f-stack/dpdk/lib/pipeline/rte_swx_pipeline_internal.h

4345 lines
114 KiB
C
Raw Normal View History

2022-09-06 04:00:10 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2021 Intel Corporation
*/
#ifndef __INCLUDE_RTE_SWX_PIPELINE_INTERNAL_H__
#define __INCLUDE_RTE_SWX_PIPELINE_INTERNAL_H__
#include <inttypes.h>
#include <string.h>
#include <sys/queue.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_meter.h>
#include <rte_swx_table_selector.h>
#include <rte_swx_table_learner.h>
#include <rte_swx_pipeline.h>
#include <rte_swx_ctl.h>
#ifndef TRACE_LEVEL
#define TRACE_LEVEL 0
#endif
#if TRACE_LEVEL
#define TRACE(...) printf(__VA_ARGS__)
#else
#define TRACE(...)
#endif
/*
* Environment.
*/
#define ntoh64(x) rte_be_to_cpu_64(x)
#define hton64(x) rte_cpu_to_be_64(x)
/*
* Struct.
*/
struct field {
char name[RTE_SWX_NAME_SIZE];
uint32_t n_bits;
uint32_t offset;
int var_size;
};
struct struct_type {
TAILQ_ENTRY(struct_type) node;
char name[RTE_SWX_NAME_SIZE];
struct field *fields;
uint32_t n_fields;
uint32_t n_bits;
uint32_t n_bits_min;
int var_size;
};
TAILQ_HEAD(struct_type_tailq, struct_type);
/*
* Input port.
*/
struct port_in_type {
TAILQ_ENTRY(port_in_type) node;
char name[RTE_SWX_NAME_SIZE];
struct rte_swx_port_in_ops ops;
};
TAILQ_HEAD(port_in_type_tailq, port_in_type);
struct port_in {
TAILQ_ENTRY(port_in) node;
struct port_in_type *type;
void *obj;
uint32_t id;
};
TAILQ_HEAD(port_in_tailq, port_in);
struct port_in_runtime {
rte_swx_port_in_pkt_rx_t pkt_rx;
void *obj;
};
/*
* Output port.
*/
struct port_out_type {
TAILQ_ENTRY(port_out_type) node;
char name[RTE_SWX_NAME_SIZE];
struct rte_swx_port_out_ops ops;
};
TAILQ_HEAD(port_out_type_tailq, port_out_type);
struct port_out {
TAILQ_ENTRY(port_out) node;
struct port_out_type *type;
void *obj;
uint32_t id;
};
TAILQ_HEAD(port_out_tailq, port_out);
struct port_out_runtime {
rte_swx_port_out_pkt_tx_t pkt_tx;
2023-09-13 12:21:49 +00:00
rte_swx_port_out_pkt_fast_clone_tx_t pkt_fast_clone_tx;
rte_swx_port_out_pkt_clone_tx_t pkt_clone_tx;
2022-09-06 04:00:10 +00:00
rte_swx_port_out_flush_t flush;
void *obj;
};
2023-09-13 12:21:49 +00:00
/*
* Packet mirroring.
*/
struct mirroring_session {
uint32_t port_id;
int fast_clone;
uint32_t truncation_length;
};
2022-09-06 04:00:10 +00:00
/*
* Extern object.
*/
struct extern_type_member_func {
TAILQ_ENTRY(extern_type_member_func) node;
char name[RTE_SWX_NAME_SIZE];
rte_swx_extern_type_member_func_t func;
uint32_t id;
};
TAILQ_HEAD(extern_type_member_func_tailq, extern_type_member_func);
struct extern_type {
TAILQ_ENTRY(extern_type) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *mailbox_struct_type;
rte_swx_extern_type_constructor_t constructor;
rte_swx_extern_type_destructor_t destructor;
struct extern_type_member_func_tailq funcs;
uint32_t n_funcs;
};
TAILQ_HEAD(extern_type_tailq, extern_type);
struct extern_obj {
TAILQ_ENTRY(extern_obj) node;
char name[RTE_SWX_NAME_SIZE];
struct extern_type *type;
void *obj;
uint32_t struct_id;
uint32_t id;
};
TAILQ_HEAD(extern_obj_tailq, extern_obj);
#ifndef RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX
#define RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX 8
#endif
struct extern_obj_runtime {
void *obj;
uint8_t *mailbox;
rte_swx_extern_type_member_func_t funcs[RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX];
};
/*
* Extern function.
*/
struct extern_func {
TAILQ_ENTRY(extern_func) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *mailbox_struct_type;
rte_swx_extern_func_t func;
uint32_t struct_id;
uint32_t id;
};
TAILQ_HEAD(extern_func_tailq, extern_func);
struct extern_func_runtime {
uint8_t *mailbox;
rte_swx_extern_func_t func;
};
2023-09-13 12:21:49 +00:00
/*
* Hash function.
*/
struct hash_func {
TAILQ_ENTRY(hash_func) node;
char name[RTE_SWX_NAME_SIZE];
rte_swx_hash_func_t func;
uint32_t id;
};
TAILQ_HEAD(hash_func_tailq, hash_func);
struct hash_func_runtime {
rte_swx_hash_func_t func;
};
2022-09-06 04:00:10 +00:00
/*
* Header.
*/
struct header {
TAILQ_ENTRY(header) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *st;
uint32_t struct_id;
uint32_t id;
};
TAILQ_HEAD(header_tailq, header);
struct header_runtime {
uint8_t *ptr0;
uint32_t n_bytes;
};
struct header_out_runtime {
uint8_t *ptr0;
uint8_t *ptr;
uint32_t n_bytes;
};
/*
* Instruction.
*/
/* Packet headers are always in Network Byte Order (NBO), i.e. big endian.
* Packet meta-data fields are always assumed to be in Host Byte Order (HBO).
* Table entry fields can be in either NBO or HBO; they are assumed to be in HBO
* when transferred to packet meta-data and in NBO when transferred to packet
* headers.
*/
/* Notation conventions:
* -Header field: H = h.header.field (dst/src)
* -Meta-data field: M = m.field (dst/src)
* -Extern object mailbox field: E = e.field (dst/src)
* -Extern function mailbox field: F = f.field (dst/src)
* -Table action data field: T = t.field (src only)
* -Immediate value: I = 32-bit unsigned value (src only)
*/
enum instruction_type {
/* rx m.port_in */
INSTR_RX,
/* tx port_out
* port_out = MI
*/
INSTR_TX, /* port_out = M */
INSTR_TX_I, /* port_out = I */
2023-09-13 12:21:49 +00:00
INSTR_DROP,
/*
* mirror slot_id session_id
* slot_id = MEFT
* session_id = MEFT
*/
INSTR_MIRROR,
/* recirculate
*/
INSTR_RECIRCULATE,
/* recircid m.recirc_pass_id
* Read the internal recirculation pass ID into the specified meta-data field.
