f-stack/dpdk/lib/librte_eal/common/eal_common_fbarray.c

1511 lines
35 KiB
C
Raw Normal View History

2019-06-25 11:12:58 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017-2018 Intel Corporation
*/
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <sys/mman.h>
#include <stdint.h>
#include <errno.h>
#include <sys/file.h>
#include <string.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_errno.h>
#include <rte_spinlock.h>
#include <rte_tailq.h>
#include "eal_filesystem.h"
#include "eal_private.h"
#include "rte_fbarray.h"
#define MASK_SHIFT 6ULL
#define MASK_ALIGN (1ULL << MASK_SHIFT)
#define MASK_LEN_TO_IDX(x) ((x) >> MASK_SHIFT)
#define MASK_LEN_TO_MOD(x) ((x) - RTE_ALIGN_FLOOR(x, MASK_ALIGN))
#define MASK_GET_IDX(idx, mod) ((idx << MASK_SHIFT) + mod)
2020-06-18 16:55:50 +00:00
/*
* We use this to keep track of created/attached memory areas to prevent user
* errors in API usage.
*/
struct mem_area {
TAILQ_ENTRY(mem_area) next;
void *addr;
size_t len;
int fd;
};
TAILQ_HEAD(mem_area_head, mem_area);
/* local per-process tailq */
static struct mem_area_head mem_area_tailq =
TAILQ_HEAD_INITIALIZER(mem_area_tailq);
static rte_spinlock_t mem_area_lock = RTE_SPINLOCK_INITIALIZER;
2019-06-25 11:12:58 +00:00
/*
* This is a mask that is always stored at the end of array, to provide fast
* way of finding free/used spots without looping through each element.
*/
struct used_mask {
unsigned int n_masks;
uint64_t data[];
};
static size_t
calc_mask_size(unsigned int len)
{
/* mask must be multiple of MASK_ALIGN, even though length of array
* itself may not be aligned on that boundary.
*/
len = RTE_ALIGN_CEIL(len, MASK_ALIGN);
return sizeof(struct used_mask) +
sizeof(uint64_t) * MASK_LEN_TO_IDX(len);
}
static size_t
calc_data_size(size_t page_sz, unsigned int elt_sz, unsigned int len)
{
size_t data_sz = elt_sz * len;
size_t msk_sz = calc_mask_size(len);
return RTE_ALIGN_CEIL(data_sz + msk_sz, page_sz);
}
static struct used_mask *
get_used_mask(void *data, unsigned int elt_sz, unsigned int len)
{
return (struct used_mask *) RTE_PTR_ADD(data, elt_sz * len);
}
static int
resize_and_map(int fd, void *addr, size_t len)
{
char path[PATH_MAX];
void *map_addr;
if (ftruncate(fd, len)) {
RTE_LOG(ERR, EAL, "Cannot truncate %s\n", path);
/* pass errno up the chain */
rte_errno = errno;
return -1;
}
map_addr = mmap(addr, len, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, fd, 0);
if (map_addr != addr) {
RTE_LOG(ERR, EAL, "mmap() failed: %s\n", strerror(errno));
/* pass errno up the chain */
rte_errno = errno;
return -1;
}
return 0;
}
2020-06-18 16:55:50 +00:00
static int
overlap(const struct mem_area *ma, const void *start, size_t len)
{
const void *end = RTE_PTR_ADD(start, len);
const void *ma_start = ma->addr;
const void *ma_end = RTE_PTR_ADD(ma->addr, ma->len);
/* start overlap? */
if (start >= ma_start && start < ma_end)
return 1;
/* end overlap? */
if (end >= ma_start && end < ma_end)
return 1;
return 0;
}
2019-06-25 11:12:58 +00:00
static int
find_next_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int msk_idx, lookahead_idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk, ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
ignore_msk = ~((1ULL << first_mod) - 1);
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-1ULL << last_mod);
for (msk_idx = first; msk_idx < msk->n_masks; msk_idx++) {
uint64_t cur_msk, lookahead_msk;
unsigned int run_start, clz, left;
bool found = false;
/*
* The process of getting n consecutive bits for arbitrary n is
* a bit involved, but here it is in a nutshell:
*
* 1. let n be the number of consecutive bits we're looking for
* 2. check if n can fit in one mask, and if so, do n-1
* rshift-ands to see if there is an appropriate run inside
* our current mask
* 2a. if we found a run, bail out early
* 2b. if we didn't find a run, proceed
* 3. invert the mask and count leading zeroes (that is, count
* how many consecutive set bits we had starting from the
* end of current mask) as k
* 3a. if k is 0, continue to next mask
* 3b. if k is not 0, we have a potential run
* 4. to satisfy our requirements, next mask must have n-k
* consecutive set bits right at the start, so we will do
* (n-k-1) rshift-ands and check if first bit is set.
