f-stack/dpdk/lib/librte_eal/common/malloc_heap.c

1365 lines
35 KiB
C
Raw Normal View History

2019-06-25 11:12:58 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
2017-04-21 10:43:26 +00:00
*/
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_memory.h>
2019-06-25 11:12:58 +00:00
#include <rte_errno.h>
2017-04-21 10:43:26 +00:00
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_memcpy.h>
2020-06-18 16:55:50 +00:00
#include <rte_memzone.h>
2017-04-21 10:43:26 +00:00
#include <rte_atomic.h>
2019-06-25 11:12:58 +00:00
#include <rte_fbarray.h>
2017-04-21 10:43:26 +00:00
2019-06-25 11:12:58 +00:00
#include "eal_internal_cfg.h"
#include "eal_memalloc.h"
2020-06-18 16:55:50 +00:00
#include "eal_memcfg.h"
#include "eal_private.h"
2017-04-21 10:43:26 +00:00
#include "malloc_elem.h"
#include "malloc_heap.h"
2019-06-25 11:12:58 +00:00
#include "malloc_mp.h"
/* start external socket ID's at a very high number */
#define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
#define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))
2017-04-21 10:43:26 +00:00
static unsigned
check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
{
unsigned check_flag = 0;
if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
return 1;
switch (hugepage_sz) {
case RTE_PGSIZE_256K:
check_flag = RTE_MEMZONE_256KB;
break;
case RTE_PGSIZE_2M:
check_flag = RTE_MEMZONE_2MB;
break;
case RTE_PGSIZE_16M:
check_flag = RTE_MEMZONE_16MB;
break;
case RTE_PGSIZE_256M:
check_flag = RTE_MEMZONE_256MB;
break;
case RTE_PGSIZE_512M:
check_flag = RTE_MEMZONE_512MB;
break;
case RTE_PGSIZE_1G:
check_flag = RTE_MEMZONE_1GB;
break;
case RTE_PGSIZE_4G:
check_flag = RTE_MEMZONE_4GB;
break;
case RTE_PGSIZE_16G:
check_flag = RTE_MEMZONE_16GB;
}
return check_flag & flags;
}
2019-06-25 11:12:58 +00:00
int
malloc_socket_to_heap_id(unsigned int socket_id)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i;
for (i = 0; i < RTE_MAX_HEAPS; i++) {
struct malloc_heap *heap = &mcfg->malloc_heaps[i];
if (heap->socket_id == socket_id)
return i;
}
return -1;
}
2017-04-21 10:43:26 +00:00
/*
2019-06-25 11:12:58 +00:00
* Expand the heap with a memory area.
2017-04-21 10:43:26 +00:00
*/
2019-06-25 11:12:58 +00:00
static struct malloc_elem *
malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
void *start, size_t len)
2017-04-21 10:43:26 +00:00
{
2019-06-25 11:12:58 +00:00
struct malloc_elem *elem = start;
2020-06-18 16:55:50 +00:00
malloc_elem_init(elem, heap, msl, len, elem, len);
2019-06-25 11:12:58 +00:00
malloc_elem_insert(elem);
elem = malloc_elem_join_adjacent_free(elem);
malloc_elem_free_list_insert(elem);
return elem;
}
static int
malloc_add_seg(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *found_msl;
struct malloc_heap *heap;
int msl_idx, heap_idx;
if (msl->external)
return 0;
heap_idx = malloc_socket_to_heap_id(msl->socket_id);
if (heap_idx < 0) {
RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n");
return -1;
}
heap = &mcfg->malloc_heaps[heap_idx];
2017-04-21 10:43:26 +00:00
2019-06-25 11:12:58 +00:00
/* msl is const, so find it */
msl_idx = msl - mcfg->memsegs;
2017-04-21 10:43:26 +00:00
2019-06-25 11:12:58 +00:00
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
return -1;
found_msl = &mcfg->memsegs[msl_idx];
malloc_heap_add_memory(heap, found_msl, ms->addr, len);
heap->total_size += len;
RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
msl->socket_id);
return 0;
2017-04-21 10:43:26 +00:00
}
/*
* Iterates through the freelist for a heap to find a free element
* which can store data of the required size and with the requested alignment.
* If size is 0, find the biggest available elem.
* Returns null on failure, or pointer to element on success.
