mirror of https://github.com/F-Stack/f-stack.git
1254 lines
33 KiB
C
1254 lines
33 KiB
C
|
/* SPDX-License-Identifier: BSD-3-Clause
|
||
|
* Copyright(c) 2018 Ericsson AB
|
||
|
*/
|
||
|
|
||
|
#include "dsw_evdev.h"
|
||
|
|
||
|
#ifdef DSW_SORT_DEQUEUED
|
||
|
#include "dsw_sort.h"
|
||
|
#endif
|
||
|
|
||
|
#include <stdbool.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <rte_atomic.h>
|
||
|
#include <rte_cycles.h>
|
||
|
#include <rte_memcpy.h>
|
||
|
#include <rte_random.h>
|
||
|
|
||
|
static bool
|
||
|
dsw_port_acquire_credits(struct dsw_evdev *dsw, struct dsw_port *port,
|
||
|
int32_t credits)
|
||
|
{
|
||
|
int32_t inflight_credits = port->inflight_credits;
|
||
|
int32_t missing_credits = credits - inflight_credits;
|
||
|
int32_t total_on_loan;
|
||
|
int32_t available;
|
||
|
int32_t acquired_credits;
|
||
|
int32_t new_total_on_loan;
|
||
|
|
||
|
if (likely(missing_credits <= 0)) {
|
||
|
port->inflight_credits -= credits;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
total_on_loan = rte_atomic32_read(&dsw->credits_on_loan);
|
||
|
available = dsw->max_inflight - total_on_loan;
|
||
|
acquired_credits = RTE_MAX(missing_credits, DSW_PORT_MIN_CREDITS);
|
||
|
|
||
|
if (available < acquired_credits)
|
||
|
return false;
|
||
|
|
||
|
/* This is a race, no locks are involved, and thus some other
|
||
|
* thread can allocate tokens in between the check and the
|
||
|
* allocation.
|
||
|
*/
|
||
|
new_total_on_loan = rte_atomic32_add_return(&dsw->credits_on_loan,
|
||
|
acquired_credits);
|
||
|
|
||
|
if (unlikely(new_total_on_loan > dsw->max_inflight)) {
|
||
|
/* Some other port took the last credits */
|
||
|
rte_atomic32_sub(&dsw->credits_on_loan, acquired_credits);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, port->id, "Acquired %d tokens from pool.\n",
|
||
|
acquired_credits);
|
||
|
|
||
|
port->inflight_credits += acquired_credits;
|
||
|
port->inflight_credits -= credits;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_return_credits(struct dsw_evdev *dsw, struct dsw_port *port,
|
||
|
int32_t credits)
|
||
|
{
|
||
|
port->inflight_credits += credits;
|
||
|
|
||
|
if (unlikely(port->inflight_credits > DSW_PORT_MAX_CREDITS)) {
|
||
|
int32_t leave_credits = DSW_PORT_MIN_CREDITS;
|
||
|
int32_t return_credits =
|
||
|
port->inflight_credits - leave_credits;
|
||
|
|
||
|
port->inflight_credits = leave_credits;
|
||
|
|
||
|
rte_atomic32_sub(&dsw->credits_on_loan, return_credits);
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, port->id,
|
||
|
"Returned %d tokens to pool.\n",
|
||
|
return_credits);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_enqueue_stats(struct dsw_port *port, uint16_t num_new,
|
||
|
uint16_t num_forward, uint16_t num_release)
|
||
|
{
|
||
|
port->new_enqueued += num_new;
|
||
|
port->forward_enqueued += num_forward;
|
||
|
port->release_enqueued += num_release;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_queue_enqueue_stats(struct dsw_port *source_port, uint8_t queue_id)
|
||
|
{
|
||
|
source_port->queue_enqueued[queue_id]++;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_dequeue_stats(struct dsw_port *port, uint16_t num)
|
||
|
{
|
||
|
port->dequeued += num;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_queue_dequeued_stats(struct dsw_port *source_port, uint8_t queue_id)
|
||
|
{
|
||
|
source_port->queue_dequeued[queue_id]++;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_load_record(struct dsw_port *port, unsigned int dequeued)
|
||
|
{
|
||
|
if (dequeued > 0 && port->busy_start == 0)
|
||
|
/* work period begins */
|
||
|
port->busy_start = rte_get_timer_cycles();
|
||
|
else if (dequeued == 0 && port->busy_start > 0) {
|
||
|
/* work period ends */
|
||
|
uint64_t work_period =
|
||
|
rte_get_timer_cycles() - port->busy_start;
|
||
|
port->busy_cycles += work_period;
|
||
|
port->busy_start = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int16_t
|
||
|
dsw_port_load_close_period(struct dsw_port *port, uint64_t now)
|
||
|
{
|
||
|
uint64_t passed = now - port->measurement_start;
|
||
|
uint64_t busy_cycles = port->busy_cycles;
|
||
|
|
||
|
if (port->busy_start > 0) {
|
||
|
busy_cycles += (now - port->busy_start);
|
||
|
port->busy_start = now;
|
||
|
}
|
||
|
|
||
|
int16_t load = (DSW_MAX_LOAD * busy_cycles) / passed;
|
||
|
|
||
|
port->measurement_start = now;
|
||
|
port->busy_cycles = 0;
|
||
|
|
||
|
port->total_busy_cycles += busy_cycles;
|
||
|
|
||
|
return load;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_load_update(struct dsw_port *port, uint64_t now)
|
||
|
{
|
||
|
int16_t old_load;
|
||
|
int16_t period_load;
|
||
|
int16_t new_load;
|
||
|
|
||
|
old_load = rte_atomic16_read(&port->load);
|
||
|
|
||
|
period_load = dsw_port_load_close_period(port, now);
|
||
|
|
||
|
new_load = (period_load + old_load*DSW_OLD_LOAD_WEIGHT) /
|
||
|
(DSW_OLD_LOAD_WEIGHT+1);
|
||
|
|
||
|
rte_atomic16_set(&port->load, new_load);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_consider_load_update(struct dsw_port *port, uint64_t now)
|
||
|
{
|
||
|
if (now < port->next_load_update)
|
||
|
return;
|
||
|
|
||
|
port->next_load_update = now + port->load_update_interval;
|
||
|
|
||
|
dsw_port_load_update(port, now);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_ctl_enqueue(struct dsw_port *port, struct dsw_ctl_msg *msg)
|
||
|
{
|
||
|
void *raw_msg;
|
||
|
|
||
|
memcpy(&raw_msg, msg, sizeof(*msg));
|
||