*/
INSTR_RECIRCID,
2022-09-06 04:00:10 +00:00
/* extract h.header */
INSTR_HDR_EXTRACT,
INSTR_HDR_EXTRACT2,
INSTR_HDR_EXTRACT3,
INSTR_HDR_EXTRACT4,
INSTR_HDR_EXTRACT5,
INSTR_HDR_EXTRACT6,
INSTR_HDR_EXTRACT7,
INSTR_HDR_EXTRACT8,
/* extract h.header m.last_field_size */
INSTR_HDR_EXTRACT_M,
/* lookahead h.header */
INSTR_HDR_LOOKAHEAD,
/* emit h.header */
INSTR_HDR_EMIT,
INSTR_HDR_EMIT_TX,
INSTR_HDR_EMIT2_TX,
INSTR_HDR_EMIT3_TX,
INSTR_HDR_EMIT4_TX,
INSTR_HDR_EMIT5_TX,
INSTR_HDR_EMIT6_TX,
INSTR_HDR_EMIT7_TX,
INSTR_HDR_EMIT8_TX,
/* validate h.header */
INSTR_HDR_VALIDATE,
/* invalidate h.header */
INSTR_HDR_INVALIDATE,
/* mov dst src
* dst = src
* dst = HMEF, src = HMEFTI
*/
2023-09-13 12:21:49 +00:00
INSTR_MOV, /* dst = MEF, src = MEFT; size(dst) <= 64 bits, size(src) <= 64 bits. */
INSTR_MOV_MH, /* dst = MEF, src = H; size(dst) <= 64 bits, size(src) <= 64 bits. */
INSTR_MOV_HM, /* dst = H, src = MEFT; size(dst) <= 64 bits, size(src) <= 64 bits. */
INSTR_MOV_HH, /* dst = H, src = H; size(dst) <= 64 bits, size(src) <= 64 bits. */
INSTR_MOV_DMA, /* dst = HMEF, src = HMEF; size(dst) = size(src) > 64 bits, NBO format. */
INSTR_MOV_128, /* dst = HMEF, src = HMEF; size(dst) = size(src) = 128 bits, NBO format. */
INSTR_MOV_I, /* dst = HMEF, src = I; size(dst) <= 64 bits. */
2022-09-06 04:00:10 +00:00
/* dma h.header t.field
* memcpy(h.header, t.field, sizeof(h.header))
*/
INSTR_DMA_HT,
INSTR_DMA_HT2,
INSTR_DMA_HT3,
INSTR_DMA_HT4,
INSTR_DMA_HT5,
INSTR_DMA_HT6,
INSTR_DMA_HT7,
INSTR_DMA_HT8,
/* add dst src
* dst += src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_ADD, /* dst = MEF, src = MEF */
INSTR_ALU_ADD_MH, /* dst = MEF, src = H */
INSTR_ALU_ADD_HM, /* dst = H, src = MEF */
INSTR_ALU_ADD_HH, /* dst = H, src = H */
INSTR_ALU_ADD_MI, /* dst = MEF, src = I */
INSTR_ALU_ADD_HI, /* dst = H, src = I */
/* sub dst src
* dst -= src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_SUB, /* dst = MEF, src = MEF */
INSTR_ALU_SUB_MH, /* dst = MEF, src = H */
INSTR_ALU_SUB_HM, /* dst = H, src = MEF */
INSTR_ALU_SUB_HH, /* dst = H, src = H */
INSTR_ALU_SUB_MI, /* dst = MEF, src = I */
INSTR_ALU_SUB_HI, /* dst = H, src = I */
/* ckadd dst src
2023-09-13 12:21:49 +00:00
* dst = dst '+ src[0:1] '+ src[2:3] '+ ...
* dst = H, src = {H, h.header}, '+ = 1's complement addition operator
2022-09-06 04:00:10 +00:00
*/
INSTR_ALU_CKADD_FIELD, /* src = H */
2023-09-13 12:21:49 +00:00
INSTR_ALU_CKADD_STRUCT20, /* src = h.header, with sizeof(header) = 20 bytes. */
INSTR_ALU_CKADD_STRUCT, /* src = h.header, with sizeof(header) any 4-byte multiple. */
2022-09-06 04:00:10 +00:00
/* cksub dst src
* dst = dst '- src
2023-09-13 12:21:49 +00:00
* dst = H, src = H, '- = 1's complement subtraction operator
2022-09-06 04:00:10 +00:00
*/
INSTR_ALU_CKSUB_FIELD,
/* and dst src
* dst &= src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_AND, /* dst = MEF, src = MEFT */
INSTR_ALU_AND_MH, /* dst = MEF, src = H */
INSTR_ALU_AND_HM, /* dst = H, src = MEFT */
INSTR_ALU_AND_HH, /* dst = H, src = H */
INSTR_ALU_AND_I, /* dst = HMEF, src = I */
/* or dst src
* dst |= src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_OR, /* dst = MEF, src = MEFT */
INSTR_ALU_OR_MH, /* dst = MEF, src = H */
INSTR_ALU_OR_HM, /* dst = H, src = MEFT */
INSTR_ALU_OR_HH, /* dst = H, src = H */
INSTR_ALU_OR_I, /* dst = HMEF, src = I */
/* xor dst src
* dst ^= src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_XOR, /* dst = MEF, src = MEFT */
INSTR_ALU_XOR_MH, /* dst = MEF, src = H */
INSTR_ALU_XOR_HM, /* dst = H, src = MEFT */
INSTR_ALU_XOR_HH, /* dst = H, src = H */
INSTR_ALU_XOR_I, /* dst = HMEF, src = I */
/* shl dst src
* dst <<= src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_SHL, /* dst = MEF, src = MEF */
INSTR_ALU_SHL_MH, /* dst = MEF, src = H */
INSTR_ALU_SHL_HM, /* dst = H, src = MEF */
INSTR_ALU_SHL_HH, /* dst = H, src = H */
INSTR_ALU_SHL_MI, /* dst = MEF, src = I */
INSTR_ALU_SHL_HI, /* dst = H, src = I */
/* shr dst src
* dst >>= src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_SHR, /* dst = MEF, src = MEF */
INSTR_ALU_SHR_MH, /* dst = MEF, src = H */
INSTR_ALU_SHR_HM, /* dst = H, src = MEF */
INSTR_ALU_SHR_HH, /* dst = H, src = H */
INSTR_ALU_SHR_MI, /* dst = MEF, src = I */
INSTR_ALU_SHR_HI, /* dst = H, src = I */
/* regprefetch REGARRAY index
* prefetch REGARRAY[index]
* index = HMEFTI
*/
INSTR_REGPREFETCH_RH, /* index = H */
INSTR_REGPREFETCH_RM, /* index = MEFT */
INSTR_REGPREFETCH_RI, /* index = I */
/* regrd dst REGARRAY index
* dst = REGARRAY[index]
* dst = HMEF, index = HMEFTI
*/
INSTR_REGRD_HRH, /* dst = H, index = H */
INSTR_REGRD_HRM, /* dst = H, index = MEFT */
INSTR_REGRD_HRI, /* dst = H, index = I */
INSTR_REGRD_MRH, /* dst = MEF, index = H */
INSTR_REGRD_MRM, /* dst = MEF, index = MEFT */
INSTR_REGRD_MRI, /* dst = MEF, index = I */
/* regwr REGARRAY index src
* REGARRAY[index] = src
* index = HMEFTI, src = HMEFTI
*/
INSTR_REGWR_RHH, /* index = H, src = H */
INSTR_REGWR_RHM, /* index = H, src = MEFT */
INSTR_REGWR_RHI, /* index = H, src = I */
INSTR_REGWR_RMH, /* index = MEFT, src = H */
INSTR_REGWR_RMM, /* index = MEFT, src = MEFT */