*
* Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
* we either run out of masks, lose the run, or find what we
* were looking for.
*/
cur_msk = msk->data[msk_idx];
left = n;
/* if we're looking for free spaces, invert the mask */
if (!used)
cur_msk = ~cur_msk;
/* combine current ignore mask with last index ignore mask */
if (msk_idx == last)
ignore_msk |= last_msk;
/* if we have an ignore mask, ignore once */
if (ignore_msk) {
cur_msk &= ignore_msk;
ignore_msk = 0;
}
/* if n can fit in within a single mask, do a search */
if (n <= MASK_ALIGN) {
uint64_t tmp_msk = cur_msk;
unsigned int s_idx;
for (s_idx = 0; s_idx < n - 1; s_idx++)
tmp_msk &= tmp_msk >> 1ULL;
/* we found what we were looking for */
if (tmp_msk != 0) {
run_start = __builtin_ctzll(tmp_msk);
return MASK_GET_IDX(msk_idx, run_start);
}
}
/*
* we didn't find our run within the mask, or n > MASK_ALIGN,
* so we're going for plan B.
*/
/* count leading zeroes on inverted mask */
if (~cur_msk == 0)
clz = sizeof(cur_msk) * 8;
else
clz = __builtin_clzll(~cur_msk);
/* if there aren't any runs at the end either, just continue */
if (clz == 0)
continue;
/* we have a partial run at the end, so try looking ahead */
run_start = MASK_ALIGN - clz;
left -= clz;
for (lookahead_idx = msk_idx + 1; lookahead_idx < msk->n_masks;
lookahead_idx++) {
unsigned int s_idx, need;
lookahead_msk = msk->data[lookahead_idx];
/* if we're looking for free space, invert the mask */
if (!used)
lookahead_msk = ~lookahead_msk;
/* figure out how many consecutive bits we need here */
need = RTE_MIN(left, MASK_ALIGN);
for (s_idx = 0; s_idx < need - 1; s_idx++)
lookahead_msk &= lookahead_msk >> 1ULL;
/* if first bit is not set, we've lost the run */
if ((lookahead_msk & 1) == 0) {
/*
* we've scanned this far, so we know there are
* no runs in the space we've lookahead-scanned
* as well, so skip that on next iteration.
*/
ignore_msk = ~((1ULL << need) - 1);
msk_idx = lookahead_idx;
break;
}
left -= need;
/* check if we've found what we were looking for */
if (left == 0) {
found = true;
break;
}
}
/* we didn't find anything, so continue */
if (!found)
continue;
return MASK_GET_IDX(msk_idx, run_start);
}
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_next(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk, ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
ignore_msk = ~((1ULL << first_mod) - 1ULL);
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-(1ULL) << last_mod);
for (idx = first; idx < msk->n_masks; idx++) {
uint64_t cur = msk->data[idx];
int found;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
if (idx == last)
cur &= last_msk;
/* ignore everything before start on first iteration */
if (idx == first)
cur &= ignore_msk;
/* check if we have any entries */
if (cur == 0)
continue;
/*
* find first set bit - that will correspond to whatever it is
* that we're looking for.
*/
found = __builtin_ctzll(cur);
return MASK_GET_IDX(idx, found);
}
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk;
unsigned int need_len, result = 0;
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-(1ULL) << last_mod);
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
for (idx = first; idx < msk->n_masks; idx++, result += need_len) {
uint64_t cur = msk->data[idx];
unsigned int run_len;
need_len = MASK_ALIGN;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
/* if this is last mask, ignore everything after last bit */
if (idx == last)
cur &= last_msk;
/* ignore everything before start on first iteration */
if (idx == first) {
cur >>= first_mod;
/* at the start, we don't need the full mask len */
need_len -= first_mod;
}
/* we will be looking for zeroes, so invert the mask */
cur = ~cur;
/* if mask is zero, we have a complete run */
if (cur == 0)
continue;
/*
* see if current run ends before mask end.