|
|
||
|
/* there's always room on the ring */
|
||
|
while (rte_ring_enqueue(port->ctl_in_ring, raw_msg) != 0)
|
||
|
rte_pause();
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dsw_port_ctl_dequeue(struct dsw_port *port, struct dsw_ctl_msg *msg)
|
||
|
{
|
||
|
void *raw_msg;
|
||
|
int rc;
|
||
|
|
||
|
rc = rte_ring_dequeue(port->ctl_in_ring, &raw_msg);
|
||
|
|
||
|
if (rc == 0)
|
||
|
memcpy(msg, &raw_msg, sizeof(*msg));
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_ctl_broadcast(struct dsw_evdev *dsw, struct dsw_port *source_port,
|
||
|
uint8_t type, uint8_t queue_id, uint16_t flow_hash)
|
||
|
{
|
||
|
uint16_t port_id;
|
||
|
struct dsw_ctl_msg msg = {
|
||
|
.type = type,
|
||
|
.originating_port_id = source_port->id,
|
||
|
.queue_id = queue_id,
|
||
|
.flow_hash = flow_hash
|
||
|
};
|
||
|
|
||
|
for (port_id = 0; port_id < dsw->num_ports; port_id++)
|
||
|
if (port_id != source_port->id)
|
||
|
dsw_port_ctl_enqueue(&dsw->ports[port_id], &msg);
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
dsw_port_is_flow_paused(struct dsw_port *port, uint8_t queue_id,
|
||
|
uint16_t flow_hash)
|
||
|
{
|
||
|
uint16_t i;
|
||
|
|
||
|
for (i = 0; i < port->paused_flows_len; i++) {
|
||
|
struct dsw_queue_flow *qf = &port->paused_flows[i];
|
||
|
if (qf->queue_id == queue_id &&
|
||
|
qf->flow_hash == flow_hash)
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_add_paused_flow(struct dsw_port *port, uint8_t queue_id,
|
||
|
uint16_t paused_flow_hash)
|
||
|
{
|
||
|
port->paused_flows[port->paused_flows_len] = (struct dsw_queue_flow) {
|
||
|
.queue_id = queue_id,
|
||
|
.flow_hash = paused_flow_hash
|
||
|
};
|
||
|
port->paused_flows_len++;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_remove_paused_flow(struct dsw_port *port, uint8_t queue_id,
|
||
|
uint16_t paused_flow_hash)
|
||
|
{
|
||
|
uint16_t i;
|
||
|
|
||
|
for (i = 0; i < port->paused_flows_len; i++) {
|
||
|
struct dsw_queue_flow *qf = &port->paused_flows[i];
|
||
|
|
||
|
if (qf->queue_id == queue_id &&
|
||
|
qf->flow_hash == paused_flow_hash) {
|
||
|
uint16_t last_idx = port->paused_flows_len-1;
|
||
|
if (i != last_idx)
|
||
|
port->paused_flows[i] =
|
||
|
port->paused_flows[last_idx];
|
||
|
port->paused_flows_len--;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_flush_out_buffers(struct dsw_evdev *dsw, struct dsw_port *source_port);
|
||
|
|
||
|
static void
|
||
|
dsw_port_handle_pause_flow(struct dsw_evdev *dsw, struct dsw_port *port,
|
||
|
uint8_t originating_port_id, uint8_t queue_id,
|
||
|
uint16_t paused_flow_hash)
|
||
|
{
|
||
|
struct dsw_ctl_msg cfm = {
|
||
|
.type = DSW_CTL_CFM,
|
||
|
.originating_port_id = port->id,
|
||
|
.queue_id = queue_id,
|
||
|
.flow_hash = paused_flow_hash
|
||
|
};
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, port->id, "Pausing queue_id %d flow_hash %d.\n",
|
||
|
queue_id, paused_flow_hash);
|
||
|
|
||
|
/* There might be already-scheduled events belonging to the
|
||
|
* paused flow in the output buffers.
|
||
|
*/
|
||
|
dsw_port_flush_out_buffers(dsw, port);
|
||
|
|
||
|
dsw_port_add_paused_flow(port, queue_id, paused_flow_hash);
|
||
|
|
||
|
/* Make sure any stores to the original port's in_ring is seen
|
||
|
* before the ctl message.
|
||
|
*/
|
||
|
rte_smp_wmb();
|
||
|
|
||
|
dsw_port_ctl_enqueue(&dsw->ports[originating_port_id], &cfm);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_find_lowest_load_port(uint8_t *port_ids, uint16_t num_port_ids,
|
||
|
uint8_t exclude_port_id, int16_t *port_loads,
|
||
|
uint8_t *target_port_id, int16_t *target_load)
|
||
|
{
|
||
|
int16_t candidate_port_id = -1;
|
||
|
int16_t candidate_load = DSW_MAX_LOAD;
|
||
|
uint16_t i;
|
||
|
|
||
|
for (i = 0; i < num_port_ids; i++) {
|
||
|
uint8_t port_id = port_ids[i];
|
||
|
if (port_id != exclude_port_id) {
|
||
|
int16_t load = port_loads[port_id];
|
||
|
if (candidate_port_id == -1 ||
|
||
|
load < candidate_load) {
|
||
|
candidate_port_id = port_id;
|
||
|
candidate_load = load;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
*target_port_id = candidate_port_id;
|
||
|
*target_load = candidate_load;
|
||
|
}
|
||
|
|
||
|
struct dsw_queue_flow_burst {
|
||
|
struct dsw_queue_flow queue_flow;
|
||
|
uint16_t count;
|
||
|
};
|
||
|
|
||
|
static inline int
|
||
|
dsw_cmp_burst(const void *v_burst_a, const void *v_burst_b)
|
||
|
{
|
||
|
const struct dsw_queue_flow_burst *burst_a = v_burst_a;
|
||
|
const struct dsw_queue_flow_burst *burst_b = v_burst_b;
|
||
|
|
||
|
int a_count = burst_a->count;
|
||
|
int b_count = burst_b->count;
|
||
|
|
||
|
return a_count - b_count;
|
||
|
}
|
||
|
|
||
|
#define DSW_QF_TO_INT(_qf) \
|
||
|
((int)((((_qf)->queue_id)<<16)|((_qf)->flow_hash)))
|
||
|
|
||
|
static inline int
|
||
|
dsw_cmp_qf(const void *v_qf_a, const void *v_qf_b)
|
||
|
{
|
||
|
const struct dsw_queue_flow *qf_a = v_qf_a;
|
||
|
const struct dsw_queue_flow *qf_b = v_qf_b;
|
||
|
|
||
|
return DSW_QF_TO_INT(qf_a) - DSW_QF_TO_INT(qf_b);
|
||
|
}
|
||
|
|
||
|
static uint16_t
|
||
|
dsw_sort_qfs_to_bursts(struct dsw_queue_flow *qfs, uint16_t qfs_len,
|
||
|
struct dsw_queue_flow_burst *bursts)
|
||
|
{
|
||
|
uint16_t i;
|
||
|
struct dsw_queue_flow_burst *current_burst = NULL;
|
||
|
uint16_t num_bursts = 0;
|
||
|
|
||
|
/* We don't need the stable property, and the list is likely
|
||
|
* large enough for qsort() to outperform dsw_stable_sort(),
|
||
|
* so we use qsort() here.