INSTR_REGWR_RMI, /* index = MEFT, src = I */
INSTR_REGWR_RIH, /* index = I, src = H */
INSTR_REGWR_RIM, /* index = I, src = MEFT */
INSTR_REGWR_RII, /* index = I, src = I */
/* regadd REGARRAY index src
* REGARRAY[index] += src
* index = HMEFTI, src = HMEFTI
*/
INSTR_REGADD_RHH, /* index = H, src = H */
INSTR_REGADD_RHM, /* index = H, src = MEFT */
INSTR_REGADD_RHI, /* index = H, src = I */
INSTR_REGADD_RMH, /* index = MEFT, src = H */
INSTR_REGADD_RMM, /* index = MEFT, src = MEFT */
INSTR_REGADD_RMI, /* index = MEFT, src = I */
INSTR_REGADD_RIH, /* index = I, src = H */
INSTR_REGADD_RIM, /* index = I, src = MEFT */
INSTR_REGADD_RII, /* index = I, src = I */
/* metprefetch METARRAY index
* prefetch METARRAY[index]
* index = HMEFTI
*/
INSTR_METPREFETCH_H, /* index = H */
INSTR_METPREFETCH_M, /* index = MEFT */
INSTR_METPREFETCH_I, /* index = I */
/* meter METARRAY index length color_in color_out
* color_out = meter(METARRAY[index], length, color_in)
* index = HMEFTI, length = HMEFT, color_in = MEFTI, color_out = MEF
*/
INSTR_METER_HHM, /* index = H, length = H, color_in = MEFT */
INSTR_METER_HHI, /* index = H, length = H, color_in = I */
INSTR_METER_HMM, /* index = H, length = MEFT, color_in = MEFT */
INSTR_METER_HMI, /* index = H, length = MEFT, color_in = I */
INSTR_METER_MHM, /* index = MEFT, length = H, color_in = MEFT */
INSTR_METER_MHI, /* index = MEFT, length = H, color_in = I */
INSTR_METER_MMM, /* index = MEFT, length = MEFT, color_in = MEFT */
INSTR_METER_MMI, /* index = MEFT, length = MEFT, color_in = I */
INSTR_METER_IHM, /* index = I, length = H, color_in = MEFT */
INSTR_METER_IHI, /* index = I, length = H, color_in = I */
INSTR_METER_IMM, /* index = I, length = MEFT, color_in = MEFT */
INSTR_METER_IMI, /* index = I, length = MEFT, color_in = I */
/* table TABLE */
INSTR_TABLE,
INSTR_TABLE_AF,
INSTR_SELECTOR,
INSTR_LEARNER,
INSTR_LEARNER_AF,
2023-09-13 12:21:49 +00:00
/* learn ACTION_NAME [ m.action_first_arg ] m.timeout_id */
2022-09-06 04:00:10 +00:00
INSTR_LEARNER_LEARN,
2023-09-13 12:21:49 +00:00
/* rearm [ m.timeout_id ] */
INSTR_LEARNER_REARM,
INSTR_LEARNER_REARM_NEW,
2022-09-06 04:00:10 +00:00
/* forget */
INSTR_LEARNER_FORGET,
2023-09-13 12:21:49 +00:00
/* entryid m.table_entry_id
* Read the internal table entry ID into the specified meta-data field.
*/
INSTR_ENTRYID,
2022-09-06 04:00:10 +00:00
/* extern e.obj.func */
INSTR_EXTERN_OBJ,
/* extern f.func */
INSTR_EXTERN_FUNC,
2023-09-13 12:21:49 +00:00
/* hash HASH_FUNC_NAME dst src_first src_last
* Compute hash value over range of struct fields.
* dst = M
* src_first = HMEFT
* src_last = HMEFT
* src_first and src_last must be fields within the same struct
*/
INSTR_HASH_FUNC,
2022-09-06 04:00:10 +00:00
/* jmp LABEL
* Unconditional jump
*/
INSTR_JMP,
/* jmpv LABEL h.header
* Jump if header is valid
*/
INSTR_JMP_VALID,
/* jmpnv LABEL h.header
* Jump if header is invalid
*/
INSTR_JMP_INVALID,
/* jmph LABEL
* Jump if table lookup hit
*/
INSTR_JMP_HIT,
/* jmpnh LABEL
* Jump if table lookup miss
*/
INSTR_JMP_MISS,
/* jmpa LABEL ACTION
* Jump if action run
*/
INSTR_JMP_ACTION_HIT,
/* jmpna LABEL ACTION
* Jump if action not run
*/
INSTR_JMP_ACTION_MISS,
/* jmpeq LABEL a b
* Jump if a is equal to b
* a = HMEFT, b = HMEFTI
*/
INSTR_JMP_EQ, /* a = MEFT, b = MEFT */
INSTR_JMP_EQ_MH, /* a = MEFT, b = H */
INSTR_JMP_EQ_HM, /* a = H, b = MEFT */
INSTR_JMP_EQ_HH, /* a = H, b = H */
INSTR_JMP_EQ_I, /* (a, b) = (MEFT, I) or (a, b) = (H, I) */
/* jmpneq LABEL a b
* Jump if a is not equal to b
* a = HMEFT, b = HMEFTI
*/
INSTR_JMP_NEQ, /* a = MEFT, b = MEFT */
INSTR_JMP_NEQ_MH, /* a = MEFT, b = H */
INSTR_JMP_NEQ_HM, /* a = H, b = MEFT */
INSTR_JMP_NEQ_HH, /* a = H, b = H */
INSTR_JMP_NEQ_I, /* (a, b) = (MEFT, I) or (a, b) = (H, I) */
/* jmplt LABEL a b
* Jump if a is less than b
* a = HMEFT, b = HMEFTI
*/
INSTR_JMP_LT, /* a = MEFT, b = MEFT */
INSTR_JMP_LT_MH, /* a = MEFT, b = H */
INSTR_JMP_LT_HM, /* a = H, b = MEFT */
INSTR_JMP_LT_HH, /* a = H, b = H */
INSTR_JMP_LT_MI, /* a = MEFT, b = I */
INSTR_JMP_LT_HI, /* a = H, b = I */
/* jmpgt LABEL a b
* Jump if a is greater than b
* a = HMEFT, b = HMEFTI
*/
INSTR_JMP_GT, /* a = MEFT, b = MEFT */
INSTR_JMP_GT_MH, /* a = MEFT, b = H */
INSTR_JMP_GT_HM, /* a = H, b = MEFT */
INSTR_JMP_GT_HH, /* a = H, b = H */
INSTR_JMP_GT_MI, /* a = MEFT, b = I */
INSTR_JMP_GT_HI, /* a = H, b = I */
/* return
* Return from action
*/
INSTR_RETURN,
/* Start of custom instructions. */
INSTR_CUSTOM_0,
};
struct instr_operand {
uint8_t struct_id;
uint8_t n_bits;
uint8_t offset;
uint8_t pad;
};
struct instr_io {
struct {
union {
struct {
uint8_t offset;
uint8_t n_bits;
uint8_t pad[2];
};
uint32_t val;
};
} io;
struct {
uint8_t header_id[8];
uint8_t struct_id[8];
uint8_t n_bytes[8];
} hdr;
};
struct instr_hdr_validity {
uint8_t header_id;
2023-09-13 12:21:49 +00:00
uint8_t struct_id;
2022-09-06 04:00:10 +00:00
};
struct instr_table {
uint8_t table_id;
};
struct instr_learn {
uint8_t action_id;
2023-09-13 12:21:49 +00:00
uint8_t mf_first_arg_offset;
uint8_t mf_timeout_id_offset;
uint8_t mf_timeout_id_n_bits;
2022-09-06 04:00:10 +00:00