*/
run_len = __builtin_ctzll(cur);
/* add however many zeroes we've had in the last run and quit */
if (run_len < need_len) {
result += run_len;
break;
}
}
return result;
}
static int
find_prev_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int msk_idx, lookbehind_idx, first, first_mod;
uint64_t ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
/* we're going backwards, so mask must start from the top */
ignore_msk = first_mod == MASK_ALIGN - 1 ?
-1ULL : /* prevent overflow */
~(-1ULL << (first_mod + 1));
/* go backwards, include zero */
msk_idx = first;
do {
uint64_t cur_msk, lookbehind_msk;
unsigned int run_start, run_end, ctz, left;
bool found = false;
/*
* The process of getting n consecutive bits from the top for
* arbitrary n is a bit involved, but here it is in a nutshell:
*
* 1. let n be the number of consecutive bits we're looking for
* 2. check if n can fit in one mask, and if so, do n-1
* lshift-ands to see if there is an appropriate run inside
* our current mask
* 2a. if we found a run, bail out early
* 2b. if we didn't find a run, proceed
* 3. invert the mask and count trailing zeroes (that is, count
* how many consecutive set bits we had starting from the
* start of current mask) as k
* 3a. if k is 0, continue to next mask
* 3b. if k is not 0, we have a potential run
* 4. to satisfy our requirements, next mask must have n-k
* consecutive set bits at the end, so we will do (n-k-1)
* lshift-ands and check if last bit is set.
*
* Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
* we either run out of masks, lose the run, or find what we
* were looking for.
*/
cur_msk = msk->data[msk_idx];
left = n;
/* if we're looking for free spaces, invert the mask */
if (!used)
cur_msk = ~cur_msk;
/* if we have an ignore mask, ignore once */
if (ignore_msk) {
cur_msk &= ignore_msk;
ignore_msk = 0;
}
/* if n can fit in within a single mask, do a search */
if (n <= MASK_ALIGN) {
uint64_t tmp_msk = cur_msk;
unsigned int s_idx;
for (s_idx = 0; s_idx < n - 1; s_idx++)
tmp_msk &= tmp_msk << 1ULL;
/* we found what we were looking for */
if (tmp_msk != 0) {
/* clz will give us offset from end of mask, and
* we only get the end of our run, not start,
* so adjust result to point to where start
* would have been.
*/
run_start = MASK_ALIGN -
__builtin_clzll(tmp_msk) - n;
return MASK_GET_IDX(msk_idx, run_start);
}
}
/*
* we didn't find our run within the mask, or n > MASK_ALIGN,
* so we're going for plan B.
*/
/* count trailing zeroes on inverted mask */
if (~cur_msk == 0)
ctz = sizeof(cur_msk) * 8;
else
ctz = __builtin_ctzll(~cur_msk);
/* if there aren't any runs at the start either, just
* continue
*/
if (ctz == 0)
continue;
/* we have a partial run at the start, so try looking behind */
run_end = MASK_GET_IDX(msk_idx, ctz);
left -= ctz;
/* go backwards, include zero */
lookbehind_idx = msk_idx - 1;
/* we can't lookbehind as we've run out of masks, so stop */
if (msk_idx == 0)
break;
do {
const uint64_t last_bit = 1ULL << (MASK_ALIGN - 1);
unsigned int s_idx, need;
lookbehind_msk = msk->data[lookbehind_idx];
/* if we're looking for free space, invert the mask */
if (!used)
lookbehind_msk = ~lookbehind_msk;
/* figure out how many consecutive bits we need here */
need = RTE_MIN(left, MASK_ALIGN);
for (s_idx = 0; s_idx < need - 1; s_idx++)
lookbehind_msk &= lookbehind_msk << 1ULL;
/* if last bit is not set, we've lost the run */
if ((lookbehind_msk & last_bit) == 0) {
/*
* we've scanned this far, so we know there are
* no runs in the space we've lookbehind-scanned
* as well, so skip that on next iteration.
*/
ignore_msk = -1ULL << need;
msk_idx = lookbehind_idx;
break;
}
left -= need;
/* check if we've found what we were looking for */
if (left == 0) {
found = true;
break;
}
} while ((lookbehind_idx--) != 0); /* decrement after check to
* include zero
*/
/* we didn't find anything, so continue */
if (!found)
continue;
/* we've found what we were looking for, but we only know where
* the run ended, so calculate start position.