|
||
|
*/
|
||
|
qsort(qfs, qfs_len, sizeof(qfs[0]), dsw_cmp_qf);
|
||
|
|
||
|
/* arrange the (now-consecutive) events into bursts */
|
||
|
for (i = 0; i < qfs_len; i++) {
|
||
|
if (i == 0 ||
|
||
|
dsw_cmp_qf(&qfs[i], ¤t_burst->queue_flow) != 0) {
|
||
|
current_burst = &bursts[num_bursts];
|
||
|
current_burst->queue_flow = qfs[i];
|
||
|
current_burst->count = 0;
|
||
|
num_bursts++;
|
||
|
}
|
||
|
current_burst->count++;
|
||
|
}
|
||
|
|
||
|
qsort(bursts, num_bursts, sizeof(bursts[0]), dsw_cmp_burst);
|
||
|
|
||
|
return num_bursts;
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
dsw_retrieve_port_loads(struct dsw_evdev *dsw, int16_t *port_loads,
|
||
|
int16_t load_limit)
|
||
|
{
|
||
|
bool below_limit = false;
|
||
|
uint16_t i;
|
||
|
|
||
|
for (i = 0; i < dsw->num_ports; i++) {
|
||
|
int16_t load = rte_atomic16_read(&dsw->ports[i].load);
|
||
|
if (load < load_limit)
|
||
|
below_limit = true;
|
||
|
port_loads[i] = load;
|
||
|
}
|
||
|
return below_limit;
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
dsw_select_migration_target(struct dsw_evdev *dsw,
|
||
|
struct dsw_port *source_port,
|
||
|
struct dsw_queue_flow_burst *bursts,
|
||
|
uint16_t num_bursts, int16_t *port_loads,
|
||
|
int16_t max_load, struct dsw_queue_flow *target_qf,
|
||
|
uint8_t *target_port_id)
|
||
|
{
|
||
|
uint16_t source_load = port_loads[source_port->id];
|
||
|
uint16_t i;
|
||
|
|
||
|
for (i = 0; i < num_bursts; i++) {
|
||
|
struct dsw_queue_flow *qf = &bursts[i].queue_flow;
|
||
|
|
||
|
if (dsw_port_is_flow_paused(source_port, qf->queue_id,
|
||
|
qf->flow_hash))
|
||
|
continue;
|
||
|
|
||
|
struct dsw_queue *queue = &dsw->queues[qf->queue_id];
|
||
|
int16_t target_load;
|
||
|
|
||
|
dsw_find_lowest_load_port(queue->serving_ports,
|
||
|
queue->num_serving_ports,
|
||
|
source_port->id, port_loads,
|
||
|
target_port_id, &target_load);
|
||
|
|
||
|
if (target_load < source_load &&
|
||
|
target_load < max_load) {
|
||
|
*target_qf = *qf;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "For the %d flows considered, "
|
||
|
"no target port found with load less than %d.\n",
|
||
|
num_bursts, DSW_LOAD_TO_PERCENT(max_load));
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static uint8_t
|
||
|
dsw_schedule(struct dsw_evdev *dsw, uint8_t queue_id, uint16_t flow_hash)
|
||
|
{
|
||
|
struct dsw_queue *queue = &dsw->queues[queue_id];
|
||
|
uint8_t port_id;
|
||
|
|
||
|
if (queue->num_serving_ports > 1)
|
||
|
port_id = queue->flow_to_port_map[flow_hash];
|
||
|
else
|
||
|
/* A single-link queue, or atomic/ordered/parallel but
|
||
|
* with just a single serving port.
|
||
|
*/
|
||
|
port_id = queue->serving_ports[0];
|
||
|
|
||
|
DSW_LOG_DP(DEBUG, "Event with queue_id %d flow_hash %d is scheduled "
|
||
|
"to port %d.\n", queue_id, flow_hash, port_id);
|
||
|
|
||
|
return port_id;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_transmit_buffered(struct dsw_evdev *dsw, struct dsw_port *source_port,
|
||
|
uint8_t dest_port_id)
|
||
|
{
|
||
|
struct dsw_port *dest_port = &(dsw->ports[dest_port_id]);
|
||
|
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
|
||
|
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
|
||
|
uint16_t enqueued = 0;
|
||
|
|
||
|
if (*buffer_len == 0)
|
||
|
return;
|
||
|
|
||
|
/* The rings are dimensioned to fit all in-flight events (even
|
||
|
* on a single ring), so looping will work.