};
struct instr_extern_obj {
uint8_t ext_obj_id;
uint8_t func_id;
};
struct instr_extern_func {
uint8_t ext_func_id;
};
2023-09-13 12:21:49 +00:00
struct instr_hash_func {
uint8_t hash_func_id;
struct {
uint8_t offset;
uint8_t n_bits;
} dst;
struct {
uint8_t struct_id;
uint16_t offset;
uint16_t n_bytes;
} src;
};
2022-09-06 04:00:10 +00:00
struct instr_dst_src {
struct instr_operand dst;
union {
struct instr_operand src;
uint64_t src_val;
};
};
struct instr_regarray {
uint8_t regarray_id;
uint8_t pad[3];
union {
struct instr_operand idx;
uint32_t idx_val;
};
union {
struct instr_operand dstsrc;
uint64_t dstsrc_val;
};
};
struct instr_meter {
uint8_t metarray_id;
uint8_t pad[3];
union {
struct instr_operand idx;
uint32_t idx_val;
};
struct instr_operand length;
union {
struct instr_operand color_in;
uint32_t color_in_val;
};
struct instr_operand color_out;
};
struct instr_dma {
struct {
uint8_t header_id[8];
uint8_t struct_id[8];
} dst;
struct {
uint8_t offset[8];
} src;
uint16_t n_bytes[8];
};
struct instr_jmp {
struct instruction *ip;
union {
struct instr_operand a;
uint8_t header_id;
uint8_t action_id;
};
union {
struct instr_operand b;
uint64_t b_val;
};
};
struct instruction {
enum instruction_type type;
union {
struct instr_io io;
2023-09-13 12:21:49 +00:00
struct instr_dst_src mirror;
2022-09-06 04:00:10 +00:00
struct instr_hdr_validity valid;
struct instr_dst_src mov;
struct instr_regarray regarray;
struct instr_meter meter;
struct instr_dma dma;
struct instr_dst_src alu;
struct instr_table table;
struct instr_learn learn;
struct instr_extern_obj ext_obj;
struct instr_extern_func ext_func;
2023-09-13 12:21:49 +00:00
struct instr_hash_func hash_func;
2022-09-06 04:00:10 +00:00
struct instr_jmp jmp;
};
};
struct instruction_data {
char label[RTE_SWX_NAME_SIZE];
char jmp_label[RTE_SWX_NAME_SIZE];
uint32_t n_users; /* user = jmp instruction to this instruction. */
int invalid;
};
typedef void (*instr_exec_t)(struct rte_swx_pipeline *);
/*
* Action.
*/
typedef void
(*action_func_t)(struct rte_swx_pipeline *p);
struct action {
TAILQ_ENTRY(action) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *st;
int *args_endianness; /* 0 = Host Byte Order (HBO); 1 = Network Byte Order (NBO). */
struct instruction *instructions;
struct instruction_data *instruction_data;
uint32_t n_instructions;
uint32_t id;
};
TAILQ_HEAD(action_tailq, action);
/*
* Table.
*/
struct table_type {
TAILQ_ENTRY(table_type) node;
char name[RTE_SWX_NAME_SIZE];
enum rte_swx_table_match_type match_type;
struct rte_swx_table_ops ops;
};
TAILQ_HEAD(table_type_tailq, table_type);
struct match_field {
enum rte_swx_table_match_type match_type;
struct field *field;
};
struct table {
TAILQ_ENTRY(table) node;
char name[RTE_SWX_NAME_SIZE];
char args[RTE_SWX_NAME_SIZE];
struct table_type *type; /* NULL when n_fields == 0. */
/* Match. */
struct match_field *fields;
uint32_t n_fields;
struct header *header; /* Only valid when n_fields > 0. */
/* Action. */
struct action **actions;
struct action *default_action;
uint8_t *default_action_data;
uint32_t n_actions;
int default_action_is_const;
uint32_t action_data_size_max;
int *action_is_for_table_entries;
int *action_is_for_default_entry;
2023-09-13 12:21:49 +00:00
struct hash_func *hf;
2022-09-06 04:00:10 +00:00
uint32_t size;
uint32_t id;
};
TAILQ_HEAD(table_tailq, table);
struct table_runtime {
rte_swx_table_lookup_t func;
void *mailbox;
uint8_t **key;
};
struct table_statistics {
uint64_t n_pkts_hit[2]; /* 0 = Miss, 1 = Hit. */
uint64_t *n_pkts_action;
};
/*
* Selector.
*/
struct selector {
TAILQ_ENTRY(selector) node;
char name[RTE_SWX_NAME_SIZE];
struct field *group_id_field;
struct field **selector_fields;
uint32_t n_selector_fields;
struct header *selector_header;
struct field *member_id_field;
uint32_t n_groups_max;
uint32_t n_members_per_group_max;
uint32_t id;
};
TAILQ_HEAD(selector_tailq, selector);
struct selector_runtime {
void *mailbox;
uint8_t **group_id_buffer;
uint8_t **selector_buffer;
uint8_t **member_id_buffer;
};
struct selector_statistics {
uint64_t n_pkts;
};
/*
* Learner table.
*/
struct learner {
TAILQ_ENTRY(learner) node;
char name[RTE_SWX_NAME_SIZE];
/* Match. */
struct field **fields;
uint32_t n_fields;
struct header *header;
/* Action. */
struct action **actions;
struct action *default_action;
uint8_t *default_action_data;
uint32_t n_actions;
int default_action_is_const;
uint32_t action_data_size_max;
int *action_is_for_table_entries;
int *action_is_for_default_entry;
2023-09-13 12:21:49 +00:00
struct hash_func *hf;
2022-09-06 04:00:10 +00:00
uint32_t size;
2023-09-13 12:21:49 +00:00
uint32_t timeout[RTE_SWX_TABLE_LEARNER_N_KEY_TIMEOUTS_MAX];
uint32_t n_timeouts;
2022-09-06 04:00:10 +00:00
uint32_t id;
};
TAILQ_HEAD(learner_tailq, learner);
struct learner_runtime {
void *mailbox;
uint8_t **key;
};
struct learner_statistics {
uint64_t n_pkts_hit[2]; /* 0 = Miss, 1 = Hit. */
uint64_t n_pkts_learn[2]; /* 0 = Learn OK, 1 = Learn error. */
2023-09-13 12:21:49 +00:00
uint64_t n_pkts_rearm;
2022-09-06 04:00:10 +00:00
uint64_t n_pkts_forget;
uint64_t *n_pkts_action;
};
/*
* Register array.