*/
return run_end - n;
} while (msk_idx-- != 0); /* decrement after check to include zero */
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_prev(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
uint64_t ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing clz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
/* we're going backwards, so mask must start from the top */
ignore_msk = first_mod == MASK_ALIGN - 1 ?
-1ULL : /* prevent overflow */
~(-1ULL << (first_mod + 1));
/* go backwards, include zero */
idx = first;
do {
uint64_t cur = msk->data[idx];
int found;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
/* ignore everything before start on first iteration */
if (idx == first)
cur &= ignore_msk;
/* check if we have any entries */
if (cur == 0)
continue;
/*
* find last set bit - that will correspond to whatever it is
* that we're looking for. we're counting trailing zeroes, thus
* the value we get is counted from end of mask, so calculate
* position from start of mask.
*/
found = MASK_ALIGN - __builtin_clzll(cur) - 1;
return MASK_GET_IDX(idx, found);
} while (idx-- != 0); /* decrement after check to include zero*/
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_rev_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int need_len, result = 0;
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
/* go backwards, include zero */
idx = first;
do {
uint64_t cur = msk->data[idx];
unsigned int run_len;
need_len = MASK_ALIGN;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
/* ignore everything after start on first iteration */
if (idx == first) {
unsigned int end_len = MASK_ALIGN - first_mod - 1;
cur <<= end_len;
/* at the start, we don't need the full mask len */
need_len -= end_len;
}
/* we will be looking for zeroes, so invert the mask */
cur = ~cur;
/* if mask is zero, we have a complete run */
if (cur == 0)
goto endloop;
/*
* see where run ends, starting from the end.
*/
run_len = __builtin_clzll(cur);
/* add however many zeroes we've had in the last run and quit */
if (run_len < need_len) {
result += run_len;
break;
}
endloop:
result += need_len;
} while (idx-- != 0); /* decrement after check to include zero */
return result;
}
static int
set_used(struct rte_fbarray *arr, unsigned int idx, bool used)
{
struct used_mask *msk;
uint64_t msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
unsigned int msk_idx = MASK_LEN_TO_IDX(idx);
bool already_used;
int ret = -1;
if (arr == NULL || idx >= arr->len) {
rte_errno = EINVAL;
return -1;
}
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
ret = 0;
/* prevent array from changing under us */
rte_rwlock_write_lock(&arr->rwlock);
already_used = (msk->data[msk_idx] & msk_bit) != 0;
/* nothing to be done */
if (used == already_used)
goto out;
if (used) {
msk->data[msk_idx] |= msk_bit;
arr->count++;
} else {
msk->data[msk_idx] &= ~msk_bit;
arr->count--;
}
out:
rte_rwlock_write_unlock(&arr->rwlock);
return ret;
}
static int
fully_validate(const char *name, unsigned int elt_sz, unsigned int len)
{
if (name == NULL || elt_sz == 0 || len == 0 || len > INT_MAX) {
rte_errno = EINVAL;
return -1;
}
if (strnlen(name, RTE_FBARRAY_NAME_LEN) == RTE_FBARRAY_NAME_LEN) {
rte_errno = ENAMETOOLONG;
return -1;
}
return 0;
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_init(struct rte_fbarray *arr, const char *name, unsigned int len,
unsigned int elt_sz)
{
size_t page_sz, mmap_len;
char path[PATH_MAX];
struct used_mask *msk;
2020-06-18 16:55:50 +00:00
struct mem_area *ma = NULL;
2019-06-25 11:12:58 +00:00
void *data = NULL;
int fd = -1;
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
if (fully_validate(name, elt_sz, len))
return -1;
2020-06-18 16:55:50 +00:00
/* allocate mem area before doing anything */
ma = malloc(sizeof(*ma));
if (ma == NULL) {
rte_errno = ENOMEM;
return -1;
}
2019-06-25 11:12:58 +00:00
page_sz = sysconf(_SC_PAGESIZE);
2020-06-18 16:55:50 +00:00
if (page_sz == (size_t)-1) {
free(ma);
return -1;
}
2019-06-25 11:12:58 +00:00
/* calculate our memory limits */
mmap_len = calc_data_size(page_sz, elt_sz, len);
data = eal_get_virtual_area(NULL, &mmap_len, page_sz, 0, 0);
2020-06-18 16:55:50 +00:00
if (data == NULL) {
free(ma);
return -1;
}
rte_spinlock_lock(&mem_area_lock);
fd = -1;
2019-06-25 11:12:58 +00:00
if (internal_config.no_shconf) {
/* remap virtual area as writable */
void *new_data = mmap(data, mmap_len, PROT_READ | PROT_WRITE,
2020-06-18 16:55:50 +00:00
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
2019-06-25 11:12:58 +00:00
if (new_data == MAP_FAILED) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't remap anonymous memory: %s\n",
__func__, strerror(errno));
goto fail;
}
} else {
eal_get_fbarray_path(path, sizeof(path), name);
/*
* Each fbarray is unique to process namespace, i.e. the
* filename depends on process prefix. Try to take out a lock
* and see if we succeed. If we don't, someone else is using it
* already.