|
||
|
*/
|
||
|
do {
|
||
|
enqueued +=
|
||
|
rte_event_ring_enqueue_burst(dest_port->in_ring,
|
||
|
buffer+enqueued,
|
||
|
*buffer_len-enqueued,
|
||
|
NULL);
|
||
|
} while (unlikely(enqueued != *buffer_len));
|
||
|
|
||
|
(*buffer_len) = 0;
|
||
|
}
|
||
|
|
||
|
static uint16_t
|
||
|
dsw_port_get_parallel_flow_id(struct dsw_port *port)
|
||
|
{
|
||
|
uint16_t flow_id = port->next_parallel_flow_id;
|
||
|
|
||
|
port->next_parallel_flow_id =
|
||
|
(port->next_parallel_flow_id + 1) % DSW_PARALLEL_FLOWS;
|
||
|
|
||
|
return flow_id;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_buffer_paused(struct dsw_port *port,
|
||
|
const struct rte_event *paused_event)
|
||
|
{
|
||
|
port->paused_events[port->paused_events_len] = *paused_event;
|
||
|
port->paused_events_len++;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_buffer_non_paused(struct dsw_evdev *dsw, struct dsw_port *source_port,
|
||
|
uint8_t dest_port_id, const struct rte_event *event)
|
||
|
{
|
||
|
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
|
||
|
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
|
||
|
|
||
|
if (*buffer_len == DSW_MAX_PORT_OUT_BUFFER)
|
||
|
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
|
||
|
|
||
|
buffer[*buffer_len] = *event;
|
||
|
|
||
|
(*buffer_len)++;
|
||
|
}
|
||
|
|
||
|
#define DSW_FLOW_ID_BITS (24)
|
||
|
static uint16_t
|
||
|
dsw_flow_id_hash(uint32_t flow_id)
|
||
|
{
|
||
|
uint16_t hash = 0;
|
||
|
uint16_t offset = 0;
|
||
|
|
||
|
do {
|
||
|
hash ^= ((flow_id >> offset) & DSW_MAX_FLOWS_MASK);
|
||
|
offset += DSW_MAX_FLOWS_BITS;
|
||
|
} while (offset < DSW_FLOW_ID_BITS);
|
||
|
|
||
|
return hash;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_buffer_parallel(struct dsw_evdev *dsw, struct dsw_port *source_port,
|
||
|
struct rte_event event)
|
||
|
{
|
||
|
uint8_t dest_port_id;
|
||
|
|
||
|
event.flow_id = dsw_port_get_parallel_flow_id(source_port);
|
||
|
|
||
|
dest_port_id = dsw_schedule(dsw, event.queue_id,
|
||
|
dsw_flow_id_hash(event.flow_id));
|
||
|
|
||
|
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, &event);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_buffer_event(struct dsw_evdev *dsw, struct dsw_port *source_port,
|
||
|
const struct rte_event *event)
|
||
|
{
|
||
|
uint16_t flow_hash;
|
||
|
uint8_t dest_port_id;
|
||
|
|
||
|
if (unlikely(dsw->queues[event->queue_id].schedule_type ==
|
||
|
RTE_SCHED_TYPE_PARALLEL)) {
|
||
|
dsw_port_buffer_parallel(dsw, source_port, *event);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
flow_hash = dsw_flow_id_hash(event->flow_id);
|
||
|
|
||
|
if (unlikely(dsw_port_is_flow_paused(source_port, event->queue_id,
|
||
|
flow_hash))) {
|
||
|
dsw_port_buffer_paused(source_port, event);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dest_port_id = dsw_schedule(dsw, event->queue_id, flow_hash);
|
||
|
|
||
|
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, event);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_flush_paused_events(struct dsw_evdev *dsw,
|
||
|
struct dsw_port *source_port,
|
||
|
uint8_t queue_id, uint16_t paused_flow_hash)
|
||
|
{
|
||
|
uint16_t paused_events_len = source_port->paused_events_len;
|
||
|
struct rte_event paused_events[paused_events_len];
|
||
|
uint8_t dest_port_id;
|
||
|
uint16_t i;
|
||
|
|
||
|
if (paused_events_len == 0)
|
||
|
return;
|
||
|
|
||
|
if (dsw_port_is_flow_paused(source_port, queue_id, paused_flow_hash))
|
||
|
return;
|
||
|
|
||
|
rte_memcpy(paused_events, source_port->paused_events,
|
||
|
paused_events_len * sizeof(struct rte_event));
|
||
|
|
||
|
source_port->paused_events_len = 0;
|
||
|
|
||
|
dest_port_id = dsw_schedule(dsw, queue_id, paused_flow_hash);
|
||
|
|
||
|
for (i = 0; i < paused_events_len; i++) {
|
||
|
struct rte_event *event = &paused_events[i];
|
||
|
uint16_t flow_hash;
|
||
|
|
||
|
flow_hash = dsw_flow_id_hash(event->flow_id);
|
||
|
|
||
|
if (event->queue_id == queue_id &&
|
||
|
flow_hash == paused_flow_hash)
|
||
|
dsw_port_buffer_non_paused(dsw, source_port,
|
||
|
dest_port_id, event);
|
||
|
else
|
||
|
dsw_port_buffer_paused(source_port, event);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_migration_stats(struct dsw_port *port)
|
||
|
{
|
||
|
uint64_t migration_latency;
|
||
|
|
||
|
migration_latency = (rte_get_timer_cycles() - port->migration_start);
|
||
|
port->migration_latency += migration_latency;
|
||
|
port->migrations++;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_end_migration(struct dsw_evdev *dsw, struct dsw_port *port)
|
||
|
{
|
||
|
uint8_t queue_id = port->migration_target_qf.queue_id;
|
||
|
uint16_t flow_hash = port->migration_target_qf.flow_hash;
|
||
|
|
||
|
port->migration_state = DSW_MIGRATION_STATE_IDLE;
|
||
|
port->seen_events_len = 0;
|
||
|
|
||
|
dsw_port_migration_stats(port);
|
||
|
|
||
|
if (dsw->queues[queue_id].schedule_type != RTE_SCHED_TYPE_PARALLEL) {
|
||
|
dsw_port_remove_paused_flow(port, queue_id, flow_hash);
|
||
|
dsw_port_flush_paused_events(dsw, port, queue_id, flow_hash);
|
||
|
}
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, port->id, "Migration completed for queue_id "
|
||
|
"%d flow_hash %d.\n", queue_id, flow_hash);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_consider_migration(struct dsw_evdev *dsw,
|
||
|
struct dsw_port *source_port,
|
||
|
uint64_t now)
|
||
|
{
|
||
|
bool any_port_below_limit;
|
||
|
struct dsw_queue_flow *seen_events = source_port->seen_events;
|
||
|
uint16_t seen_events_len = source_port->seen_events_len;
|
||
|
struct dsw_queue_flow_burst bursts[DSW_MAX_EVENTS_RECORDED];
|
||
|
uint16_t num_bursts;
|
||
|
int16_t source_port_load;
|
||
|
int16_t port_loads[dsw->num_ports];
|
||
|
|
||
|
if (now < source_port->next_migration)
|
||
|
return;
|
||
|
|
||
|
if (dsw->num_ports == 1)
|
||
|
return;
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Considering migration.\n");
|
||
|
|
||
|
/* Randomize interval to avoid having all threads considering
|
||
|
* migration at the same in point in time, which might lead to
|
||
|
* all choosing the same target port.
