f-stack/dpdk/drivers/crypto/octeontx2/otx2_cryptodev_ops.c

1107 lines
26 KiB
C
Raw Normal View History

2020-06-18 16:55:50 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2019 Marvell International Ltd.
*/
#include <unistd.h>
#include <rte_cryptodev_pmd.h>
#include <rte_errno.h>
#include "otx2_cryptodev.h"
#include "otx2_cryptodev_capabilities.h"
#include "otx2_cryptodev_hw_access.h"
#include "otx2_cryptodev_mbox.h"
#include "otx2_cryptodev_ops.h"
#include "otx2_mbox.h"
#include "cpt_hw_types.h"
#include "cpt_pmd_logs.h"
#include "cpt_pmd_ops_helper.h"
#include "cpt_ucode.h"
#include "cpt_ucode_asym.h"
#define METABUF_POOL_CACHE_SIZE 512
/* Forward declarations */
static int
otx2_cpt_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id);
static void
qp_memzone_name_get(char *name, int size, int dev_id, int qp_id)
{
snprintf(name, size, "otx2_cpt_lf_mem_%u:%u", dev_id, qp_id);
}
static int
otx2_cpt_metabuf_mempool_create(const struct rte_cryptodev *dev,
struct otx2_cpt_qp *qp, uint8_t qp_id,
int nb_elements)
{
char mempool_name[RTE_MEMPOOL_NAMESIZE];
struct cpt_qp_meta_info *meta_info;
struct rte_mempool *pool;
int ret, max_mlen;
int asym_mlen = 0;
int lb_mlen = 0;
int sg_mlen = 0;
if (dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
/* Get meta len for scatter gather mode */
sg_mlen = cpt_pmd_ops_helper_get_mlen_sg_mode();
/* Extra 32B saved for future considerations */
sg_mlen += 4 * sizeof(uint64_t);
/* Get meta len for linear buffer (direct) mode */
lb_mlen = cpt_pmd_ops_helper_get_mlen_direct_mode();
/* Extra 32B saved for future considerations */
lb_mlen += 4 * sizeof(uint64_t);
}
if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO) {
/* Get meta len required for asymmetric operations */
asym_mlen = cpt_pmd_ops_helper_asym_get_mlen();
}
/*
* Check max requirement for meta buffer to
* support crypto op of any type (sym/asym).
*/
max_mlen = RTE_MAX(RTE_MAX(lb_mlen, sg_mlen), asym_mlen);
/* Allocate mempool */
snprintf(mempool_name, RTE_MEMPOOL_NAMESIZE, "otx2_cpt_mb_%u:%u",
dev->data->dev_id, qp_id);
pool = rte_mempool_create_empty(mempool_name, nb_elements, max_mlen,
METABUF_POOL_CACHE_SIZE, 0,
rte_socket_id(), 0);
if (pool == NULL) {
CPT_LOG_ERR("Could not create mempool for metabuf");
return rte_errno;
}
ret = rte_mempool_set_ops_byname(pool, RTE_MBUF_DEFAULT_MEMPOOL_OPS,
NULL);
if (ret) {
CPT_LOG_ERR("Could not set mempool ops");
goto mempool_free;
}
ret = rte_mempool_populate_default(pool);
if (ret <= 0) {
CPT_LOG_ERR("Could not populate metabuf pool");
goto mempool_free;
}
meta_info = &qp->meta_info;
meta_info->pool = pool;
meta_info->lb_mlen = lb_mlen;
meta_info->sg_mlen = sg_mlen;
return 0;
mempool_free:
rte_mempool_free(pool);
return ret;
}
static void
otx2_cpt_metabuf_mempool_destroy(struct otx2_cpt_qp *qp)
{