*/
struct regarray {
TAILQ_ENTRY(regarray) node;
char name[RTE_SWX_NAME_SIZE];
uint64_t init_val;
uint32_t size;
uint32_t id;
};
TAILQ_HEAD(regarray_tailq, regarray);
struct regarray_runtime {
uint64_t *regarray;
uint32_t size_mask;
};
/*
* Meter array.
*/
struct meter_profile {
TAILQ_ENTRY(meter_profile) node;
char name[RTE_SWX_NAME_SIZE];
struct rte_meter_trtcm_params params;
struct rte_meter_trtcm_profile profile;
uint32_t n_users;
};
TAILQ_HEAD(meter_profile_tailq, meter_profile);
struct metarray {
TAILQ_ENTRY(metarray) node;
char name[RTE_SWX_NAME_SIZE];
uint32_t size;
uint32_t id;
};
TAILQ_HEAD(metarray_tailq, metarray);
struct meter {
struct rte_meter_trtcm m;
struct meter_profile *profile;
enum rte_color color_mask;
uint8_t pad[20];
uint64_t n_pkts[RTE_COLORS];
uint64_t n_bytes[RTE_COLORS];
};
struct metarray_runtime {
struct meter *metarray;
uint32_t size_mask;
};
/*
* Pipeline.
*/
struct thread {
/* Packet. */
struct rte_swx_pkt pkt;
uint8_t *ptr;
2023-09-13 12:21:49 +00:00
uint32_t *mirroring_slots;
uint64_t mirroring_slots_mask;
int recirculate;
uint32_t recirc_pass_id;
2022-09-06 04:00:10 +00:00
/* Structures. */
uint8_t **structs;
/* Packet headers. */
struct header_runtime *headers; /* Extracted or generated headers. */
struct header_out_runtime *headers_out; /* Emitted headers. */
uint8_t *header_storage;
uint8_t *header_out_storage;
uint64_t valid_headers;
uint32_t n_headers_out;
/* Packet meta-data. */
uint8_t *metadata;
/* Tables. */
struct table_runtime *tables;
struct selector_runtime *selectors;
struct learner_runtime *learners;
struct rte_swx_table_state *table_state;
uint64_t action_id;
2023-09-13 12:21:49 +00:00
size_t entry_id;
2022-09-06 04:00:10 +00:00
int hit; /* 0 = Miss, 1 = Hit. */
uint32_t learner_id;
uint64_t time;
/* Extern objects and functions. */
struct extern_obj_runtime *extern_objs;
struct extern_func_runtime *extern_funcs;
/* Instructions. */
struct instruction *ip;
struct instruction *ret;
};
#define MASK64_BIT_GET(mask, pos) ((mask) & (1LLU << (pos)))
#define MASK64_BIT_SET(mask, pos) ((mask) | (1LLU << (pos)))
#define MASK64_BIT_CLR(mask, pos) ((mask) & ~(1LLU << (pos)))
#define HEADER_VALID(thread, header_id) \
MASK64_BIT_GET((thread)->valid_headers, header_id)
static inline uint64_t
instr_operand_hbo(struct thread *t, const struct instr_operand *x)
{
uint8_t *x_struct = t->structs[x->struct_id];
uint64_t *x64_ptr = (uint64_t *)&x_struct[x->offset];
uint64_t x64 = *x64_ptr;
uint64_t x64_mask = UINT64_MAX >> (64 - x->n_bits);
return x64 & x64_mask;
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
static inline uint64_t
instr_operand_nbo(struct thread *t, const struct instr_operand *x)
{
uint8_t *x_struct = t->structs[x->struct_id];
uint64_t *x64_ptr = (uint64_t *)&x_struct[x->offset];
uint64_t x64 = *x64_ptr;
return ntoh64(x64) >> (64 - x->n_bits);
}
#else
#define instr_operand_nbo instr_operand_hbo
#endif
#define ALU(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \
uint64_t src = src64 & src64_mask; \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define ALU_MH(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src = ntoh64(src64) >> (64 - (ip)->alu.src.n_bits); \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \
}
#define ALU_HM(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \
uint64_t src = src64 & src64_mask; \
\
uint64_t result = dst operator src; \
result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#define ALU_HM_FAST(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \
uint64_t src = hton64(src64 & src64_mask) >> (64 - (ip)->alu.dst.n_bits); \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#define ALU_HH(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src = ntoh64(src64) >> (64 - (ip)->alu.src.n_bits); \
\
uint64_t result = dst operator src; \
result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#define ALU_HH_FAST(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src = (src64 << (64 - (ip)->alu.src.n_bits)) >> (64 - (ip)->alu.dst.n_bits); \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#else
#define ALU_MH ALU
#define ALU_HM ALU
#define ALU_HM_FAST ALU
#define ALU_HH ALU
#define ALU_HH_FAST ALU
#endif
#define ALU_I(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint64_t src = (ip)->alu.src_val; \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \
}
#define ALU_MI ALU_I
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define ALU_HI(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \
\
uint64_t src = (ip)->alu.src_val; \
\
uint64_t result = dst operator src; \
result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#else
#define ALU_HI ALU_I
#endif
#define MOV(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->mov.src.n_bits); \
uint64_t src = src64 & src64_mask; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define MOV_MH(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src = ntoh64(src64) >> (64 - (ip)->mov.src.n_bits); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \
}
#define MOV_HM(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->mov.src.n_bits); \
uint64_t src = src64 & src64_mask; \
\
src = hton64(src) >> (64 - (ip)->mov.dst.n_bits); \
*dst64_ptr = (dst64 & ~dst64_mask) | src; \
}
#define MOV_HH(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \
uint64_t src64 = *src64_ptr; \
\
uint64_t src = src64 << (64 - (ip)->mov.src.n_bits); \
src = src >> (64 - (ip)->mov.dst.n_bits); \
*dst64_ptr = (dst64 & ~dst64_mask) | src; \
}
#else
#define MOV_MH MOV
#define MOV_HM MOV
#define MOV_HH MOV
#endif
#define MOV_I(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint64_t src = (ip)->mov.src_val; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \
}
#define JMP_CMP(thread, ip, operator) \
{ \
uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \
uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \
uint64_t a64 = *a64_ptr; \
uint64_t a64_mask = UINT64_MAX >> (64 - (ip)->jmp.a.n_bits); \
uint64_t a = a64 & a64_mask; \
\
uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \
uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \
uint64_t b64 = *b64_ptr; \