*/
fd = open(path, O_CREAT | O_RDWR, 0600);
if (fd < 0) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't open %s: %s\n",
__func__, path, strerror(errno));
rte_errno = errno;
goto fail;
} else if (flock(fd, LOCK_EX | LOCK_NB)) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't lock %s: %s\n",
__func__, path, strerror(errno));
rte_errno = EBUSY;
goto fail;
}
/* take out a non-exclusive lock, so that other processes could
* still attach to it, but no other process could reinitialize
* it.
*/
if (flock(fd, LOCK_SH | LOCK_NB)) {
rte_errno = errno;
goto fail;
}
if (resize_and_map(fd, data, mmap_len))
goto fail;
}
2020-06-18 16:55:50 +00:00
ma->addr = data;
ma->len = mmap_len;
ma->fd = fd;
/* do not close fd - keep it until detach/destroy */
TAILQ_INSERT_TAIL(&mem_area_tailq, ma, next);
2019-06-25 11:12:58 +00:00
/* initialize the data */
memset(data, 0, mmap_len);
/* populate data structure */
strlcpy(arr->name, name, sizeof(arr->name));
arr->data = data;
arr->len = len;
arr->elt_sz = elt_sz;
arr->count = 0;
msk = get_used_mask(data, elt_sz, len);
msk->n_masks = MASK_LEN_TO_IDX(RTE_ALIGN_CEIL(len, MASK_ALIGN));
rte_rwlock_init(&arr->rwlock);
2020-06-18 16:55:50 +00:00
rte_spinlock_unlock(&mem_area_lock);
2019-06-25 11:12:58 +00:00
return 0;
fail:
if (data)
munmap(data, mmap_len);
if (fd >= 0)
close(fd);
2020-06-18 16:55:50 +00:00
free(ma);
rte_spinlock_unlock(&mem_area_lock);
2019-06-25 11:12:58 +00:00
return -1;
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_attach(struct rte_fbarray *arr)
{
2020-06-18 16:55:50 +00:00
struct mem_area *ma = NULL, *tmp = NULL;
2019-06-25 11:12:58 +00:00
size_t page_sz, mmap_len;
char path[PATH_MAX];
void *data = NULL;
int fd = -1;
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
/*
* we don't need to synchronize attach as two values we need (element
* size and array length) are constant for the duration of life of
* the array, so the parts we care about will not race.
*/
if (fully_validate(arr->name, arr->elt_sz, arr->len))
return -1;
2020-06-18 16:55:50 +00:00
ma = malloc(sizeof(*ma));
if (ma == NULL) {
rte_errno = ENOMEM;
return -1;
}
2019-06-25 11:12:58 +00:00
page_sz = sysconf(_SC_PAGESIZE);
2020-06-18 16:55:50 +00:00
if (page_sz == (size_t)-1) {
free(ma);
return -1;
}
2019-06-25 11:12:58 +00:00
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
2020-06-18 16:55:50 +00:00
/* check the tailq - maybe user has already mapped this address space */
rte_spinlock_lock(&mem_area_lock);
TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
if (overlap(tmp, arr->data, mmap_len)) {
rte_errno = EEXIST;
goto fail;
}
}
/* we know this memory area is unique, so proceed */
2019-06-25 11:12:58 +00:00
data = eal_get_virtual_area(arr->data, &mmap_len, page_sz, 0, 0);
if (data == NULL)
goto fail;
eal_get_fbarray_path(path, sizeof(path), arr->name);
fd = open(path, O_RDWR);
if (fd < 0) {
rte_errno = errno;
goto fail;
}
/* lock the file, to let others know we're using it */
if (flock(fd, LOCK_SH | LOCK_NB)) {
rte_errno = errno;
goto fail;
}
if (resize_and_map(fd, data, mmap_len))
goto fail;
2020-06-18 16:55:50 +00:00
/* store our new memory area */
ma->addr = data;
ma->fd = fd; /* keep fd until detach/destroy */
ma->len = mmap_len;
TAILQ_INSERT_TAIL(&mem_area_tailq, ma, next);
2019-06-25 11:12:58 +00:00
/* we're done */
2020-06-18 16:55:50 +00:00
rte_spinlock_unlock(&mem_area_lock);
2019-06-25 11:12:58 +00:00
return 0;
fail:
if (data)
munmap(data, mmap_len);
if (fd >= 0)
close(fd);
2020-06-18 16:55:50 +00:00
free(ma);
rte_spinlock_unlock(&mem_area_lock);
2019-06-25 11:12:58 +00:00
return -1;
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_detach(struct rte_fbarray *arr)
{
2020-06-18 16:55:50 +00:00
struct mem_area *tmp = NULL;
size_t mmap_len;
int ret = -1;
2019-06-25 11:12:58 +00:00
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
/*
* we don't need to synchronize detach as two values we need (element
* size and total capacity) are constant for the duration of life of
* the array, so the parts we care about will not race. if the user is
* detaching while doing something else in the same process, we can't
* really do anything about it, things will blow up either way.