struct cpt_qp_meta_info *meta_info = &qp->meta_info;
rte_mempool_free(meta_info->pool);
meta_info->pool = NULL;
meta_info->lb_mlen = 0;
meta_info->sg_mlen = 0;
}
static struct otx2_cpt_qp *
otx2_cpt_qp_create(const struct rte_cryptodev *dev, uint16_t qp_id,
uint8_t group)
{
struct otx2_cpt_vf *vf = dev->data->dev_private;
uint64_t pg_sz = sysconf(_SC_PAGESIZE);
const struct rte_memzone *lf_mem;
uint32_t len, iq_len, size_div40;
char name[RTE_MEMZONE_NAMESIZE];
uint64_t used_len, iova;
struct otx2_cpt_qp *qp;
uint64_t lmtline;
uint8_t *va;
int ret;
/* Allocate queue pair */
qp = rte_zmalloc_socket("OCTEON TX2 Crypto PMD Queue Pair", sizeof(*qp),
OTX2_ALIGN, 0);
if (qp == NULL) {
CPT_LOG_ERR("Could not allocate queue pair");
return NULL;
}
iq_len = OTX2_CPT_IQ_LEN;
/*
* Queue size must be a multiple of 40 and effective queue size to
* software is (size_div40 - 1) * 40
*/
size_div40 = (iq_len + 40 - 1) / 40 + 1;
/* For pending queue */
len = iq_len * RTE_ALIGN(sizeof(struct rid), 8);
/* Space for instruction group memory */
len += size_div40 * 16;
/* So that instruction queues start as pg size aligned */
len = RTE_ALIGN(len, pg_sz);
/* For instruction queues */
len += OTX2_CPT_IQ_LEN * sizeof(union cpt_inst_s);
/* Wastage after instruction queues */
len = RTE_ALIGN(len, pg_sz);
qp_memzone_name_get(name, RTE_MEMZONE_NAMESIZE, dev->data->dev_id,
qp_id);
lf_mem = rte_memzone_reserve_aligned(name, len, vf->otx2_dev.node,
RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_256MB,
RTE_CACHE_LINE_SIZE);
if (lf_mem == NULL) {
CPT_LOG_ERR("Could not allocate reserved memzone");
goto qp_free;
}
va = lf_mem->addr;
iova = lf_mem->iova;
memset(va, 0, len);
ret = otx2_cpt_metabuf_mempool_create(dev, qp, qp_id, iq_len);
if (ret) {
CPT_LOG_ERR("Could not create mempool for metabuf");
goto lf_mem_free;
}
/* Initialize pending queue */
qp->pend_q.rid_queue = (struct rid *)va;
qp->pend_q.enq_tail = 0;
qp->pend_q.deq_head = 0;
qp->pend_q.pending_count = 0;
used_len = iq_len * RTE_ALIGN(sizeof(struct rid), 8);
used_len += size_div40 * 16;
used_len = RTE_ALIGN(used_len, pg_sz);
iova += used_len;
qp->iq_dma_addr = iova;
qp->id = qp_id;
qp->base = OTX2_CPT_LF_BAR2(vf, qp_id);
lmtline = vf->otx2_dev.bar2 +
(RVU_BLOCK_ADDR_LMT << 20 | qp_id << 12) +
OTX2_LMT_LF_LMTLINE(0);
qp->lmtline = (void *)lmtline;
qp->lf_nq_reg = qp->base + OTX2_CPT_LF_NQ(0);
otx2_cpt_iq_disable(qp);
ret = otx2_cpt_iq_enable(dev, qp, group, OTX2_CPT_QUEUE_HI_PRIO,
size_div40);
if (ret) {
CPT_LOG_ERR("Could not enable instruction queue");
goto mempool_destroy;
}
return qp;
mempool_destroy:
otx2_cpt_metabuf_mempool_destroy(qp);
lf_mem_free:
rte_memzone_free(lf_mem);
qp_free:
rte_free(qp);
return NULL;
}
static int
otx2_cpt_qp_destroy(const struct rte_cryptodev *dev, struct otx2_cpt_qp *qp)
{