uint64_t b64_mask = UINT64_MAX >> (64 - (ip)->jmp.b.n_bits); \
uint64_t b = b64 & b64_mask; \
\
(thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define JMP_CMP_MH(thread, ip, operator) \
{ \
uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \
uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \
uint64_t a64 = *a64_ptr; \
uint64_t a64_mask = UINT64_MAX >> (64 - (ip)->jmp.a.n_bits); \
uint64_t a = a64 & a64_mask; \
\
uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \
uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \
uint64_t b64 = *b64_ptr; \
uint64_t b = ntoh64(b64) >> (64 - (ip)->jmp.b.n_bits); \
\
(thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \
}
#define JMP_CMP_HM(thread, ip, operator) \
{ \
uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \
uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \
uint64_t a64 = *a64_ptr; \
uint64_t a = ntoh64(a64) >> (64 - (ip)->jmp.a.n_bits); \
\
uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \
uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \
uint64_t b64 = *b64_ptr; \
uint64_t b64_mask = UINT64_MAX >> (64 - (ip)->jmp.b.n_bits); \
uint64_t b = b64 & b64_mask; \
\
(thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \
}
#define JMP_CMP_HH(thread, ip, operator) \
{ \
uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \
uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \
uint64_t a64 = *a64_ptr; \
uint64_t a = ntoh64(a64) >> (64 - (ip)->jmp.a.n_bits); \
\
uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \
uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \
uint64_t b64 = *b64_ptr; \
uint64_t b = ntoh64(b64) >> (64 - (ip)->jmp.b.n_bits); \
\
(thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \
}
#define JMP_CMP_HH_FAST(thread, ip, operator) \
{ \
uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \
uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \
uint64_t a64 = *a64_ptr; \
uint64_t a = a64 << (64 - (ip)->jmp.a.n_bits); \
\
uint8_t *b_struct = (thread)->structs[(ip)->jmp.b.struct_id]; \
uint64_t *b64_ptr = (uint64_t *)&b_struct[(ip)->jmp.b.offset]; \
uint64_t b64 = *b64_ptr; \
uint64_t b = b64 << (64 - (ip)->jmp.b.n_bits); \
\
(thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \
}
#else
#define JMP_CMP_MH JMP_CMP
#define JMP_CMP_HM JMP_CMP
#define JMP_CMP_HH JMP_CMP
#define JMP_CMP_HH_FAST JMP_CMP
#endif
#define JMP_CMP_I(thread, ip, operator) \
{ \
uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \
uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \
uint64_t a64 = *a64_ptr; \
uint64_t a64_mask = UINT64_MAX >> (64 - (ip)->jmp.a.n_bits); \
uint64_t a = a64 & a64_mask; \
\
uint64_t b = (ip)->jmp.b_val; \
\
(thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \
}
#define JMP_CMP_MI JMP_CMP_I
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define JMP_CMP_HI(thread, ip, operator) \
{ \
uint8_t *a_struct = (thread)->structs[(ip)->jmp.a.struct_id]; \
uint64_t *a64_ptr = (uint64_t *)&a_struct[(ip)->jmp.a.offset]; \
uint64_t a64 = *a64_ptr; \
uint64_t a = ntoh64(a64) >> (64 - (ip)->jmp.a.n_bits); \
\
uint64_t b = (ip)->jmp.b_val; \
\
(thread)->ip = (a operator b) ? (ip)->jmp.ip : ((thread)->ip + 1); \
}
#else
#define JMP_CMP_HI JMP_CMP_I
#endif
#define METADATA_READ(thread, offset, n_bits) \
({ \
uint64_t *m64_ptr = (uint64_t *)&(thread)->metadata[offset]; \
uint64_t m64 = *m64_ptr; \
uint64_t m64_mask = UINT64_MAX >> (64 - (n_bits)); \
(m64 & m64_mask); \
})
#define METADATA_WRITE(thread, offset, n_bits, value) \
{ \
uint64_t *m64_ptr = (uint64_t *)&(thread)->metadata[offset]; \
uint64_t m64 = *m64_ptr; \
uint64_t m64_mask = UINT64_MAX >> (64 - (n_bits)); \
\
uint64_t m_new = value; \
\
*m64_ptr = (m64 & ~m64_mask) | (m_new & m64_mask); \
}
#ifndef RTE_SWX_PIPELINE_THREADS_MAX
#define RTE_SWX_PIPELINE_THREADS_MAX 16
#endif
#ifndef RTE_SWX_PIPELINE_INSTRUCTION_TABLE_SIZE_MAX
#define RTE_SWX_PIPELINE_INSTRUCTION_TABLE_SIZE_MAX 256
#endif
struct rte_swx_pipeline {
2023-09-13 12:21:49 +00:00
char name[RTE_SWX_NAME_SIZE];
2022-09-06 04:00:10 +00:00
struct struct_type_tailq struct_types;
struct port_in_type_tailq port_in_types;
struct port_in_tailq ports_in;
struct port_out_type_tailq port_out_types;
struct port_out_tailq ports_out;
struct extern_type_tailq extern_types;
struct extern_obj_tailq extern_objs;
struct extern_func_tailq extern_funcs;
2023-09-13 12:21:49 +00:00
struct hash_func_tailq hash_funcs;
2022-09-06 04:00:10 +00:00
struct header_tailq headers;
struct struct_type *metadata_st;
uint32_t metadata_struct_id;
struct action_tailq actions;
struct table_type_tailq table_types;
struct table_tailq tables;
struct selector_tailq selectors;
struct learner_tailq learners;
struct regarray_tailq regarrays;
struct meter_profile_tailq meter_profiles;
struct metarray_tailq metarrays;
struct port_in_runtime *in;
struct port_out_runtime *out;
2023-09-13 12:21:49 +00:00
struct mirroring_session *mirroring_sessions;
2022-09-06 04:00:10 +00:00
struct instruction **action_instructions;
action_func_t *action_funcs;
struct rte_swx_table_state *table_state;
struct table_statistics *table_stats;
struct selector_statistics *selector_stats;
struct learner_statistics *learner_stats;
2023-09-13 12:21:49 +00:00
struct hash_func_runtime *hash_func_runtime;
2022-09-06 04:00:10 +00:00
struct regarray_runtime *regarray_runtime;
struct metarray_runtime *metarray_runtime;
struct instruction *instructions;
struct instruction_data *instruction_data;
instr_exec_t *instruction_table;
struct thread threads[RTE_SWX_PIPELINE_THREADS_MAX];
void *lib;
uint32_t n_structs;
uint32_t n_ports_in;
uint32_t n_ports_out;
2023-09-13 12:21:49 +00:00
uint32_t n_mirroring_slots;
uint32_t n_mirroring_sessions;
2022-09-06 04:00:10 +00:00
uint32_t n_extern_objs;
uint32_t n_extern_funcs;
2023-09-13 12:21:49 +00:00
uint32_t n_hash_funcs;
2022-09-06 04:00:10 +00:00
uint32_t n_actions;
uint32_t n_tables;
uint32_t n_selectors;
uint32_t n_learners;
uint32_t n_regarrays;
uint32_t n_metarrays;
uint32_t n_headers;
uint32_t thread_id;
uint32_t port_id;
uint32_t n_instructions;
int build_done;
int numa_node;
};
/*
* Instruction.