*/
static struct malloc_elem *
find_suitable_element(struct malloc_heap *heap, size_t size,
2019-06-25 11:12:58 +00:00
unsigned int flags, size_t align, size_t bound, bool contig)
2017-04-21 10:43:26 +00:00
{
size_t idx;
struct malloc_elem *elem, *alt_elem = NULL;
for (idx = malloc_elem_free_list_index(size);
idx < RTE_HEAP_NUM_FREELISTS; idx++) {
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list)) {
2019-06-25 11:12:58 +00:00
if (malloc_elem_can_hold(elem, size, align, bound,
contig)) {
if (check_hugepage_sz(flags,
elem->msl->page_sz))
2017-04-21 10:43:26 +00:00
return elem;
if (alt_elem == NULL)
alt_elem = elem;
}
}
}
if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
return alt_elem;
return NULL;
}
2019-06-25 11:12:58 +00:00
/*
* Iterates through the freelist for a heap to find a free element with the
* biggest size and requested alignment. Will also set size to whatever element
* size that was found.
* Returns null on failure, or pointer to element on success.
*/
static struct malloc_elem *
find_biggest_element(struct malloc_heap *heap, size_t *size,
unsigned int flags, size_t align, bool contig)
{
struct malloc_elem *elem, *max_elem = NULL;
size_t idx, max_size = 0;
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list)) {
size_t cur_size;
if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
!check_hugepage_sz(flags,
elem->msl->page_sz))
continue;
if (contig) {
cur_size =
malloc_elem_find_max_iova_contig(elem,
align);
} else {
void *data_start = RTE_PTR_ADD(elem,
MALLOC_ELEM_HEADER_LEN);
void *data_end = RTE_PTR_ADD(elem, elem->size -
MALLOC_ELEM_TRAILER_LEN);
void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
align);
/* check if aligned data start is beyond end */
if (aligned >= data_end)
continue;
cur_size = RTE_PTR_DIFF(data_end, aligned);
}
if (cur_size > max_size) {
max_size = cur_size;
max_elem = elem;
}
}
}
*size = max_size;
return max_elem;
}
2017-04-21 10:43:26 +00:00
/*
* Main function to allocate a block of memory from the heap.
* It locks the free list, scans it, and adds a new memseg if the
* scan fails. Once the new memseg is added, it re-scans and should return
* the new element after releasing the lock.
*/
2019-06-25 11:12:58 +00:00
static void *
heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
unsigned int flags, size_t align, size_t bound, bool contig)
2017-04-21 10:43:26 +00:00
{
struct malloc_elem *elem;
size = RTE_CACHE_LINE_ROUNDUP(size);
align = RTE_CACHE_LINE_ROUNDUP(align);
2019-06-25 11:12:58 +00:00
elem = find_suitable_element(heap, size, flags, align, bound, contig);
if (elem != NULL) {
elem = malloc_elem_alloc(elem, size, align, bound, contig);
/* increase heap's count of allocated elements */
heap->alloc_count++;
}
return elem == NULL ? NULL : (void *)(&elem[1]);
}
static void *
heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused,
unsigned int flags, size_t align, bool contig)
{
struct malloc_elem *elem;
size_t size;
2018-12-06 14:17:51 +00:00
2019-06-25 11:12:58 +00:00
align = RTE_CACHE_LINE_ROUNDUP(align);
elem = find_biggest_element(heap, &size, flags, align, contig);
2017-04-21 10:43:26 +00:00
if (elem != NULL) {
2019-06-25 11:12:58 +00:00
elem = malloc_elem_alloc(elem, size, align, 0, contig);
2017-04-21 10:43:26 +00:00
/* increase heap's count of allocated elements */
heap->alloc_count++;
}
return elem == NULL ? NULL : (void *)(&elem[1]);
}
2019-06-25 11:12:58 +00:00
/* this function is exposed in malloc_mp.h */
void
rollback_expand_heap(struct rte_memseg **ms, int n_segs,
struct malloc_elem *elem, void *map_addr, size_t map_len)
{
if (elem != NULL) {
malloc_elem_free_list_remove(elem);
malloc_elem_hide_region(elem, map_addr, map_len);
}
eal_memalloc_free_seg_bulk(ms, n_segs);
}
/* this function is exposed in malloc_mp.h */
struct malloc_elem *
alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
int socket, unsigned int flags, size_t align, size_t bound,
bool contig, struct rte_memseg **ms, int n_segs)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
struct malloc_elem *elem = NULL;
size_t alloc_sz;
int allocd_pages;
void *ret, *map_addr;
alloc_sz = (size_t)pg_sz * n_segs;
/* first, check if we're allowed to allocate this memory */
if (eal_memalloc_mem_alloc_validate(socket,
heap->total_size + alloc_sz) < 0) {
RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
return NULL;
}
allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
socket, true);
/* make sure we've allocated our pages... */
if (allocd_pages < 0)
return NULL;
map_addr = ms[0]->addr;
msl = rte_mem_virt2memseg_list(map_addr);
/* check if we wanted contiguous memory but didn't get it */
if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
__func__);
goto fail;
}
/*
* Once we have all the memseg lists configured, if there is a dma mask
* set, check iova addresses are not out of range. Otherwise the device
* setting the dma mask could have problems with the mapped memory.
