_size == 1) {
struct idxd_completion *c = (void *)
&idxd->desc_ring[(b_start + ret) & idxd->desc_ring_mask];
comp->status = c->status;
/* individual descs can be ok without writeback, but not batches */
if (comp->status == IDXD_COMP_STATUS_INCOMPLETE)
comp->status = IDXD_COMP_STATUS_SUCCESS;
} else if (bcount == b_len) {
/* check if we still have an error, and clear flag if not */
uint16_t i;
for (i = b_start + ret; i < b_end; i++) {
struct idxd_completion *c = (void *)
&idxd->desc_ring[i & idxd->desc_ring_mask];
if (c->status > IDXD_COMP_STATUS_SUCCESS)
break;
}
if (i == b_end) /* no errors */
comp->status = IDXD_COMP_STATUS_SUCCESS;
}
}
return ret;
}
__use_avx2
uint16_t
idxd_completed(void *dev_private, uint16_t qid __rte_unused, uint16_t max_ops,
uint16_t *last_idx, bool *has_error)
{
struct idxd_dmadev *idxd = dev_private;
uint16_t batch, ret = 0;
do {
batch = batch_completed(idxd, max_ops - ret, has_error);
ret += batch;
} while (batch > 0 && *has_error == false);
idxd->stats.completed += ret;
*last_idx = idxd->ids_returned - 1;
return ret;
}
__use_avx2
uint16_t
idxd_completed_status(void *dev_private, uint16_t qid __rte_unused, uint16_t max_ops,
uint16_t *last_idx, enum rte_dma_status_code *status)
{
struct idxd_dmadev *idxd = dev_private;
uint16_t batch, ret = 0;
do {
batch = batch_completed_status(idxd, max_ops - ret, &status[ret]);
ret += batch;
} while (batch > 0);
idxd->stats.completed += ret;
*last_idx = idxd->ids_returned - 1;
return ret;
}
int
idxd_dump(const struct rte_dma_dev *dev, FILE *f)
{
struct idxd_dmadev *idxd = dev->fp_obj->dev_private;
unsigned int i;
fprintf(f, "== IDXD Private Data ==\n");
fprintf(f, " Portal: %p\n", idxd->portal);
fprintf(f, " Config: { ring_size: %u }\n",
idxd->qcfg.nb_desc);
fprintf(f, " Batch ring (sz = %u, max_batches = %u):\n\t",
idxd->max_batches + 1, idxd->max_batches);
for (i = 0; i <= idxd->max_batches; i++) {
fprintf(f, " %u ", idxd->batch_idx_ring[i]);
if (i == idxd->batch_idx_read && i == idxd->batch_idx_write)
fprintf(f, "[rd ptr, wr ptr] ");
else if (i == idxd->batch_idx_read)
fprintf(f, "[rd ptr] ");
else if (i == idxd->batch_idx_write)
fprintf(f, "[wr ptr] ");
if (i == idxd->max_batches)
fprintf(f, "\n");
}
fprintf(f, " Curr batch: start = %u, size = %u\n", idxd->batch_start, idxd->batch_size);
fprintf(f, " IDS: avail = %u, returned: %u\n", idxd->ids_avail, idxd->ids_returned);
return 0;
}
int
idxd_stats_get(const struct rte_dma_dev *dev, uint16_t vchan __rte_unused,
struct rte_dma_stats *stats, uint32_t stats_sz)
{
struct idxd_dmadev *idxd = dev->fp_obj->dev_private;
if (stats_sz < sizeof(*stats))
return -EINVAL;
*stats = idxd->stats;
return 0;
}
int
idxd_stats_reset(struct rte_dma_dev *dev, uint16_t vchan __rte_unused)
{
struct idxd_dmadev *idxd = dev->fp_obj->dev_private;
idxd->stats = (struct rte_dma_stats){0};
return 0;
}
int
idxd_info_get(const struct rte_dma_dev *dev, struct rte_dma_info *info, uint32_t size)
{
struct idxd_dmadev *idxd = dev->fp_obj->dev_private;
if (size < sizeof(*info))
return -EINVAL;
*info = (struct rte_dma_info) {
.dev_capa = RTE_DMA_CAPA_MEM_TO_MEM | RTE_DMA_CAPA_HANDLES_ERRORS |
RTE_DMA_CAPA_OPS_COPY | RTE_DMA_CAPA_OPS_FILL,
.max_vchans = 1,
.max_desc = 4096,
.min_desc = 64,
};
if (idxd->sva_support)
info->dev_capa |= RTE_DMA_CAPA_SVA;
return 0;
}
uint16_t
idxd_burst_capacity(const void *dev_private, uint16_t vchan __rte_unused)
{
const struct idxd_dmadev *idxd = dev_private;
uint16_t write_idx = idxd->batch_start + idxd->batch_size;
uint16_t used_space;
/* Check for space in the batch ring */
if ((idxd->batch_idx_read == 0 && idxd->batch_idx_write == idxd->max_batches) ||