*/
static inline void
pipeline_port_inc(struct rte_swx_pipeline *p)
{
p->port_id = (p->port_id + 1) & (p->n_ports_in - 1);
}
static inline void
thread_ip_reset(struct rte_swx_pipeline *p, struct thread *t)
{
t->ip = p->instructions;
}
static inline void
thread_ip_set(struct thread *t, struct instruction *ip)
{
t->ip = ip;
}
static inline void
thread_ip_action_call(struct rte_swx_pipeline *p,
struct thread *t,
uint32_t action_id)
{
t->ret = t->ip + 1;
t->ip = p->action_instructions[action_id];
}
static inline void
thread_ip_inc(struct rte_swx_pipeline *p);
static inline void
thread_ip_inc(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
t->ip++;
}
static inline void
thread_ip_inc_cond(struct thread *t, int cond)
{
t->ip += cond;
}
static inline void
thread_yield(struct rte_swx_pipeline *p)
{
p->thread_id = (p->thread_id + 1) & (RTE_SWX_PIPELINE_THREADS_MAX - 1);
}
static inline void
thread_yield_cond(struct rte_swx_pipeline *p, int cond)
{
p->thread_id = (p->thread_id + cond) & (RTE_SWX_PIPELINE_THREADS_MAX - 1);
}
/*
* rx.
*/
static inline int
__instr_rx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct port_in_runtime *port = &p->in[p->port_id];
struct rte_swx_pkt *pkt = &t->pkt;
int pkt_received;
2023-09-13 12:21:49 +00:00
/* Recirculation: keep the current packet. */
if (t->recirculate) {
TRACE("[Thread %2u] rx - recirculate (pass %u)\n",
p->thread_id,
t->recirc_pass_id + 1);
/* Packet. */
t->ptr = &pkt->pkt[pkt->offset];
t->mirroring_slots_mask = 0;
t->recirculate = 0;
t->recirc_pass_id++;
/* Headers. */
t->valid_headers = 0;
t->n_headers_out = 0;
/* Tables. */
t->table_state = p->table_state;
return 1;
}
2022-09-06 04:00:10 +00:00
/* Packet. */
pkt_received = port->pkt_rx(port->obj, pkt);
t->ptr = &pkt->pkt[pkt->offset];
rte_prefetch0(t->ptr);
TRACE("[Thread %2u] rx %s from port %u\n",
p->thread_id,
pkt_received ? "1 pkt" : "0 pkts",
p->port_id);
2023-09-13 12:21:49 +00:00
t->mirroring_slots_mask = 0;
t->recirc_pass_id = 0;
2022-09-06 04:00:10 +00:00
/* Headers. */
t->valid_headers = 0;
t->n_headers_out = 0;
/* Meta-data. */
METADATA_WRITE(t, ip->io.io.offset, ip->io.io.n_bits, p->port_id);
/* Tables. */
t->table_state = p->table_state;
/* Thread. */
pipeline_port_inc(p);
return pkt_received;
}
static inline void
instr_rx_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
int pkt_received;
/* Packet. */
pkt_received = __instr_rx_exec(p, t, ip);
/* Thread. */
thread_ip_inc_cond(t, pkt_received);
thread_yield(p);
}
/*
* tx.
*/
static inline void
emit_handler(struct thread *t)
{
struct header_out_runtime *h0 = &t->headers_out[0];
struct header_out_runtime *h1 = &t->headers_out[1];
uint32_t offset = 0, i;
/* No header change or header decapsulation. */
if ((t->n_headers_out == 1) &&
(h0->ptr + h0->n_bytes == t->ptr)) {
TRACE("Emit handler: no header change or header decap.\n");
t->pkt.offset -= h0->n_bytes;
t->pkt.length += h0->n_bytes;
return;
}
/* Header encapsulation (optionally, with prior header decapsulation). */
if ((t->n_headers_out == 2) &&
(h1->ptr + h1->n_bytes == t->ptr) &&
(h0->ptr == h0->ptr0)) {
uint32_t offset;
TRACE("Emit handler: header encapsulation.\n");
offset = h0->n_bytes + h1->n_bytes;
memcpy(t->ptr - offset, h0->ptr, h0->n_bytes);
t->pkt.offset -= offset;
t->pkt.length += offset;
return;
}
/* For any other case. */
TRACE("Emit handler: complex case.\n");
for (i = 0; i < t->n_headers_out; i++) {
struct header_out_runtime *h = &t->headers_out[i];
memcpy(&t->header_out_storage[offset], h->ptr, h->n_bytes);
offset += h->n_bytes;
}
if (offset) {
memcpy(t->ptr - offset, t->header_out_storage, offset);
t->pkt.offset -= offset;
t->pkt.length += offset;
}
}
2023-09-13 12:21:49 +00:00
static inline void
mirroring_handler(struct rte_swx_pipeline *p, struct thread *t, struct rte_swx_pkt *pkt)
{
uint64_t slots_mask = t->mirroring_slots_mask, slot_mask;
uint32_t slot_id;
for (slot_id = 0, slot_mask = 1LLU ; slots_mask; slot_id++, slot_mask <<= 1)
if (slot_mask & slots_mask) {
struct port_out_runtime *port;
struct mirroring_session *session;
uint32_t port_id, session_id;
session_id = t->mirroring_slots[slot_id];
session = &p->mirroring_sessions[session_id];
port_id = session->port_id;
port = &p->out[port_id];
if (session->fast_clone)
port->pkt_fast_clone_tx(port->obj, pkt);
else
port->pkt_clone_tx(port->obj, pkt, session->truncation_length);
slots_mask &= ~slot_mask;
}
}
2022-09-06 04:00:10 +00:00
static inline void
__instr_tx_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t port_id = METADATA_READ(t, ip->io.io.offset, ip->io.io.n_bits);
struct port_out_runtime *port = &p->out[port_id];
struct rte_swx_pkt *pkt = &t->pkt;
2023-09-13 12:21:49 +00:00
/* Recirculation: keep the current packet. */
if (t->recirculate) {
TRACE("[Thread %2u]: tx 1 pkt - recirculate\n",
p->thread_id);
/* Headers. */
emit_handler(t);
/* Packet. */
mirroring_handler(p, t, pkt);
return;
}
2022-09-06 04:00:10 +00:00
TRACE("[Thread %2u]: tx 1 pkt to port %u\n",
p->thread_id,
(uint32_t)port_id);
/* Headers. */
emit_handler(t);
/* Packet. */
2023-09-13 12:21:49 +00:00
mirroring_handler(p, t, pkt);
2022-09-06 04:00:10 +00:00
port->pkt_tx(port->obj, pkt);
}
static inline void
__instr_tx_i_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t port_id = ip->io.io.val;
struct port_out_runtime *port = &p->out[port_id];
struct rte_swx_pkt *pkt = &t->pkt;
2023-09-13 12:21:49 +00:00
/* Recirculation: keep the current packet. */
if (t->recirculate) {
TRACE("[Thread %2u]: tx (i) 1 pkt - recirculate\n",
p->thread_id);
/* Headers. */
emit_handler(t);
/* Packet. */
mirroring_handler(p, t, pkt);
return;
}
2022-09-06 04:00:10 +00:00
TRACE("[Thread %2u]: tx (i) 1 pkt to port %u\n",
p->thread_id,
(uint32_t)port_id);
/* Headers. */