*/
size_t page_sz = sysconf(_SC_PAGESIZE);
if (page_sz == (size_t)-1)
return -1;
2020-06-18 16:55:50 +00:00
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
2019-06-25 11:12:58 +00:00
2020-06-18 16:55:50 +00:00
/* does this area exist? */
rte_spinlock_lock(&mem_area_lock);
TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
if (tmp->addr == arr->data && tmp->len == mmap_len)
break;
}
if (tmp == NULL) {
rte_errno = ENOENT;
ret = -1;
goto out;
}
munmap(arr->data, mmap_len);
/* area is unmapped, close fd and remove the tailq entry */
if (tmp->fd >= 0)
close(tmp->fd);
TAILQ_REMOVE(&mem_area_tailq, tmp, next);
free(tmp);
ret = 0;
out:
rte_spinlock_unlock(&mem_area_lock);
return ret;
2019-06-25 11:12:58 +00:00
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_destroy(struct rte_fbarray *arr)
{
2020-06-18 16:55:50 +00:00
struct mem_area *tmp = NULL;
size_t mmap_len;
2019-06-25 11:12:58 +00:00
int fd, ret;
char path[PATH_MAX];
2020-06-18 16:55:50 +00:00
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
2019-06-25 11:12:58 +00:00
2020-06-18 16:55:50 +00:00
/*
* we don't need to synchronize detach as two values we need (element
* size and total capacity) are constant for the duration of life of
* the array, so the parts we care about will not race. if the user is
* detaching while doing something else in the same process, we can't
* really do anything about it, things will blow up either way.
*/
2019-06-25 11:12:58 +00:00
2020-06-18 16:55:50 +00:00
size_t page_sz = sysconf(_SC_PAGESIZE);
2019-06-25 11:12:58 +00:00
2020-06-18 16:55:50 +00:00
if (page_sz == (size_t)-1)
2019-06-25 11:12:58 +00:00
return -1;
2020-06-18 16:55:50 +00:00
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
/* does this area exist? */
rte_spinlock_lock(&mem_area_lock);
TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
if (tmp->addr == arr->data && tmp->len == mmap_len)
break;
2019-06-25 11:12:58 +00:00
}
2020-06-18 16:55:50 +00:00
if (tmp == NULL) {
rte_errno = ENOENT;
2019-06-25 11:12:58 +00:00
ret = -1;
2020-06-18 16:55:50 +00:00
goto out;
2019-06-25 11:12:58 +00:00
}
2020-06-18 16:55:50 +00:00
/* with no shconf, there were never any files to begin with */
if (!internal_config.no_shconf) {
/*
* attempt to get an exclusive lock on the file, to ensure it
* has been detached by all other processes
*/
fd = tmp->fd;
if (flock(fd, LOCK_EX | LOCK_NB)) {
RTE_LOG(DEBUG, EAL, "Cannot destroy fbarray - another process is using it\n");
rte_errno = EBUSY;
ret = -1;
goto out;
}
2019-06-25 11:12:58 +00:00
2020-06-18 16:55:50 +00:00
/* we're OK to destroy the file */
eal_get_fbarray_path(path, sizeof(path), arr->name);
if (unlink(path)) {
RTE_LOG(DEBUG, EAL, "Cannot unlink fbarray: %s\n",
strerror(errno));
rte_errno = errno;
/*
* we're still holding an exclusive lock, so drop it to
* shared.