*
* There are two situations when this can happen:
* 1) memory initialization
* 2) dynamic memory allocation
*
* For 1), an error when checking dma mask implies app can not be
* executed. For 2) implies the new memory can not be added.
*/
if (mcfg->dma_maskbits &&
rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
/*
* Currently this can only happen if IOMMU is enabled
* and the address width supported by the IOMMU hw is
* not enough for using the memory mapped IOVAs.
*
* If IOVA is VA, advice to try with '--iova-mode pa'
* which could solve some situations when IOVA VA is not
* really needed.
*/
RTE_LOG(ERR, EAL,
"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n",
__func__);
/*
* If IOVA is VA and it is possible to run with IOVA PA,
* because user is root, give and advice for solving the
* problem.
*/
if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
rte_eal_using_phys_addrs())
RTE_LOG(ERR, EAL,
"%s(): Please try initializing EAL with --iova-mode=pa parameter\n",
__func__);
goto fail;
}
/* add newly minted memsegs to malloc heap */
elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz);
/* try once more, as now we have allocated new memory */
ret = find_suitable_element(heap, elt_size, flags, align, bound,
contig);
if (ret == NULL)
goto fail;
return elem;
fail:
rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
return NULL;
}
static int
try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
size_t elt_size, int socket, unsigned int flags, size_t align,
size_t bound, bool contig)
{
struct malloc_elem *elem;
struct rte_memseg **ms;
void *map_addr;
size_t alloc_sz;
int n_segs;
bool callback_triggered = false;
alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
MALLOC_ELEM_TRAILER_LEN, pg_sz);
n_segs = alloc_sz / pg_sz;
/* we can't know in advance how many pages we'll need, so we malloc */
ms = malloc(sizeof(*ms) * n_segs);
if (ms == NULL)
return -1;
memset(ms, 0, sizeof(*ms) * n_segs);
elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
bound, contig, ms, n_segs);
if (elem == NULL)
goto free_ms;
map_addr = ms[0]->addr;
/* notify user about changes in memory map */
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);
/* notify other processes that this has happened */
if (request_sync()) {
/* we couldn't ensure all processes have mapped memory,
* so free it back and notify everyone that it's been
* freed back.
*
* technically, we could've avoided adding memory addresses to
* the map, but that would've led to inconsistent behavior
* between primary and secondary processes, as those get
* callbacks during sync. therefore, force primary process to
* do alloc-and-rollback syncs as well.
*/
callback_triggered = true;
goto free_elem;
}
heap->total_size += alloc_sz;
RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
socket, alloc_sz >> 20ULL);
free(ms);
return 0;
free_elem:
if (callback_triggered)
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
map_addr, alloc_sz);
rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
request_sync();
free_ms:
free(ms);
return -1;
}
static int
try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
size_t elt_size, int socket, unsigned int flags, size_t align,
size_t bound, bool contig)
{
struct malloc_mp_req req;
int req_result;
memset(&req, 0, sizeof(req));
req.t = REQ_TYPE_ALLOC;
req.alloc_req.align = align;
req.alloc_req.bound = bound;
req.alloc_req.contig = contig;
req.alloc_req.flags = flags;
req.alloc_req.elt_size = elt_size;
req.alloc_req.page_sz = pg_sz;
req.alloc_req.socket = socket;
req.alloc_req.heap = heap; /* it's in shared memory */
req_result = request_to_primary(&req);
if (req_result != 0)
return -1;
if (req.result != REQ_RESULT_SUCCESS)
return -1;
return 0;
}
static int
try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
int socket, unsigned int flags, size_t align, size_t bound,
bool contig)
{
int ret;
2020-06-18 16:55:50 +00:00
rte_mcfg_mem_write_lock();
2019-06-25 11:12:58 +00:00
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
flags, align, bound, contig);
} else {
ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
flags, align, bound, contig);
}
2020-06-18 16:55:50 +00:00
rte_mcfg_mem_write_unlock();
2019-06-25 11:12:58 +00:00
return ret;
}
static int
compare_pagesz(const void *a, const void *b)
{
const struct rte_memseg_list * const*mpa = a;
const struct rte_memseg_list * const*mpb = b;
const struct rte_memseg_list *msla = *mpa;
const struct rte_memseg_list *mslb = *mpb;
uint64_t pg_sz_a = msla->page_sz;
uint64_t pg_sz_b = mslb->page_sz;
if (pg_sz_a < pg_sz_b)
return -1;
if (pg_sz_a > pg_sz_b)
return 1;
return 0;
}
static int
alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
unsigned int flags, size_t align, size_t bound, bool contig)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
uint64_t prev_pg_sz;
int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
void *ret;
memset(requested_msls, 0, sizeof(requested_msls));
memset(other_msls, 0, sizeof(other_msls));
memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
memset(other_pg_sz, 0, sizeof(other_pg_sz));
/*
* go through memseg list and take note of all the page sizes available,
* and if any of them were specifically requested by the user.