|
||
|
*/
|
||
|
source_port->next_migration = now +
|
||
|
source_port->migration_interval / 2 +
|
||
|
rte_rand() % source_port->migration_interval;
|
||
|
|
||
|
if (source_port->migration_state != DSW_MIGRATION_STATE_IDLE) {
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id,
|
||
|
"Migration already in progress.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* For simplicity, avoid migration in the unlikely case there
|
||
|
* is still events to consume in the in_buffer (from the last
|
||
|
* migration).
|
||
|
*/
|
||
|
if (source_port->in_buffer_len > 0) {
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "There are still "
|
||
|
"events in the input buffer.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
source_port_load = rte_atomic16_read(&source_port->load);
|
||
|
if (source_port_load < DSW_MIN_SOURCE_LOAD_FOR_MIGRATION) {
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id,
|
||
|
"Load %d is below threshold level %d.\n",
|
||
|
DSW_LOAD_TO_PERCENT(source_port_load),
|
||
|
DSW_LOAD_TO_PERCENT(DSW_MIN_SOURCE_LOAD_FOR_MIGRATION));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Avoid starting any expensive operations (sorting etc), in
|
||
|
* case of a scenario with all ports above the load limit.
|
||
|
*/
|
||
|
any_port_below_limit =
|
||
|
dsw_retrieve_port_loads(dsw, port_loads,
|
||
|
DSW_MAX_TARGET_LOAD_FOR_MIGRATION);
|
||
|
if (!any_port_below_limit) {
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id,
|
||
|
"Candidate target ports are all too highly "
|
||
|
"loaded.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Sort flows into 'bursts' to allow attempting to migrating
|
||
|
* small (but still active) flows first - this it to avoid
|
||
|
* having large flows moving around the worker cores too much
|
||
|
* (to avoid cache misses, among other things). Of course, the
|
||
|
* number of recorded events (queue+flow ids) are limited, and
|
||
|
* provides only a snapshot, so only so many conclusions can
|
||
|
* be drawn from this data.
|
||
|
*/
|
||
|
num_bursts = dsw_sort_qfs_to_bursts(seen_events, seen_events_len,
|
||
|
bursts);
|
||
|
/* For non-big-little systems, there's no point in moving the
|
||
|
* only (known) flow.
|
||
|
*/
|
||
|
if (num_bursts < 2) {
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Only a single flow "
|
||
|
"queue_id %d flow_hash %d has been seen.\n",
|
||
|
bursts[0].queue_flow.queue_id,
|
||
|
bursts[0].queue_flow.flow_hash);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* The strategy is to first try to find a flow to move to a
|
||
|
* port with low load (below the migration-attempt
|
||
|
* threshold). If that fails, we try to find a port which is
|
||
|
* below the max threshold, and also less loaded than this
|
||
|
* port is.
|
||
|
*/
|
||
|
if (!dsw_select_migration_target(dsw, source_port, bursts, num_bursts,
|
||
|
port_loads,
|
||
|
DSW_MIN_SOURCE_LOAD_FOR_MIGRATION,
|
||
|
&source_port->migration_target_qf,
|
||
|
&source_port->migration_target_port_id)
|
||
|
&&
|
||
|
!dsw_select_migration_target(dsw, source_port, bursts, num_bursts,
|
||
|
port_loads,
|
||
|
DSW_MAX_TARGET_LOAD_FOR_MIGRATION,
|
||
|
&source_port->migration_target_qf,
|
||
|
&source_port->migration_target_port_id))
|
||
|
return;
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Migrating queue_id %d "
|
||
|
"flow_hash %d from port %d to port %d.\n",
|
||
|
source_port->migration_target_qf.queue_id,
|
||
|
source_port->migration_target_qf.flow_hash,
|
||
|
source_port->id, source_port->migration_target_port_id);
|
||
|
|
||
|
/* We have a winner. */
|
||
|
|
||
|
source_port->migration_state = DSW_MIGRATION_STATE_PAUSING;
|
||
|
source_port->migration_start = rte_get_timer_cycles();
|
||
|
|
||
|
/* No need to go through the whole pause procedure for
|
||
|
* parallel queues, since atomic/ordered semantics need not to
|
||
|
* be maintained.
|
||
|
*/
|
||
|
|
||
|
if (dsw->queues[source_port->migration_target_qf.queue_id].schedule_type
|
||
|
== RTE_SCHED_TYPE_PARALLEL) {
|
||
|
uint8_t queue_id = source_port->migration_target_qf.queue_id;
|
||
|
uint16_t flow_hash = source_port->migration_target_qf.flow_hash;
|
||
|
uint8_t dest_port_id = source_port->migration_target_port_id;
|
||
|
|
||
|
/* Single byte-sized stores are always atomic. */
|
||
|
dsw->queues[queue_id].flow_to_port_map[flow_hash] =
|
||
|
dest_port_id;
|
||
|
rte_smp_wmb();
|
||
|
|
||
|
dsw_port_end_migration(dsw, source_port);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* There might be 'loopback' events already scheduled in the
|
||
|
* output buffers.