const struct rte_memzone *lf_mem;
char name[RTE_MEMZONE_NAMESIZE];
int ret;
otx2_cpt_iq_disable(qp);
otx2_cpt_metabuf_mempool_destroy(qp);
qp_memzone_name_get(name, RTE_MEMZONE_NAMESIZE, dev->data->dev_id,
qp->id);
lf_mem = rte_memzone_lookup(name);
ret = rte_memzone_free(lf_mem);
if (ret)
return ret;
rte_free(qp);
return 0;
}
static int
sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess,
struct rte_mempool *pool)
{
struct cpt_sess_misc *misc;
void *priv;
int ret;
if (unlikely(cpt_is_algo_supported(xform))) {
CPT_LOG_ERR("Crypto xform not supported");
return -ENOTSUP;
}
if (unlikely(rte_mempool_get(pool, &priv))) {
CPT_LOG_ERR("Could not allocate session private data");
return -ENOMEM;
}
misc = priv;
for ( ; xform != NULL; xform = xform->next) {
switch (xform->type) {
case RTE_CRYPTO_SYM_XFORM_AEAD:
ret = fill_sess_aead(xform, misc);
break;
case RTE_CRYPTO_SYM_XFORM_CIPHER:
ret = fill_sess_cipher(xform, misc);
break;
case RTE_CRYPTO_SYM_XFORM_AUTH:
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
ret = fill_sess_gmac(xform, misc);
else
ret = fill_sess_auth(xform, misc);
break;
default:
ret = -1;
}
if (ret)
goto priv_put;
}
set_sym_session_private_data(sess, driver_id, misc);
misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
sizeof(struct cpt_sess_misc);
/*
* IE engines support IPsec operations
* SE engines support IPsec operations and Air-Crypto operations
*/
if (misc->zsk_flag)
misc->egrp = OTX2_CPT_EGRP_SE;
else
misc->egrp = OTX2_CPT_EGRP_SE_IE;
return 0;
priv_put:
rte_mempool_put(pool, priv);
CPT_LOG_ERR("Crypto xform not supported");
return -ENOTSUP;
}
static void
sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
{
void *priv = get_sym_session_private_data(sess, driver_id);
struct rte_mempool *pool;
if (priv == NULL)
return;
memset(priv, 0, cpt_get_session_size());
pool = rte_mempool_from_obj(priv);
set_sym_session_private_data(sess, driver_id, NULL);
rte_mempool_put(pool, priv);
}
static __rte_always_inline int32_t __hot
otx2_cpt_enqueue_req(const struct otx2_cpt_qp *qp,
struct pending_queue *pend_q,
struct cpt_request_info *req)
{
void *lmtline = qp->lmtline;
union cpt_inst_s inst;
uint64_t lmt_status;
if (unlikely(pend_q->pending_count >= OTX2_CPT_DEFAULT_CMD_QLEN))
return -EAGAIN;
inst.u[0] = 0;
inst.s9x.res_addr = req->comp_baddr;
inst.u[2] = 0;
inst.u[3] = 0;
inst.s9x.ei0 = req->ist.ei0;
inst.s9x.ei1 = req->ist.ei1;
inst.s9x.ei2 = req->ist.ei2;
inst.s9x.ei3 = req->ist.ei3;
req->time_out = rte_get_timer_cycles() +
DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
do {
/* Copy CPT command to LMTLINE */
memcpy(lmtline, &inst, sizeof(inst));
/*
* Make sure compiler does not reorder memcpy and ldeor.
* LMTST transactions are always flushed from the write
* buffer immediately, a DMB is not required to push out
* LMTSTs.