*/
n_requested_msls = 0;
n_other_msls = 0;
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
if (msl->socket_id != socket)
continue;
if (msl->base_va == NULL)
continue;
/* if pages of specific size were requested */
if (size_flags != 0 && check_hugepage_sz(size_flags,
msl->page_sz))
requested_msls[n_requested_msls++] = msl;
else if (size_flags == 0 || size_hint)
other_msls[n_other_msls++] = msl;
}
/* sort the lists, smallest first */
qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
compare_pagesz);
qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
compare_pagesz);
/* now, extract page sizes we are supposed to try */
prev_pg_sz = 0;
n_requested_pg_sz = 0;
for (i = 0; i < n_requested_msls; i++) {
uint64_t pg_sz = requested_msls[i]->page_sz;
if (prev_pg_sz != pg_sz) {
requested_pg_sz[n_requested_pg_sz++] = pg_sz;
prev_pg_sz = pg_sz;
}
}
prev_pg_sz = 0;
n_other_pg_sz = 0;
for (i = 0; i < n_other_msls; i++) {
uint64_t pg_sz = other_msls[i]->page_sz;
if (prev_pg_sz != pg_sz) {
other_pg_sz[n_other_pg_sz++] = pg_sz;
prev_pg_sz = pg_sz;
}
}
/* finally, try allocating memory of specified page sizes, starting from
* the smallest sizes
*/
for (i = 0; i < n_requested_pg_sz; i++) {
uint64_t pg_sz = requested_pg_sz[i];
/*
* do not pass the size hint here, as user expects other page
* sizes first, before resorting to best effort allocation.
*/
if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
align, bound, contig))
return 0;
}
if (n_other_pg_sz == 0)
return -1;
/* now, check if we can reserve anything with size hint */
ret = find_suitable_element(heap, size, flags, align, bound, contig);
if (ret != NULL)
return 0;
/*
* we still couldn't reserve memory, so try expanding heap with other
* page sizes, if there are any
*/
for (i = 0; i < n_other_pg_sz; i++) {
uint64_t pg_sz = other_pg_sz[i];
if (!try_expand_heap(heap, pg_sz, size, socket, flags,
align, bound, contig))
return 0;
}
return -1;
}
/* this will try lower page sizes first */
static void *
malloc_heap_alloc_on_heap_id(const char *type, size_t size,
unsigned int heap_id, unsigned int flags, size_t align,
size_t bound, bool contig)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
int socket_id;
void *ret;
rte_spinlock_lock(&(heap->lock));
align = align == 0 ? 1 : align;
/* for legacy mode, try once and with all flags */
if (internal_config.legacy_mem) {
ret = heap_alloc(heap, type, size, flags, align, bound, contig);
goto alloc_unlock;
}
/*
* we do not pass the size hint here, because even if allocation fails,
* we may still be able to allocate memory from appropriate page sizes,
* we just need to request more memory first.
*/
socket_id = rte_socket_id_by_idx(heap_id);
/*
* if socket ID is negative, we cannot find a socket ID for this heap -
* which means it's an external heap. those can have unexpected page
* sizes, so if the user asked to allocate from there - assume user
* knows what they're doing, and allow allocating from there with any
* page size flags.