|
||
|
*/
|
||
|
dsw_port_flush_out_buffers(dsw, source_port);
|
||
|
|
||
|
dsw_port_add_paused_flow(source_port,
|
||
|
source_port->migration_target_qf.queue_id,
|
||
|
source_port->migration_target_qf.flow_hash);
|
||
|
|
||
|
dsw_port_ctl_broadcast(dsw, source_port, DSW_CTL_PAUS_REQ,
|
||
|
source_port->migration_target_qf.queue_id,
|
||
|
source_port->migration_target_qf.flow_hash);
|
||
|
source_port->cfm_cnt = 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_flush_paused_events(struct dsw_evdev *dsw,
|
||
|
struct dsw_port *source_port,
|
||
|
uint8_t queue_id, uint16_t paused_flow_hash);
|
||
|
|
||
|
static void
|
||
|
dsw_port_handle_unpause_flow(struct dsw_evdev *dsw, struct dsw_port *port,
|
||
|
uint8_t originating_port_id, uint8_t queue_id,
|
||
|
uint16_t paused_flow_hash)
|
||
|
{
|
||
|
struct dsw_ctl_msg cfm = {
|
||
|
.type = DSW_CTL_CFM,
|
||
|
.originating_port_id = port->id,
|
||
|
.queue_id = queue_id,
|
||
|
.flow_hash = paused_flow_hash
|
||
|
};
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, port->id, "Un-pausing queue_id %d flow_hash %d.\n",
|
||
|
queue_id, paused_flow_hash);
|
||
|
|
||
|
dsw_port_remove_paused_flow(port, queue_id, paused_flow_hash);
|
||
|
|
||
|
rte_smp_rmb();
|
||
|
|
||
|
dsw_port_ctl_enqueue(&dsw->ports[originating_port_id], &cfm);
|
||
|
|
||
|
dsw_port_flush_paused_events(dsw, port, queue_id, paused_flow_hash);
|
||
|
}
|
||
|
|
||
|
#define FORWARD_BURST_SIZE (32)
|
||
|
|
||
|
static void
|
||
|
dsw_port_forward_migrated_flow(struct dsw_port *source_port,
|
||
|
struct rte_event_ring *dest_ring,
|
||
|
uint8_t queue_id,
|
||
|
uint16_t flow_hash)
|
||
|
{
|
||
|
uint16_t events_left;
|
||
|
|
||
|
/* Control ring message should been seen before the ring count
|
||
|
* is read on the port's in_ring.
|
||
|
*/
|
||
|
rte_smp_rmb();
|
||
|
|
||
|
events_left = rte_event_ring_count(source_port->in_ring);
|
||
|
|
||
|
while (events_left > 0) {
|
||
|
uint16_t in_burst_size =
|
||
|
RTE_MIN(FORWARD_BURST_SIZE, events_left);
|
||
|
struct rte_event in_burst[in_burst_size];
|
||
|
uint16_t in_len;
|
||
|
uint16_t i;
|
||
|
|
||
|
in_len = rte_event_ring_dequeue_burst(source_port->in_ring,
|
||
|
in_burst,
|
||
|
in_burst_size, NULL);
|
||
|
/* No need to care about bursting forwarded events (to
|
||
|
* the destination port's in_ring), since migration
|
||
|
* doesn't happen very often, and also the majority of
|
||
|
* the dequeued events will likely *not* be forwarded.
|
||
|
*/
|
||
|
for (i = 0; i < in_len; i++) {
|
||
|
struct rte_event *e = &in_burst[i];
|
||
|
if (e->queue_id == queue_id &&
|
||
|
dsw_flow_id_hash(e->flow_id) == flow_hash) {
|
||
|
while (rte_event_ring_enqueue_burst(dest_ring,
|
||
|
e, 1,
|
||
|
NULL) != 1)
|
||
|
rte_pause();
|
||
|
} else {
|
||
|
uint16_t last_idx = source_port->in_buffer_len;
|
||
|
source_port->in_buffer[last_idx] = *e;
|
||
|
source_port->in_buffer_len++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
events_left -= in_len;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_move_migrating_flow(struct dsw_evdev *dsw,
|
||
|
struct dsw_port *source_port)
|
||
|
{
|
||
|
uint8_t queue_id = source_port->migration_target_qf.queue_id;
|
||
|
uint16_t flow_hash = source_port->migration_target_qf.flow_hash;
|
||
|
uint8_t dest_port_id = source_port->migration_target_port_id;
|
||
|
struct dsw_port *dest_port = &dsw->ports[dest_port_id];
|
||
|
|
||
|
dsw_port_flush_out_buffers(dsw, source_port);
|
||
|
|
||
|
rte_smp_wmb();
|
||
|
|
||
|
dsw->queues[queue_id].flow_to_port_map[flow_hash] =
|
||
|
dest_port_id;
|
||
|
|
||
|
dsw_port_forward_migrated_flow(source_port, dest_port->in_ring,
|
||
|
queue_id, flow_hash);
|
||
|
|
||
|
/* Flow table update and migration destination port's enqueues
|
||
|
* must be seen before the control message.
|
||
|
*/
|
||
|
rte_smp_wmb();
|
||
|
|
||
|
dsw_port_ctl_broadcast(dsw, source_port, DSW_CTL_UNPAUS_REQ, queue_id,
|
||
|
flow_hash);
|
||
|
source_port->cfm_cnt = 0;
|
||
|
source_port->migration_state = DSW_MIGRATION_STATE_UNPAUSING;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_handle_confirm(struct dsw_evdev *dsw, struct dsw_port *port)
|
||
|
{
|
||
|
port->cfm_cnt++;
|
||
|
|
||
|
if (port->cfm_cnt == (dsw->num_ports-1)) {
|
||
|
switch (port->migration_state) {
|
||
|
case DSW_MIGRATION_STATE_PAUSING:
|
||
|
DSW_LOG_DP_PORT(DEBUG, port->id, "Going into forwarding "
|
||
|
"migration state.\n");
|
||
|
port->migration_state = DSW_MIGRATION_STATE_FORWARDING;
|
||
|
break;
|
||
|
case DSW_MIGRATION_STATE_UNPAUSING:
|
||
|
dsw_port_end_migration(dsw, port);
|
||
|
break;
|
||
|
default:
|
||
|
RTE_ASSERT(0);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_ctl_process(struct dsw_evdev *dsw, struct dsw_port *port)
|
||
|
{
|
||
|
struct dsw_ctl_msg msg;
|
||
|
|
||
|
/* So any table loads happens before the ring dequeue, in the
|
||
|
* case of a 'paus' message.
|
||
|
*/
|
||
|
rte_smp_rmb();
|
||
|
|
||
|
if (dsw_port_ctl_dequeue(port, &msg) == 0) {
|
||
|
switch (msg.type) {
|
||
|
case DSW_CTL_PAUS_REQ:
|
||
|
dsw_port_handle_pause_flow(dsw, port,
|
||
|
msg.originating_port_id,
|
||
|
msg.queue_id, msg.flow_hash);
|
||
|
break;
|
||
|
case DSW_CTL_UNPAUS_REQ:
|
||
|
dsw_port_handle_unpause_flow(dsw, port,
|
||
|
msg.originating_port_id,
|
||
|
msg.queue_id,
|
||
|
msg.flow_hash);
|
||
|
break;
|
||
|
case DSW_CTL_CFM:
|
||
|
dsw_port_handle_confirm(dsw, port);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_note_op(struct dsw_port *port, uint16_t num_events)
|
||
|
{
|
||
|
/* To pull the control ring reasonbly often on busy ports,
|
||
|
* each dequeued/enqueued event is considered an 'op' too.