*/
flock(fd, LOCK_SH | LOCK_NB);
ret = -1;
goto out;
}
close(fd);
}
munmap(arr->data, mmap_len);
/* area is unmapped, remove the tailq entry */
TAILQ_REMOVE(&mem_area_tailq, tmp, next);
free(tmp);
ret = 0;
/* reset the fbarray structure */
memset(arr, 0, sizeof(*arr));
out:
rte_spinlock_unlock(&mem_area_lock);
2019-06-25 11:12:58 +00:00
return ret;
}
2020-06-18 16:55:50 +00:00
void *
2019-06-25 11:12:58 +00:00
rte_fbarray_get(const struct rte_fbarray *arr, unsigned int idx)
{
void *ret = NULL;
if (arr == NULL) {
rte_errno = EINVAL;
return NULL;
}
if (idx >= arr->len) {
rte_errno = EINVAL;
return NULL;
}
ret = RTE_PTR_ADD(arr->data, idx * arr->elt_sz);
return ret;
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_set_used(struct rte_fbarray *arr, unsigned int idx)
{
return set_used(arr, idx, true);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_set_free(struct rte_fbarray *arr, unsigned int idx)
{
return set_used(arr, idx, false);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_is_used(struct rte_fbarray *arr, unsigned int idx)
{
struct used_mask *msk;
int msk_idx;
uint64_t msk_bit;
int ret = -1;
if (arr == NULL || idx >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
msk_idx = MASK_LEN_TO_IDX(idx);
msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
ret = (msk->data[msk_idx] & msk_bit) != 0;
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
static int
fbarray_find(struct rte_fbarray *arr, unsigned int start, bool next, bool used)
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
/* cheap checks to prevent doing useless work */
if (!used) {
if (arr->len == arr->count) {
rte_errno = ENOSPC;
goto out;
}
if (arr->count == 0) {
ret = start;
goto out;
}
} else {
if (arr->count == 0) {
rte_errno = ENOENT;
goto out;
}
if (arr->len == arr->count) {
ret = start;
goto out;
}
}
if (next)
ret = find_next(arr, start, used);
else
ret = find_prev(arr, start, used);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_next_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, true, false);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_next_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, true, true);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_prev_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, false, false);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_prev_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, false, true);
}
static int
fbarray_find_n(struct rte_fbarray *arr, unsigned int start, unsigned int n,
bool next, bool used)
{
int ret = -1;
if (arr == NULL || start >= arr->len || n > arr->len || n == 0) {
rte_errno = EINVAL;
return -1;
}
if (next && (arr->len - start) < n) {
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
if (!next && start < (n - 1)) {
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
/* cheap checks to prevent doing useless work */
if (!used) {
if (arr->len == arr->count || arr->len - arr->count < n) {
rte_errno = ENOSPC;
goto out;
}
if (arr->count == 0) {
ret = next ? start : start - n + 1;
goto out;
}
} else {
if (arr->count < n) {
rte_errno = ENOENT;
goto out;
}
if (arr->count == arr->len) {
ret = next ? start : start - n + 1;
goto out;
}
}
if (next)
ret = find_next_n(arr, start, n, used);
else
ret = find_prev_n(arr, start, n, used);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_next_n_free(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, true, false);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_next_n_used(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, true, true);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_prev_n_free(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, false, false);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_prev_n_used(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, false, true);
}
static int
fbarray_find_contig(struct rte_fbarray *arr, unsigned int start, bool next,
bool used)
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
/* cheap checks to prevent doing useless work */
if (used) {
if (arr->count == 0) {
ret = 0;
goto out;
}
if (next && arr->count == arr->len) {
ret = arr->len - start;
goto out;
}
if (!next && arr->count == arr->len) {
ret = start + 1;
goto out;
}
} else {
if (arr->len == arr->count) {
ret = 0;
goto out;
}
if (next && arr->count == 0) {
ret = arr->len - start;
goto out;
}
if (!next && arr->count == 0) {
ret = start + 1;
goto out;
}
}
if (next)
ret = find_contig(arr, start, used);
else
ret = find_rev_contig(arr, start, used);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
2020-06-18 16:55:50 +00:00
static int
fbarray_find_biggest(struct rte_fbarray *arr, unsigned int start, bool used,
bool rev)
{
int cur_idx, next_idx, cur_len, biggest_idx, biggest_len;
/* don't stack if conditions, use function pointers instead */
int (*find_func)(struct rte_fbarray *, unsigned int);
int (*find_contig_func)(struct rte_fbarray *, unsigned int);
if (arr == NULL || start >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* the other API calls already do their fair share of cheap checks, so
* no need to do them here.