*/
if (socket_id < 0)
size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;
ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
if (ret != NULL)
goto alloc_unlock;
/* if socket ID is invalid, this is an external heap */
if (socket_id < 0)
goto alloc_unlock;
if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
bound, contig)) {
ret = heap_alloc(heap, type, size, flags, align, bound, contig);
/* this should have succeeded */
if (ret == NULL)
RTE_LOG(ERR, EAL, "Error allocating from heap\n");
}
alloc_unlock:
rte_spinlock_unlock(&(heap->lock));
return ret;
}
void *
malloc_heap_alloc(const char *type, size_t size, int socket_arg,
unsigned int flags, size_t align, size_t bound, bool contig)
{
int socket, heap_id, i;
void *ret;
/* return NULL if size is 0 or alignment is not power-of-2 */
if (size == 0 || (align && !rte_is_power_of_2(align)))
return NULL;
if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
socket_arg = SOCKET_ID_ANY;
if (socket_arg == SOCKET_ID_ANY)
socket = malloc_get_numa_socket();
else
socket = socket_arg;
/* turn socket ID into heap ID */
heap_id = malloc_socket_to_heap_id(socket);
/* if heap id is negative, socket ID was invalid */
if (heap_id < 0)
return NULL;
ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align,
bound, contig);
if (ret != NULL || socket_arg != SOCKET_ID_ANY)
return ret;
/* try other heaps. we are only iterating through native DPDK sockets,
* so external heaps won't be included.
*/
for (i = 0; i < (int) rte_socket_count(); i++) {
if (i == heap_id)
continue;
ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align,
bound, contig);
if (ret != NULL)
return ret;
}
return NULL;
}
static void *
heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id,
unsigned int flags, size_t align, bool contig)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
void *ret;
rte_spinlock_lock(&(heap->lock));
align = align == 0 ? 1 : align;
ret = heap_alloc_biggest(heap, type, flags, align, contig);
rte_spinlock_unlock(&(heap->lock));
return ret;
}
void *
malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags,
size_t align, bool contig)
{
int socket, i, cur_socket, heap_id;
void *ret;
/* return NULL if align is not power-of-2 */
if ((align && !rte_is_power_of_2(align)))
return NULL;
if (!rte_eal_has_hugepages())
socket_arg = SOCKET_ID_ANY;
if (socket_arg == SOCKET_ID_ANY)
socket = malloc_get_numa_socket();
else
socket = socket_arg;
/* turn socket ID into heap ID */
heap_id = malloc_socket_to_heap_id(socket);
/* if heap id is negative, socket ID was invalid */
if (heap_id < 0)
return NULL;
ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align,
contig);
if (ret != NULL || socket_arg != SOCKET_ID_ANY)
return ret;
/* try other heaps */
for (i = 0; i < (int) rte_socket_count(); i++) {
cur_socket = rte_socket_id_by_idx(i);
if (cur_socket == socket)
continue;
ret = heap_alloc_biggest_on_heap_id(type, i, flags, align,
contig);
if (ret != NULL)
return ret;
}
return NULL;
}
/* this function is exposed in malloc_mp.h */
int
malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
{
int n_segs, seg_idx, max_seg_idx;
struct rte_memseg_list *msl;
size_t page_sz;
msl = rte_mem_virt2memseg_list(aligned_start);
if (msl == NULL)
return -1;
page_sz = (size_t)msl->page_sz;
n_segs = aligned_len / page_sz;
seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
max_seg_idx = seg_idx + n_segs;
for (; seg_idx < max_seg_idx; seg_idx++) {
struct rte_memseg *ms;
ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
eal_memalloc_free_seg(ms);
}
return 0;
}
int
malloc_heap_free(struct malloc_elem *elem)
{
struct malloc_heap *heap;
void *start, *aligned_start, *end, *aligned_end;
size_t len, aligned_len, page_sz;
struct rte_memseg_list *msl;
unsigned int i, n_segs, before_space, after_space;
int ret;
if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
return -1;
/* elem may be merged with previous element, so keep heap address */
heap = elem->heap;
msl = elem->msl;
page_sz = (size_t)msl->page_sz;
rte_spinlock_lock(&(heap->lock));
/* mark element as free */
elem->state = ELEM_FREE;
elem = malloc_elem_free(elem);
/* anything after this is a bonus */
ret = 0;
/* ...of which we can't avail if we are in legacy mode, or if this is an
* externally allocated segment.
*/
if (internal_config.legacy_mem || (msl->external > 0))
goto free_unlock;
/* check if we can free any memory back to the system */
if (elem->size < page_sz)
goto free_unlock;
2020-06-18 16:55:50 +00:00
/* if user requested to match allocations, the sizes must match - if not,
* we will defer freeing these hugepages until the entire original allocation
* can be freed
*/
if (internal_config.match_allocations && elem->size != elem->orig_size)
goto free_unlock;
2019-06-25 11:12:58 +00:00
/* probably, but let's make sure, as we may not be using up full page */
start = elem;
len = elem->size;
aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
end = RTE_PTR_ADD(elem, len);
aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);
aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
/* can't free anything */
if (aligned_len < page_sz)
goto free_unlock;
/* we can free something. however, some of these pages may be marked as
* unfreeable, so also check that as well
*/
n_segs = aligned_len / page_sz;
for (i = 0; i < n_segs; i++) {
const struct rte_memseg *tmp =
rte_mem_virt2memseg(aligned_start, msl);
if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
/* this is an unfreeable segment, so move start */
aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
}
}
/* recalculate length and number of segments */
aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
n_segs = aligned_len / page_sz;
/* check if we can still free some pages */
if (n_segs == 0)
goto free_unlock;
/* We're not done yet. We also have to check if by freeing space we will
* be leaving free elements that are too small to store new elements.