*/
rte_cio_wmb();
lmt_status = otx2_lmt_submit(qp->lf_nq_reg);
} while (lmt_status == 0);
pend_q->rid_queue[pend_q->enq_tail].rid = (uintptr_t)req;
/* We will use soft queue length here to limit requests */
MOD_INC(pend_q->enq_tail, OTX2_CPT_DEFAULT_CMD_QLEN);
pend_q->pending_count += 1;
return 0;
}
static __rte_always_inline int32_t __hot
otx2_cpt_enqueue_asym(struct otx2_cpt_qp *qp,
struct rte_crypto_op *op,
struct pending_queue *pend_q)
{
struct cpt_qp_meta_info *minfo = &qp->meta_info;
struct rte_crypto_asym_op *asym_op = op->asym;
struct asym_op_params params = {0};
struct cpt_asym_sess_misc *sess;
vq_cmd_word3_t *w3;
uintptr_t *cop;
void *mdata;
int ret;
if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
CPT_LOG_ERR("Could not allocate meta buffer for request");
return -ENOMEM;
}
sess = get_asym_session_private_data(asym_op->session,
otx2_cryptodev_driver_id);
/* Store IO address of the mdata to meta_buf */
params.meta_buf = rte_mempool_virt2iova(mdata);
cop = mdata;
cop[0] = (uintptr_t)mdata;
cop[1] = (uintptr_t)op;
cop[2] = cop[3] = 0ULL;
params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
params.req->op = cop;
/* Adjust meta_buf to point to end of cpt_request_info structure */
params.meta_buf += (4 * sizeof(uintptr_t)) +
sizeof(struct cpt_request_info);
switch (sess->xfrm_type) {
case RTE_CRYPTO_ASYM_XFORM_MODEX:
ret = cpt_modex_prep(&params, &sess->mod_ctx);
if (unlikely(ret))
goto req_fail;
break;
case RTE_CRYPTO_ASYM_XFORM_RSA:
ret = cpt_enqueue_rsa_op(op, &params, sess);
if (unlikely(ret))
goto req_fail;
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
ret = -EINVAL;
goto req_fail;
}
/* Set engine group of AE */
w3 = (vq_cmd_word3_t *)&params.req->ist.ei3;
w3->s.grp = OTX2_CPT_EGRP_AE;
ret = otx2_cpt_enqueue_req(qp, pend_q, params.req);
if (unlikely(ret)) {
CPT_LOG_DP_ERR("Could not enqueue crypto req");
goto req_fail;
}
return 0;
req_fail:
free_op_meta(mdata, minfo->pool);
return ret;
}
static __rte_always_inline int __hot
otx2_cpt_enqueue_sym(struct otx2_cpt_qp *qp, struct rte_crypto_op *op,
struct pending_queue *pend_q)
{
struct rte_crypto_sym_op *sym_op = op->sym;
struct cpt_request_info *req;
struct cpt_sess_misc *sess;
vq_cmd_word3_t *w3;
uint64_t cpt_op;
void *mdata;
int ret;
sess = get_sym_session_private_data(sym_op->session,
otx2_cryptodev_driver_id);
cpt_op = sess->cpt_op;
if (cpt_op & CPT_OP_CIPHER_MASK)
ret = fill_fc_params(op, sess, &qp->meta_info, &mdata,
(void **)&req);
else
ret = fill_digest_params(op, sess, &qp->meta_info, &mdata,
(void **)&req);
if (unlikely(ret)) {
CPT_LOG_DP_ERR("Crypto req : op %p, cpt_op 0x%x ret 0x%x",
op, (unsigned int)cpt_op, ret);
return ret;
}
w3 = ((vq_cmd_word3_t *)(&req->ist.ei3));
w3->s.grp = sess->egrp;
ret = otx2_cpt_enqueue_req(qp, pend_q, req);
if (unlikely(ret)) {
/* Free buffer allocated by fill params routines */
free_op_meta(mdata, qp->meta_info.pool);
}
return ret;
}
static __rte_always_inline int __hot
otx2_cpt_enqueue_sym_sessless(struct otx2_cpt_qp *qp, struct rte_crypto_op *op,
struct pending_queue *pend_q)
{
const int driver_id = otx2_cryptodev_driver_id;
struct rte_crypto_sym_op *sym_op = op->sym;
struct rte_cryptodev_sym_session *sess;
int ret;
/* Create temporary session */
if (rte_mempool_get(qp->sess_mp, (void **)&sess))
return -ENOMEM;
ret = sym_session_configure(driver_id, sym_op->xform, sess,
qp->sess_mp_priv);
if (ret)
goto sess_put;
sym_op->session = sess;
ret = otx2_cpt_enqueue_sym(qp, op, pend_q);
if (unlikely(ret))
goto priv_put;
return 0;
priv_put:
sym_session_clear(driver_id, sess);
sess_put:
rte_mempool_put(qp->sess_mp, sess);
return ret;
}
static uint16_t
otx2_cpt_enqueue_burst(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
uint16_t nb_allowed, count = 0;
struct otx2_cpt_qp *qp = qptr;
struct pending_queue *pend_q;