*/
/* the API's called are thread-safe, but something may still happen
* inbetween the API calls, so lock the fbarray. all other API's are
* read-locking the fbarray, so read lock here is OK.
*/
rte_rwlock_read_lock(&arr->rwlock);
/* pick out appropriate functions */
if (used) {
if (rev) {
find_func = rte_fbarray_find_prev_used;
find_contig_func = rte_fbarray_find_rev_contig_used;
} else {
find_func = rte_fbarray_find_next_used;
find_contig_func = rte_fbarray_find_contig_used;
}
} else {
if (rev) {
find_func = rte_fbarray_find_prev_free;
find_contig_func = rte_fbarray_find_rev_contig_free;
} else {
find_func = rte_fbarray_find_next_free;
find_contig_func = rte_fbarray_find_contig_free;
}
}
cur_idx = start;
biggest_idx = -1; /* default is error */
biggest_len = 0;
for (;;) {
cur_idx = find_func(arr, cur_idx);
/* block found, check its length */
if (cur_idx >= 0) {
cur_len = find_contig_func(arr, cur_idx);
/* decide where we go next */
next_idx = rev ? cur_idx - cur_len : cur_idx + cur_len;
/* move current index to start of chunk */
cur_idx = rev ? next_idx + 1 : cur_idx;
if (cur_len > biggest_len) {
biggest_idx = cur_idx;
biggest_len = cur_len;
}
cur_idx = next_idx;
/* in reverse mode, next_idx may be -1 if chunk started
* at array beginning. this means there's no more work
* to do.
*/
if (cur_idx < 0)
break;
} else {
/* nothing more to find, stop. however, a failed API
* call has set rte_errno, which we want to ignore, as
* reaching the end of fbarray is not an error.
*/
rte_errno = 0;
break;
}
}
/* if we didn't find anything at all, set rte_errno */
if (biggest_idx < 0)
rte_errno = used ? ENOENT : ENOSPC;
rte_rwlock_read_unlock(&arr->rwlock);
return biggest_idx;
}
int
rte_fbarray_find_biggest_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, false, false);
}
int
rte_fbarray_find_biggest_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, true, false);
}
int
rte_fbarray_find_rev_biggest_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, false, true);
}
int
rte_fbarray_find_rev_biggest_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, true, true);
}
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_contig_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, true, false);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_contig_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, true, true);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_rev_contig_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, false, false);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_rev_contig_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, false, true);
}
2020-06-18 16:55:50 +00:00
int
2019-06-25 11:12:58 +00:00
rte_fbarray_find_idx(const struct rte_fbarray *arr, const void *elt)
{
void *end;
int ret = -1;
/*
* no need to synchronize as it doesn't matter if underlying data
* changes - we're doing pointer arithmetic here.
*/
if (arr == NULL || elt == NULL) {
rte_errno = EINVAL;
return -1;
}
end = RTE_PTR_ADD(arr->data, arr->elt_sz * arr->len);
if (elt < arr->data || elt >= end) {
rte_errno = EINVAL;
return -1;
}
ret = RTE_PTR_DIFF(elt, arr->data) / arr->elt_sz;
return ret;
}
2020-06-18 16:55:50 +00:00
void
2019-06-25 11:12:58 +00:00
rte_fbarray_dump_metadata(struct rte_fbarray *arr, FILE *f)
{
struct used_mask *msk;
unsigned int i;
if (arr == NULL || f == NULL) {
rte_errno = EINVAL;
return;
}
if (fully_validate(arr->name, arr->elt_sz, arr->len)) {
fprintf(f, "Invalid file-backed array\n");
goto out;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
fprintf(f, "File-backed array: %s\n", arr->name);
fprintf(f, "size: %i occupied: %i elt_sz: %i\n",
arr->len, arr->count, arr->elt_sz);
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
for (i = 0; i < msk->n_masks; i++)
fprintf(f, "msk idx %i: 0x%016" PRIx64 "\n", i, msk->data[i]);
out:
rte_rwlock_read_unlock(&arr->rwlock);
}