|
||
|
*/
|
||
|
port->ops_since_bg_task += (num_events+1);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_bg_process(struct dsw_evdev *dsw, struct dsw_port *port)
|
||
|
{
|
||
|
if (unlikely(port->migration_state == DSW_MIGRATION_STATE_FORWARDING &&
|
||
|
port->pending_releases == 0))
|
||
|
dsw_port_move_migrating_flow(dsw, port);
|
||
|
|
||
|
/* Polling the control ring is relatively inexpensive, and
|
||
|
* polling it often helps bringing down migration latency, so
|
||
|
* do this for every iteration.
|
||
|
*/
|
||
|
dsw_port_ctl_process(dsw, port);
|
||
|
|
||
|
/* To avoid considering migration and flushing output buffers
|
||
|
* on every dequeue/enqueue call, the scheduler only performs
|
||
|
* such 'background' tasks every nth
|
||
|
* (i.e. DSW_MAX_PORT_OPS_PER_BG_TASK) operation.
|
||
|
*/
|
||
|
if (unlikely(port->ops_since_bg_task >= DSW_MAX_PORT_OPS_PER_BG_TASK)) {
|
||
|
uint64_t now;
|
||
|
|
||
|
now = rte_get_timer_cycles();
|
||
|
|
||
|
port->last_bg = now;
|
||
|
|
||
|
/* Logic to avoid having events linger in the output
|
||
|
* buffer too long.
|
||
|
*/
|
||
|
dsw_port_flush_out_buffers(dsw, port);
|
||
|
|
||
|
dsw_port_consider_load_update(port, now);
|
||
|
|
||
|
dsw_port_consider_migration(dsw, port, now);
|
||
|
|
||
|
port->ops_since_bg_task = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_flush_out_buffers(struct dsw_evdev *dsw, struct dsw_port *source_port)
|
||
|
{
|
||
|
uint16_t dest_port_id;
|
||
|
|
||
|
for (dest_port_id = 0; dest_port_id < dsw->num_ports; dest_port_id++)
|
||
|
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
|
||
|
}
|
||
|
|
||
|
uint16_t
|
||
|
dsw_event_enqueue(void *port, const struct rte_event *ev)
|
||
|
{
|
||
|
return dsw_event_enqueue_burst(port, ev, unlikely(ev == NULL) ? 0 : 1);
|
||
|
}
|
||
|
|
||
|
static __rte_always_inline uint16_t
|
||
|
dsw_event_enqueue_burst_generic(void *port, const struct rte_event events[],
|
||
|
uint16_t events_len, bool op_types_known,
|
||
|
uint16_t num_new, uint16_t num_release,
|
||
|
uint16_t num_non_release)
|
||
|
{
|
||
|
struct dsw_port *source_port = port;
|
||
|
struct dsw_evdev *dsw = source_port->dsw;
|
||
|
bool enough_credits;
|
||
|
uint16_t i;
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Attempting to enqueue %d "
|
||
|
"events to port %d.\n", events_len, source_port->id);
|
||
|
|
||
|
dsw_port_bg_process(dsw, source_port);
|
||
|
|
||
|
/* XXX: For performance (=ring efficiency) reasons, the
|
||
|
* scheduler relies on internal non-ring buffers instead of
|
||
|
* immediately sending the event to the destination ring. For
|
||
|
* a producer that doesn't intend to produce or consume any
|
||
|
* more events, the scheduler provides a way to flush the
|
||
|
* buffer, by means of doing an enqueue of zero events. In
|
||
|
* addition, a port cannot be left "unattended" (e.g. unused)
|
||
|
* for long periods of time, since that would stall
|
||
|
* migration. Eventdev API extensions to provide a cleaner way
|
||
|
* to archieve both of these functions should be
|
||
|
* considered.
|
||
|
*/
|
||
|
if (unlikely(events_len == 0)) {
|
||
|
dsw_port_note_op(source_port, DSW_MAX_PORT_OPS_PER_BG_TASK);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (unlikely(events_len > source_port->enqueue_depth))
|
||
|
events_len = source_port->enqueue_depth;
|
||
|
|
||
|
dsw_port_note_op(source_port, events_len);
|
||
|
|
||
|
if (!op_types_known)
|
||
|
for (i = 0; i < events_len; i++) {
|
||
|
switch (events[i].op) {
|
||
|
case RTE_EVENT_OP_RELEASE:
|
||
|
num_release++;
|
||
|
break;
|
||
|
case RTE_EVENT_OP_NEW:
|
||
|
num_new++;
|
||
|
/* Falls through. */
|
||
|
default:
|
||
|
num_non_release++;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Technically, we could allow the non-new events up to the
|
||
|
* first new event in the array into the system, but for
|
||
|
* simplicity reasons, we deny the whole burst if the port is
|
||
|
* above the water mark.