struct rte_crypto_op *op;
int ret;
pend_q = &qp->pend_q;
nb_allowed = OTX2_CPT_DEFAULT_CMD_QLEN - pend_q->pending_count;
if (nb_ops > nb_allowed)
nb_ops = nb_allowed;
for (count = 0; count < nb_ops; count++) {
op = ops[count];
if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
ret = otx2_cpt_enqueue_sym(qp, op, pend_q);
else
ret = otx2_cpt_enqueue_sym_sessless(qp, op,
pend_q);
} else if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
ret = otx2_cpt_enqueue_asym(qp, op, pend_q);
else
break;
} else
break;
if (unlikely(ret))
break;
}
return count;
}
static __rte_always_inline void
otx2_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
struct rte_crypto_rsa_xform *rsa_ctx)
{
struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
switch (rsa->op_type) {
case RTE_CRYPTO_ASYM_OP_ENCRYPT:
rsa->cipher.length = rsa_ctx->n.length;
memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
break;
case RTE_CRYPTO_ASYM_OP_DECRYPT:
if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE) {
rsa->message.length = rsa_ctx->n.length;
memcpy(rsa->message.data, req->rptr,
rsa->message.length);
} else {
/* Get length of decrypted output */
rsa->message.length = rte_cpu_to_be_16
(*((uint16_t *)req->rptr));
/*
* Offset output data pointer by length field
* (2 bytes) and copy decrypted data.
*/
memcpy(rsa->message.data, req->rptr + 2,
rsa->message.length);
}
break;
case RTE_CRYPTO_ASYM_OP_SIGN:
rsa->sign.length = rsa_ctx->n.length;
memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
break;
case RTE_CRYPTO_ASYM_OP_VERIFY:
if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE) {
rsa->sign.length = rsa_ctx->n.length;
memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
} else {
/* Get length of signed output */
rsa->sign.length = rte_cpu_to_be_16
(*((uint16_t *)req->rptr));
/*
* Offset output data pointer by length field
* (2 bytes) and copy signed data.
*/
memcpy(rsa->sign.data, req->rptr + 2,
rsa->sign.length);
}
if (memcmp(rsa->sign.data, rsa->message.data,
rsa->message.length)) {
CPT_LOG_DP_ERR("RSA verification failed");
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
break;
default:
CPT_LOG_DP_DEBUG("Invalid RSA operation type");
cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
break;
}
}
static void
otx2_cpt_asym_post_process(struct rte_crypto_op *cop,
struct cpt_request_info *req)
{
struct rte_crypto_asym_op *op = cop->asym;
struct cpt_asym_sess_misc *sess;
sess = get_asym_session_private_data(op->session,
otx2_cryptodev_driver_id);
switch (sess->xfrm_type) {
case RTE_CRYPTO_ASYM_XFORM_RSA:
otx2_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
break;
case RTE_CRYPTO_ASYM_XFORM_MODEX:
op->modex.result.length = sess->mod_ctx.modulus.length;
memcpy(op->modex.result.data, req->rptr,
op->modex.result.length);
break;
default:
CPT_LOG_DP_DEBUG("Invalid crypto xform type");
cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
break;
}
}
static inline void
otx2_cpt_dequeue_post_process(struct otx2_cpt_qp *qp, struct rte_crypto_op *cop,
uintptr_t *rsp, uint8_t cc)
{
if (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
if (likely(cc == NO_ERR)) {
/* Verify authentication data if required */
if (unlikely(rsp[2]))
compl_auth_verify(cop, (uint8_t *)rsp[2],
rsp[3]);
else
cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
} else {
if (cc == ERR_GC_ICV_MISCOMPARE)
cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
else
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
sym_session_clear(otx2_cryptodev_driver_id,
cop->sym->session);
rte_mempool_put(qp->sess_mp, cop->sym->session);
cop->sym->session = NULL;
}
}
if (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
if (likely(cc == NO_ERR)) {
cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/*
* Pass cpt_req_info stored in metabuf during
* enqueue.