* Check if we have enough space in the beginning and at the end, or if
* start/end are exactly page aligned.
*/
before_space = RTE_PTR_DIFF(aligned_start, elem);
after_space = RTE_PTR_DIFF(end, aligned_end);
if (before_space != 0 &&
before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
/* There is not enough space before start, but we may be able to
* move the start forward by one page.
*/
if (n_segs == 1)
goto free_unlock;
/* move start */
aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
aligned_len -= page_sz;
n_segs--;
}
if (after_space != 0 && after_space <
MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
/* There is not enough space after end, but we may be able to
* move the end backwards by one page.
*/
if (n_segs == 1)
goto free_unlock;
/* move end */
aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
aligned_len -= page_sz;
n_segs--;
}
/* now we can finally free us some pages */
2020-06-18 16:55:50 +00:00
rte_mcfg_mem_write_lock();
2019-06-25 11:12:58 +00:00
/*
* we allow secondary processes to clear the heap of this allocated
* memory because it is safe to do so, as even if notifications about
* unmapped pages don't make it to other processes, heap is shared
* across all processes, and will become empty of this memory anyway,
* and nothing can allocate it back unless primary process will be able
* to deliver allocation message to every single running process.
*/
malloc_elem_free_list_remove(elem);
malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);
heap->total_size -= aligned_len;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* notify user about changes in memory map */
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
aligned_start, aligned_len);
/* don't care if any of this fails */
malloc_heap_free_pages(aligned_start, aligned_len);
request_sync();
} else {
struct malloc_mp_req req;
memset(&req, 0, sizeof(req));
req.t = REQ_TYPE_FREE;
req.free_req.addr = aligned_start;
req.free_req.len = aligned_len;
/*
* we request primary to deallocate pages, but we don't do it
* in this thread. instead, we notify primary that we would like
* to deallocate pages, and this process will receive another
* request (in parallel) that will do it for us on another
* thread.
*
* we also don't really care if this succeeds - the data is
* already removed from the heap, so it is, for all intents and
* purposes, hidden from the rest of DPDK even if some other
* process (including this one) may have these pages mapped.
*
* notifications about deallocated memory happen during sync.
*/
request_to_primary(&req);
}
RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
msl->socket_id, aligned_len >> 20ULL);
2020-06-18 16:55:50 +00:00
rte_mcfg_mem_write_unlock();
2019-06-25 11:12:58 +00:00
free_unlock:
rte_spinlock_unlock(&(heap->lock));
return ret;
}
int
malloc_heap_resize(struct malloc_elem *elem, size_t size)
{
int ret;
if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
return -1;
rte_spinlock_lock(&(elem->heap->lock));
ret = malloc_elem_resize(elem, size);
rte_spinlock_unlock(&(elem->heap->lock));
return ret;
}
2017-04-21 10:43:26 +00:00
/*
2019-06-25 11:12:58 +00:00
* Function to retrieve data for a given heap
2017-04-21 10:43:26 +00:00
*/
int
malloc_heap_get_stats(struct malloc_heap *heap,
2017-04-21 10:43:26 +00:00
struct rte_malloc_socket_stats *socket_stats)
{
size_t idx;
struct malloc_elem *elem;
rte_spinlock_lock(&heap->lock);
2017-04-21 10:43:26 +00:00
/* Initialise variables for heap */
socket_stats->free_count = 0;
socket_stats->heap_freesz_bytes = 0;
socket_stats->greatest_free_size = 0;
/* Iterate through free list */
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list))
{
socket_stats->free_count++;
socket_stats->heap_freesz_bytes += elem->size;
if (elem->size > socket_stats->greatest_free_size)
socket_stats->greatest_free_size = elem->size;
}
}
/* Get stats on overall heap and allocated memory on this heap */
socket_stats->heap_totalsz_bytes = heap->total_size;
socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
socket_stats->heap_freesz_bytes);
socket_stats->alloc_count = heap->alloc_count;
rte_spinlock_unlock(&heap->lock);