|
||
|
*/
|
||
|
if (unlikely(num_new > 0 && rte_atomic32_read(&dsw->credits_on_loan) >
|
||
|
source_port->new_event_threshold))
|
||
|
return 0;
|
||
|
|
||
|
enough_credits = dsw_port_acquire_credits(dsw, source_port,
|
||
|
num_non_release);
|
||
|
if (unlikely(!enough_credits))
|
||
|
return 0;
|
||
|
|
||
|
source_port->pending_releases -= num_release;
|
||
|
|
||
|
dsw_port_enqueue_stats(source_port, num_new,
|
||
|
num_non_release-num_new, num_release);
|
||
|
|
||
|
for (i = 0; i < events_len; i++) {
|
||
|
const struct rte_event *event = &events[i];
|
||
|
|
||
|
if (likely(num_release == 0 ||
|
||
|
event->op != RTE_EVENT_OP_RELEASE))
|
||
|
dsw_port_buffer_event(dsw, source_port, event);
|
||
|
dsw_port_queue_enqueue_stats(source_port, event->queue_id);
|
||
|
}
|
||
|
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "%d non-release events "
|
||
|
"accepted.\n", num_non_release);
|
||
|
|
||
|
return num_non_release;
|
||
|
}
|
||
|
|
||
|
uint16_t
|
||
|
dsw_event_enqueue_burst(void *port, const struct rte_event events[],
|
||
|
uint16_t events_len)
|
||
|
{
|
||
|
return dsw_event_enqueue_burst_generic(port, events, events_len, false,
|
||
|
0, 0, 0);
|
||
|
}
|
||
|
|
||
|
uint16_t
|
||
|
dsw_event_enqueue_new_burst(void *port, const struct rte_event events[],
|
||
|
uint16_t events_len)
|
||
|
{
|
||
|
return dsw_event_enqueue_burst_generic(port, events, events_len, true,
|
||
|
events_len, 0, events_len);
|
||
|
}
|
||
|
|
||
|
uint16_t
|
||
|
dsw_event_enqueue_forward_burst(void *port, const struct rte_event events[],
|
||
|
uint16_t events_len)
|
||
|
{
|
||
|
return dsw_event_enqueue_burst_generic(port, events, events_len, true,
|
||
|
0, 0, events_len);
|
||
|
}
|
||
|
|
||
|
uint16_t
|
||
|
dsw_event_dequeue(void *port, struct rte_event *events, uint64_t wait)
|
||
|
{
|
||
|
return dsw_event_dequeue_burst(port, events, 1, wait);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dsw_port_record_seen_events(struct dsw_port *port, struct rte_event *events,
|
||
|
uint16_t num)
|
||
|
{
|
||
|
uint16_t i;
|
||
|
|
||
|
dsw_port_dequeue_stats(port, num);
|
||
|
|
||
|
for (i = 0; i < num; i++) {
|
||
|
uint16_t l_idx = port->seen_events_idx;
|
||
|
struct dsw_queue_flow *qf = &port->seen_events[l_idx];
|
||
|
struct rte_event *event = &events[i];
|
||
|
qf->queue_id = event->queue_id;
|
||
|
qf->flow_hash = dsw_flow_id_hash(event->flow_id);
|
||
|
|
||
|
port->seen_events_idx = (l_idx+1) % DSW_MAX_EVENTS_RECORDED;
|
||
|
|
||
|
dsw_port_queue_dequeued_stats(port, event->queue_id);
|
||
|
}
|
||
|
|
||
|
if (unlikely(port->seen_events_len != DSW_MAX_EVENTS_RECORDED))
|
||
|
port->seen_events_len =
|
||
|
RTE_MIN(port->seen_events_len + num,
|
||
|
DSW_MAX_EVENTS_RECORDED);
|
||
|
}
|
||
|
|
||
|
#ifdef DSW_SORT_DEQUEUED
|
||
|
|
||
|
#define DSW_EVENT_TO_INT(_event) \
|
||
|
((int)((((_event)->queue_id)<<16)|((_event)->flow_id)))
|
||
|
|
||
|
static inline int
|
||
|
dsw_cmp_event(const void *v_event_a, const void *v_event_b)
|
||
|
{
|
||
|
const struct rte_event *event_a = v_event_a;
|
||
|
const struct rte_event *event_b = v_event_b;
|
||
|
|
||
|
return DSW_EVENT_TO_INT(event_a) - DSW_EVENT_TO_INT(event_b);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static uint16_t
|
||
|
dsw_port_dequeue_burst(struct dsw_port *port, struct rte_event *events,
|
||
|
uint16_t num)
|
||
|
{
|
||
|
struct dsw_port *source_port = port;
|
||
|
struct dsw_evdev *dsw = source_port->dsw;
|
||
|
|
||
|
dsw_port_ctl_process(dsw, source_port);
|
||
|
|
||
|
if (unlikely(port->in_buffer_len > 0)) {
|
||
|
uint16_t dequeued = RTE_MIN(num, port->in_buffer_len);
|
||
|
|
||
|
rte_memcpy(events, &port->in_buffer[port->in_buffer_start],
|
||
|
dequeued * sizeof(struct rte_event));
|
||
|
|
||
|
port->in_buffer_start += dequeued;
|
||
|
port->in_buffer_len -= dequeued;
|
||
|
|
||
|
if (port->in_buffer_len == 0)
|
||
|
port->in_buffer_start = 0;
|
||
|
|
||
|
return dequeued;
|
||
|
}
|
||
|
|
||
|
return rte_event_ring_dequeue_burst(port->in_ring, events, num, NULL);
|
||
|
}
|
||
|
|
||
|
uint16_t
|
||
|
dsw_event_dequeue_burst(void *port, struct rte_event *events, uint16_t num,
|
||
|
uint64_t wait __rte_unused)
|
||
|
{
|
||
|
struct dsw_port *source_port = port;
|
||
|
struct dsw_evdev *dsw = source_port->dsw;
|
||
|
uint16_t dequeued;
|
||
|
|
||
|
source_port->pending_releases = 0;
|
||
|
|
||
|
dsw_port_bg_process(dsw, source_port);
|
||
|
|
||
|
if (unlikely(num > source_port->dequeue_depth))
|
||
|
num = source_port->dequeue_depth;
|
||
|
|
||
|
dequeued = dsw_port_dequeue_burst(source_port, events, num);
|
||
|
|
||
|
source_port->pending_releases = dequeued;
|
||
|
|
||
|
dsw_port_load_record(source_port, dequeued);
|
||
|
|
||
|
dsw_port_note_op(source_port, dequeued);
|
||
|
|
||
|
if (dequeued > 0) {
|
||
|
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Dequeued %d events.\n",
|
||
|
dequeued);
|
||
|
|
||
|
dsw_port_return_credits(dsw, source_port, dequeued);
|
||
|
|
||
|
/* One potential optimization one might think of is to
|
||
|
* add a migration state (prior to 'pausing'), and
|
||
|
* only record seen events when the port is in this
|
||
|
* state (and transit to 'pausing' when enough events
|
||
|
* have been gathered). However, that schema doesn't
|
||
|
* seem to improve performance.
|
||
|
*/
|
||
|
dsw_port_record_seen_events(port, events, dequeued);
|
||
|
}
|
||
|
/* XXX: Assuming the port can't produce any more work,
|
||
|
* consider flushing the output buffer, on dequeued ==
|
||
|
* 0.
|
||
|
*/
|
||
|
|
||
|
#ifdef DSW_SORT_DEQUEUED
|
||
|
dsw_stable_sort(events, dequeued, sizeof(events[0]), dsw_cmp_event);
|
||
|
#endif
|
||
|
|
||
|
return dequeued;
|
||
|
}
|