*/
rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
otx2_cpt_asym_post_process(cop,
(struct cpt_request_info *)rsp);
} else
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
}
static __rte_always_inline uint8_t
otx2_cpt_compcode_get(struct cpt_request_info *req)
{
volatile struct cpt_res_s_9s *res;
uint8_t ret;
res = (volatile struct cpt_res_s_9s *)req->completion_addr;
if (unlikely(res->compcode == CPT_9X_COMP_E_NOTDONE)) {
if (rte_get_timer_cycles() < req->time_out)
return ERR_REQ_PENDING;
CPT_LOG_DP_ERR("Request timed out");
return ERR_REQ_TIMEOUT;
}
if (likely(res->compcode == CPT_9X_COMP_E_GOOD)) {
ret = NO_ERR;
if (unlikely(res->uc_compcode)) {
ret = res->uc_compcode;
CPT_LOG_DP_DEBUG("Request failed with microcode error");
CPT_LOG_DP_DEBUG("MC completion code 0x%x",
res->uc_compcode);
}
} else {
CPT_LOG_DP_DEBUG("HW completion code 0x%x", res->compcode);
ret = res->compcode;
switch (res->compcode) {
case CPT_9X_COMP_E_INSTERR:
CPT_LOG_DP_ERR("Request failed with instruction error");
break;
case CPT_9X_COMP_E_FAULT:
CPT_LOG_DP_ERR("Request failed with DMA fault");
break;
case CPT_9X_COMP_E_HWERR:
CPT_LOG_DP_ERR("Request failed with hardware error");
break;
default:
CPT_LOG_DP_ERR("Request failed with unknown completion code");
}
}
return ret;
}
static uint16_t
otx2_cpt_dequeue_burst(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
{
int i, nb_pending, nb_completed;
struct otx2_cpt_qp *qp = qptr;
struct pending_queue *pend_q;
struct cpt_request_info *req;
struct rte_crypto_op *cop;
uint8_t cc[nb_ops];
struct rid *rid;
uintptr_t *rsp;
void *metabuf;
pend_q = &qp->pend_q;
nb_pending = pend_q->pending_count;
if (nb_ops > nb_pending)
nb_ops = nb_pending;
for (i = 0; i < nb_ops; i++) {
rid = &pend_q->rid_queue[pend_q->deq_head];
req = (struct cpt_request_info *)(rid->rid);
cc[i] = otx2_cpt_compcode_get(req);
if (unlikely(cc[i] == ERR_REQ_PENDING))
break;
ops[i] = req->op;
MOD_INC(pend_q->deq_head, OTX2_CPT_DEFAULT_CMD_QLEN);
pend_q->pending_count -= 1;
}
nb_completed = i;
for (i = 0; i < nb_completed; i++) {
rsp = (void *)ops[i];
metabuf = (void *)rsp[0];
cop = (void *)rsp[1];
ops[i] = cop;
otx2_cpt_dequeue_post_process(qp, cop, rsp, cc[i]);
free_op_meta(metabuf, qp->meta_info.pool);
}
return nb_completed;
}
/* PMD ops */
static int
otx2_cpt_dev_config(struct rte_cryptodev *dev,
struct rte_cryptodev_config *conf)
{
struct otx2_cpt_vf *vf = dev->data->dev_private;
int ret;
if (conf->nb_queue_pairs > vf->max_queues) {
CPT_LOG_ERR("Invalid number of queue pairs requested");
return -EINVAL;
}
dev->feature_flags &= ~conf->ff_disable;
/* Unregister error interrupts */
if (vf->err_intr_registered)
otx2_cpt_err_intr_unregister(dev);
/* Detach queues */
if (vf->nb_queues) {
ret = otx2_cpt_queues_detach(dev);
if (ret) {
CPT_LOG_ERR("Could not detach CPT queues");
return ret;
}
}
/* Attach queues */