idxd->batch_idx_write + 1 == idxd->batch_idx_read)
return 0;
/* Subtract and mask to get in correct range */
used_space = (write_idx - idxd->ids_returned) & idxd->desc_ring_mask;
const int ret = RTE_MIN((idxd->desc_ring_mask - used_space),
(idxd->max_batch_size - idxd->batch_size));
return ret < 0 ? 0 : (uint16_t)ret;
}
int
idxd_configure(struct rte_dma_dev *dev __rte_unused, const struct rte_dma_conf *dev_conf,
uint32_t conf_sz)
{
if (sizeof(struct rte_dma_conf) != conf_sz)
return -EINVAL;
if (dev_conf->nb_vchans != 1)
return -EINVAL;
return 0;
}
int
idxd_vchan_setup(struct rte_dma_dev *dev, uint16_t vchan __rte_unused,
const struct rte_dma_vchan_conf *qconf, uint32_t qconf_sz)
{
struct idxd_dmadev *idxd = dev->fp_obj->dev_private;
uint16_t max_desc = qconf->nb_desc;
if (sizeof(struct rte_dma_vchan_conf) != qconf_sz)
return -EINVAL;
idxd->qcfg = *qconf;
if (!rte_is_power_of_2(max_desc))
max_desc = rte_align32pow2(max_desc);
IDXD_PMD_DEBUG("DMA dev %u using %u descriptors", dev->data->dev_id, max_desc);
idxd->desc_ring_mask = max_desc - 1;
idxd->qcfg.nb_desc = max_desc;
/* in case we are reconfiguring a device, free any existing memory */
rte_free(idxd->desc_ring);
/* allocate the descriptor ring at 2x size as batches can't wrap */
idxd->desc_ring = rte_zmalloc(NULL, sizeof(*idxd->desc_ring) * max_desc * 2, 0);
if (idxd->desc_ring == NULL)
return -ENOMEM;
idxd->desc_iova = rte_mem_virt2iova(idxd->desc_ring);
idxd->batch_idx_read = 0;
idxd->batch_idx_write = 0;
idxd->batch_start = 0;
idxd->batch_size = 0;
idxd->ids_returned = 0;
idxd->ids_avail = 0;
memset(idxd->batch_comp_ring, 0, sizeof(*idxd->batch_comp_ring) *
(idxd->max_batches + 1));
return 0;
}
int
idxd_dmadev_create(const char *name, struct rte_device *dev,
const struct idxd_dmadev *base_idxd,
const struct rte_dma_dev_ops *ops)
{
struct idxd_dmadev *idxd = NULL;
struct rte_dma_dev *dmadev = NULL;
int ret = 0;
RTE_BUILD_BUG_ON(sizeof(struct idxd_hw_desc) != 64);
RTE_BUILD_BUG_ON(offsetof(struct idxd_hw_desc, size) != 32);
RTE_BUILD_BUG_ON(sizeof(struct idxd_completion) != 32);
if (!name) {
IDXD_PMD_ERR("Invalid name of the device!");
ret = -EINVAL;
goto cleanup;
}
/* Allocate device structure */
dmadev = rte_dma_pmd_allocate(name, dev->numa_node, sizeof(struct idxd_dmadev));
if (dmadev == NULL) {
IDXD_PMD_ERR("Unable to allocate dma device");
ret = -ENOMEM;
goto cleanup;
}
dmadev->dev_ops = ops;
dmadev->device = dev;
dmadev->fp_obj->copy = idxd_enqueue_copy;
dmadev->fp_obj->fill = idxd_enqueue_fill;
dmadev->fp_obj->submit = idxd_submit;
dmadev->fp_obj->completed = idxd_completed;
dmadev->fp_obj->completed_status = idxd_completed_status;
dmadev->fp_obj->burst_capacity = idxd_burst_capacity;
idxd = dmadev->data->dev_private;
*idxd = *base_idxd; /* copy over the main fields already passed in */
idxd->dmadev = dmadev;
/* allocate batch index ring and completion ring.
* The +1 is because we can never fully use
* the ring, otherwise read == write means both full and empty.
*/
idxd->batch_comp_ring = rte_zmalloc_socket(NULL, (sizeof(idxd->batch_idx_ring[0]) +
sizeof(idxd->batch_comp_ring[0])) * (idxd->max_batches + 1),
sizeof(idxd->batch_comp_ring[0]), dev->numa_node);
if (idxd->batch_comp_ring == NULL) {
IDXD_PMD_ERR("Unable to reserve memory for batch data\n");
ret = -ENOMEM;
goto cleanup;
}
idxd->batch_idx_ring = (void *)&idxd->batch_comp_ring[idxd->max_batches+1];
idxd->batch_iova = rte_mem_virt2iova(idxd->batch_comp_ring);
dmadev->fp_obj->dev_private = idxd;
idxd->dmadev->state = RTE_DMA_DEV_READY;
return 0;
cleanup:
if (dmadev)
rte_dma_pmd_release(name);
return ret;
}
int idxd_pmd_logtype;
RTE_LOG_REGISTER_DEFAULT(idxd_pmd_logtype, WARNING);