2017-04-21 10:43:26 +00:00
return 0;
}
2019-06-25 11:12:58 +00:00
/*
* Function to retrieve data for a given heap
*/
void
malloc_heap_dump(struct malloc_heap *heap, FILE *f)
{
struct malloc_elem *elem;
rte_spinlock_lock(&heap->lock);
fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);
elem = heap->first;
while (elem) {
malloc_elem_dump(elem, f);
elem = elem->next;
}
rte_spinlock_unlock(&heap->lock);
}
static int
2020-06-18 16:55:50 +00:00
destroy_elem(struct malloc_elem *elem, size_t len)
2019-06-25 11:12:58 +00:00
{
struct malloc_heap *heap = elem->heap;
/* notify all subscribers that a memory area is going to be removed */
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);
/* this element can be removed */
malloc_elem_free_list_remove(elem);
malloc_elem_hide_region(elem, elem, len);
heap->total_size -= len;
memset(elem, 0, sizeof(*elem));
return 0;
}
2020-06-18 16:55:50 +00:00
struct rte_memseg_list *
malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[],
unsigned int n_pages, size_t page_sz, const char *seg_name,
unsigned int socket_id)
2019-06-25 11:12:58 +00:00
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
char fbarray_name[RTE_FBARRAY_NAME_LEN];
struct rte_memseg_list *msl = NULL;
struct rte_fbarray *arr;
size_t seg_len = n_pages * page_sz;
unsigned int i;
/* first, find a free memseg list */
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *tmp = &mcfg->memsegs[i];
if (tmp->base_va == NULL) {
msl = tmp;
break;
}
}
if (msl == NULL) {
RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n");
rte_errno = ENOSPC;
2020-06-18 16:55:50 +00:00
return NULL;
2019-06-25 11:12:58 +00:00
}
2019-11-23 08:13:38 +00:00
snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p",
2020-06-18 16:55:50 +00:00
seg_name, va_addr);
2019-06-25 11:12:58 +00:00
/* create the backing fbarray */
if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
sizeof(struct rte_memseg)) < 0) {
RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n");
2020-06-18 16:55:50 +00:00
return NULL;
2019-06-25 11:12:58 +00:00
}
arr = &msl->memseg_arr;
/* fbarray created, fill it up */
for (i = 0; i < n_pages; i++) {
struct rte_memseg *ms;
rte_fbarray_set_used(arr, i);
ms = rte_fbarray_get(arr, i);
ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
ms->hugepage_sz = page_sz;
ms->len = page_sz;
ms->nchannel = rte_memory_get_nchannel();
ms->nrank = rte_memory_get_nrank();
2020-06-18 16:55:50 +00:00
ms->socket_id = socket_id;
2019-06-25 11:12:58 +00:00
}
/* set up the memseg list */
msl->base_va = va_addr;
msl->page_sz = page_sz;
2020-06-18 16:55:50 +00:00
msl->socket_id = socket_id;
2019-06-25 11:12:58 +00:00
msl->len = seg_len;
msl->version = 0;
msl->external = 1;
2020-06-18 16:55:50 +00:00
return msl;
}
struct extseg_walk_arg {
void *va_addr;
size_t len;
struct rte_memseg_list *msl;
};
static int
extseg_walk(const struct rte_memseg_list *msl, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct extseg_walk_arg *wa = arg;
if (msl->base_va == wa->va_addr && msl->len == wa->len) {
unsigned int found_idx;
/* msl is const */
found_idx = msl - mcfg->memsegs;
wa->msl = &mcfg->memsegs[found_idx];
return 1;
}
return 0;
}
struct rte_memseg_list *
malloc_heap_find_external_seg(void *va_addr, size_t len)
{
struct extseg_walk_arg wa;
int res;
wa.va_addr = va_addr;
wa.len = len;
res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa);
if (res != 1) {
/* 0 means nothing was found, -1 shouldn't happen */
if (res == 0)
rte_errno = ENOENT;
return NULL;
}
return wa.msl;
}
int
malloc_heap_destroy_external_seg(struct rte_memseg_list *msl)
{
/* destroy the fbarray backing this memory */
if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
return -1;
/* reset the memseg list */
memset(msl, 0, sizeof(*msl));
return 0;
}
int
malloc_heap_add_external_memory(struct malloc_heap *heap,
struct rte_memseg_list *msl)
{
2019-06-25 11:12:58 +00:00
/* erase contents of new memory */
2020-06-18 16:55:50 +00:00
memset(msl->base_va, 0, msl->len);
2019-06-25 11:12:58 +00:00
/* now, add newly minted memory to the malloc heap */
2020-06-18 16:55:50 +00:00
malloc_heap_add_memory(heap, msl, msl->base_va, msl->len);
2019-06-25 11:12:58 +00:00