ret = otx2_cpt_queues_attach(dev, conf->nb_queue_pairs);
if (ret) {
CPT_LOG_ERR("Could not attach CPT queues");
return -ENODEV;
}
ret = otx2_cpt_msix_offsets_get(dev);
if (ret) {
CPT_LOG_ERR("Could not get MSI-X offsets");
goto queues_detach;
}
/* Register error interrupts */
ret = otx2_cpt_err_intr_register(dev);
if (ret) {
CPT_LOG_ERR("Could not register error interrupts");
goto queues_detach;
}
dev->enqueue_burst = otx2_cpt_enqueue_burst;
dev->dequeue_burst = otx2_cpt_dequeue_burst;
rte_mb();
return 0;
queues_detach:
otx2_cpt_queues_detach(dev);
return ret;
}
static int
otx2_cpt_dev_start(struct rte_cryptodev *dev)
{
RTE_SET_USED(dev);
CPT_PMD_INIT_FUNC_TRACE();
return 0;
}
static void
otx2_cpt_dev_stop(struct rte_cryptodev *dev)
{
RTE_SET_USED(dev);
CPT_PMD_INIT_FUNC_TRACE();
}
static int
otx2_cpt_dev_close(struct rte_cryptodev *dev)
{
struct otx2_cpt_vf *vf = dev->data->dev_private;
int i, ret = 0;
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
ret = otx2_cpt_queue_pair_release(dev, i);
if (ret)
return ret;
}
/* Unregister error interrupts */
if (vf->err_intr_registered)
otx2_cpt_err_intr_unregister(dev);
/* Detach queues */
if (vf->nb_queues) {
ret = otx2_cpt_queues_detach(dev);
if (ret)
CPT_LOG_ERR("Could not detach CPT queues");
}
return ret;
}
static void
otx2_cpt_dev_info_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *info)
{
struct otx2_cpt_vf *vf = dev->data->dev_private;
if (info != NULL) {
info->max_nb_queue_pairs = vf->max_queues;
info->feature_flags = dev->feature_flags;
info->capabilities = otx2_cpt_capabilities_get();
info->sym.max_nb_sessions = 0;
info->driver_id = otx2_cryptodev_driver_id;
info->min_mbuf_headroom_req = OTX2_CPT_MIN_HEADROOM_REQ;
info->min_mbuf_tailroom_req = OTX2_CPT_MIN_TAILROOM_REQ;
}
}
static int
otx2_cpt_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
const struct rte_cryptodev_qp_conf *conf,
int socket_id __rte_unused)
{
uint8_t grp_mask = OTX2_CPT_ENG_GRPS_MASK;
struct rte_pci_device *pci_dev;
struct otx2_cpt_qp *qp;
CPT_PMD_INIT_FUNC_TRACE();
if (dev->data->queue_pairs[qp_id] != NULL)
otx2_cpt_queue_pair_release(dev, qp_id);
if (conf->nb_descriptors > OTX2_CPT_DEFAULT_CMD_QLEN) {
CPT_LOG_ERR("Could not setup queue pair for %u descriptors",
conf->nb_descriptors);
return -EINVAL;
}
pci_dev = RTE_DEV_TO_PCI(dev->device);
if (pci_dev->mem_resource[2].addr == NULL) {
CPT_LOG_ERR("Invalid PCI mem address");
return -EIO;
}
qp = otx2_cpt_qp_create(dev, qp_id, grp_mask);
if (qp == NULL) {
CPT_LOG_ERR("Could not create queue pair %d", qp_id);
return -ENOMEM;
}
qp->sess_mp = conf->mp_session;
qp->sess_mp_priv = conf->mp_session_private;
dev->data->queue_pairs[qp_id] = qp;
return 0;
}
static int
otx2_cpt_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct otx2_cpt_qp *qp = dev->data->queue_pairs[qp_id];
int ret;
CPT_PMD_INIT_FUNC_TRACE();
if (qp == NULL)
return -EINVAL;
CPT_LOG_INFO("Releasing queue pair %d", qp_id);
ret = otx2_cpt_qp_destroy(dev, qp);
if (ret) {
CPT_LOG_ERR("Could not destroy queue pair %d", qp_id);
return ret;
}
dev->data->queue_pairs[qp_id] = NULL;
return 0;
}
static unsigned int
otx2_cpt_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
return cpt_get_session_size();
}
static int
otx2_cpt_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess,
struct rte_mempool *pool)
{
CPT_PMD_INIT_FUNC_TRACE();
return sym_session_configure(dev->driver_id, xform, sess, pool);
}
static void
otx2_cpt_sym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
CPT_PMD_INIT_FUNC_TRACE();
return sym_session_clear(dev->driver_id, sess);
}
static unsigned int
otx2_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
{
return sizeof(struct cpt_asym_sess_misc);
}
static int
otx2_cpt_asym_session_cfg(struct rte_cryptodev *dev,
struct rte_crypto_asym_xform *xform,
struct rte_cryptodev_asym_session *sess,
struct rte_mempool *pool)
{
struct cpt_asym_sess_misc *priv;
int ret;
CPT_PMD_INIT_FUNC_TRACE();
if (rte_mempool_get(pool, (void **)&priv)) {
CPT_LOG_ERR("Could not allocate session_private_data");
return -ENOMEM;
}
memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
ret = cpt_fill_asym_session_parameters(priv, xform);
if (ret) {
CPT_LOG_ERR("Could not configure session parameters");
/* Return session to mempool */
rte_mempool_put(pool, priv);
return ret;
}
set_asym_session_private_data(sess, dev->driver_id, priv);
return 0;
}
static void
otx2_cpt_asym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_asym_session *sess)
{
struct cpt_asym_sess_misc *priv;
struct rte_mempool *sess_mp;
CPT_PMD_INIT_FUNC_TRACE();
priv = get_asym_session_private_data(sess, dev->driver_id);
if (priv == NULL)
return;
/* Free resources allocated in session_cfg */
cpt_free_asym_session_parameters(priv);
/* Reset and free object back to pool */
memset(priv, 0, otx2_cpt_asym_session_size_get(dev));
sess_mp = rte_mempool_from_obj(priv);
set_asym_session_private_data(sess, dev->driver_id, NULL);
rte_mempool_put(sess_mp, priv);
}
struct rte_cryptodev_ops otx2_cpt_ops = {
/* Device control ops */
.dev_configure = otx2_cpt_dev_config,
.dev_start = otx2_cpt_dev_start,
.dev_stop = otx2_cpt_dev_stop,
.dev_close = otx2_cpt_dev_close,
.dev_infos_get = otx2_cpt_dev_info_get,
.stats_get = NULL,
.stats_reset = NULL,
.queue_pair_setup = otx2_cpt_queue_pair_setup,
.queue_pair_release = otx2_cpt_queue_pair_release,
.queue_pair_count = NULL,
/* Symmetric crypto ops */
.sym_session_get_size = otx2_cpt_sym_session_get_size,
.sym_session_configure = otx2_cpt_sym_session_configure,
.sym_session_clear = otx2_cpt_sym_session_clear,
/* Asymmetric crypto ops */
.asym_session_get_size = otx2_cpt_asym_session_size_get,
.asym_session_configure = otx2_cpt_asym_session_cfg,
.asym_session_clear = otx2_cpt_asym_session_clear,
};