2020-06-18 16:55:50 +00:00
heap->total_size += msl->len;
2019-06-25 11:12:58 +00:00
/* all done! */
RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n",
2020-06-18 16:55:50 +00:00
heap->name, msl->base_va);
2019-06-25 11:12:58 +00:00
/* notify all subscribers that a new memory area has been added */
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
2020-06-18 16:55:50 +00:00
msl->base_va, msl->len);
2019-06-25 11:12:58 +00:00
return 0;
}
int
malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
size_t len)
{
struct malloc_elem *elem = heap->first;
/* find element with specified va address */
while (elem != NULL && elem != va_addr) {
elem = elem->next;
/* stop if we've blown past our VA */
if (elem > (struct malloc_elem *)va_addr) {
rte_errno = ENOENT;
return -1;
}
}
/* check if element was found */
if (elem == NULL || elem->msl->len != len) {
rte_errno = ENOENT;
return -1;
}
/* if element's size is not equal to segment len, segment is busy */
if (elem->state == ELEM_BUSY || elem->size != len) {
rte_errno = EBUSY;
return -1;
}
2020-06-18 16:55:50 +00:00
return destroy_elem(elem, len);
2019-06-25 11:12:58 +00:00
}
int
malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
2017-04-21 10:43:26 +00:00
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2019-06-25 11:12:58 +00:00
uint32_t next_socket_id = mcfg->next_socket_id;
2017-04-21 10:43:26 +00:00
2019-06-25 11:12:58 +00:00
/* prevent overflow. did you really create 2 billion heaps??? */
if (next_socket_id > INT32_MAX) {
RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
rte_errno = ENOSPC;
2017-04-21 10:43:26 +00:00
return -1;
2019-06-25 11:12:58 +00:00
}
/* initialize empty heap */
heap->alloc_count = 0;
heap->first = NULL;
heap->last = NULL;
LIST_INIT(heap->free_head);
rte_spinlock_init(&heap->lock);
heap->total_size = 0;
heap->socket_id = next_socket_id;
2017-04-21 10:43:26 +00:00
2019-06-25 11:12:58 +00:00
/* we hold a global mem hotplug writelock, so it's safe to increment */
mcfg->next_socket_id++;
/* set up name */
strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
return 0;
}
int
malloc_heap_destroy(struct malloc_heap *heap)
{
if (heap->alloc_count != 0) {
RTE_LOG(ERR, EAL, "Heap is still in use\n");
rte_errno = EBUSY;
return -1;
}
if (heap->first != NULL || heap->last != NULL) {
RTE_LOG(ERR, EAL, "Heap still contains memory segments\n");
rte_errno = EBUSY;
return -1;
2017-04-21 10:43:26 +00:00
}
2019-06-25 11:12:58 +00:00
if (heap->total_size != 0)
RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n");
/* after this, the lock will be dropped */
memset(heap, 0, sizeof(*heap));
2017-04-21 10:43:26 +00:00
return 0;
}
2019-06-25 11:12:58 +00:00
int
rte_eal_malloc_heap_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned int i;
2020-06-18 16:55:50 +00:00
if (internal_config.match_allocations) {
RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n");
}
2019-06-25 11:12:58 +00:00
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* assign min socket ID to external heaps */
mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;
/* assign names to default DPDK heaps */
for (i = 0; i < rte_socket_count(); i++) {
struct malloc_heap *heap = &mcfg->malloc_heaps[i];
char heap_name[RTE_HEAP_NAME_MAX_LEN];
int socket_id = rte_socket_id_by_idx(i);
2019-11-23 08:13:38 +00:00
snprintf(heap_name, sizeof(heap_name),
2019-06-25 11:12:58 +00:00
"socket_%i", socket_id);
strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
heap->socket_id = socket_id;
}
}
if (register_mp_requests()) {
RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
2020-06-18 16:55:50 +00:00
rte_mcfg_mem_read_unlock();
2019-06-25 11:12:58 +00:00
return -1;
}
/* unlock mem hotplug here. it's safe for primary as no requests can
* even come before primary itself is fully initialized, and secondaries
* do not need to initialize the heap.
*/
2020-06-18 16:55:50 +00:00
rte_mcfg_mem_read_unlock();
2019-06-25 11:12:58 +00:00
/* secondary process does not need to initialize anything */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* add all IOVA-contiguous areas to the heap */
return rte_memseg_contig_walk(malloc_add_seg, NULL);
}