emit_handler(t);
/* Packet. */
2023-09-13 12:21:49 +00:00
mirroring_handler(p, t, pkt);
port->pkt_tx(port->obj, pkt);
}
static inline void
__instr_drop_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip __rte_unused)
{
uint64_t port_id = p->n_ports_out - 1;
struct port_out_runtime *port = &p->out[port_id];
struct rte_swx_pkt *pkt = &t->pkt;
TRACE("[Thread %2u]: drop 1 pkt\n",
p->thread_id);
/* Headers. */
emit_handler(t);
/* Packet. */
mirroring_handler(p, t, pkt);
2022-09-06 04:00:10 +00:00
port->pkt_tx(port->obj, pkt);
}
2023-09-13 12:21:49 +00:00
static inline void
__instr_mirror_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint64_t slot_id = instr_operand_hbo(t, &ip->mirror.dst);
uint64_t session_id = instr_operand_hbo(t, &ip->mirror.src);
slot_id &= p->n_mirroring_slots - 1;
session_id &= p->n_mirroring_sessions - 1;
TRACE("[Thread %2u]: mirror pkt (slot = %u, session = %u)\n",
p->thread_id,
(uint32_t)slot_id,
(uint32_t)session_id);
t->mirroring_slots[slot_id] = session_id;
t->mirroring_slots_mask |= 1LLU << slot_id;
}
static inline void
__instr_recirculate_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip __rte_unused)
{
TRACE("[Thread %2u]: recirculate\n",
p->thread_id);
t->recirculate = 1;
}
static inline void
__instr_recircid_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u]: recircid (pass %u)\n",
p->thread_id,
t->recirc_pass_id);
/* Meta-data. */
METADATA_WRITE(t, ip->io.io.offset, ip->io.io.n_bits, t->recirc_pass_id);
}
2022-09-06 04:00:10 +00:00
/*
* extract.
*/
static inline void
__instr_hdr_extract_many_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip,
uint32_t n_extract)
{
uint64_t valid_headers = t->valid_headers;
uint8_t *ptr = t->ptr;
uint32_t offset = t->pkt.offset;
uint32_t length = t->pkt.length;
uint32_t i;
for (i = 0; i < n_extract; i++) {
uint32_t header_id = ip->io.hdr.header_id[i];
uint32_t struct_id = ip->io.hdr.struct_id[i];
uint32_t n_bytes = ip->io.hdr.n_bytes[i];
TRACE("[Thread %2u]: extract header %u (%u bytes)\n",
p->thread_id,
header_id,
n_bytes);
/* Headers. */
t->structs[struct_id] = ptr;
valid_headers = MASK64_BIT_SET(valid_headers, header_id);
/* Packet. */
offset += n_bytes;
length -= n_bytes;
ptr += n_bytes;
}
/* Headers. */
t->valid_headers = valid_headers;
/* Packet. */
t->pkt.offset = offset;
t->pkt.length = length;
t->ptr = ptr;
}
static inline void
__instr_hdr_extract_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
__instr_hdr_extract_many_exec(p, t, ip, 1);
}
static inline void
__instr_hdr_extract2_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n", p->thread_id);
__instr_hdr_extract_many_exec(p, t, ip, 2);
}
static inline void
__instr_hdr_extract3_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n", p->thread_id);
__instr_hdr_extract_many_exec(p, t, ip, 3);
}
static inline void
__instr_hdr_extract4_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n", p->thread_id);
__instr_hdr_extract_many_exec(p, t, ip, 4);
}
static inline void
__instr_hdr_extract5_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n", p->thread_id);
__instr_hdr_extract_many_exec(p, t, ip, 5);
}
static inline void
__instr_hdr_extract6_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n", p->thread_id);
__instr_hdr_extract_many_exec(p, t, ip, 6);
}
static inline void
__instr_hdr_extract7_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n", p->thread_id);
__instr_hdr_extract_many_exec(p, t, ip, 7);
}
static inline void
__instr_hdr_extract8_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n", p->thread_id);
__instr_hdr_extract_many_exec(p, t, ip, 8);
}
static inline void
__instr_hdr_extract_m_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint64_t valid_headers = t->valid_headers;
uint8_t *ptr = t->ptr;
uint32_t offset = t->pkt.offset;
uint32_t length = t->pkt.length;
uint32_t n_bytes_last = METADATA_READ(t, ip->io.io.offset, ip->io.io.n_bits);
uint32_t header_id = ip->io.hdr.header_id[0];
uint32_t struct_id = ip->io.hdr.struct_id[0];
uint32_t n_bytes = ip->io.hdr.n_bytes[0];
struct header_runtime *h = &t->headers[header_id];
TRACE("[Thread %2u]: extract header %u (%u + %u bytes)\n",
p->thread_id,
header_id,
n_bytes,
n_bytes_last);
n_bytes += n_bytes_last;
/* Headers. */
t->structs[struct_id] = ptr;
t->valid_headers = MASK64_BIT_SET(valid_headers, header_id);
h->n_bytes = n_bytes;
/* Packet. */
t->pkt.offset = offset + n_bytes;
t->pkt.length = length - n_bytes;
t->ptr = ptr + n_bytes;
}
static inline void
__instr_hdr_lookahead_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint64_t valid_headers = t->valid_headers;
uint8_t *ptr = t->ptr;
uint32_t header_id = ip->io.hdr.header_id[0];
uint32_t struct_id = ip->io.hdr.struct_id[0];
TRACE("[Thread %2u]: lookahead header %u\n",
p->thread_id,
header_id);
/* Headers. */
t->structs[struct_id] = ptr;
t->valid_headers = MASK64_BIT_SET(valid_headers, header_id);
}
/*
* emit.
*/
static inline void
__instr_hdr_emit_many_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip,
uint32_t n_emit)
{
uint64_t valid_headers = t->valid_headers;
uint32_t n_headers_out = t->n_headers_out;
struct header_out_runtime *ho = NULL;
uint8_t *ho_ptr = NULL;
uint32_t ho_nbytes = 0, i;
for (i = 0; i < n_emit; i++) {
uint32_t header_id = ip->io.hdr.header_id[i];
uint32_t struct_id = ip->io.hdr.struct_id[i];
struct header_runtime *hi = &t->headers[header_id];
uint8_t *hi_ptr0 = hi->ptr0;
uint32_t n_bytes = hi->n_bytes;
uint8_t *hi_ptr = t->structs[struct_id];
if (!MASK64_BIT_GET(valid_headers, header_id)) {
TRACE("[Thread %2u]: emit header %u (invalid)\n",
p->thread_id,
header_id);
continue;
}
TRACE("[Thread %2u]: emit header %u (valid)\n",
p->thread_id,
header_id);
/* Headers. */
if (!ho) {
if (!n_headers_out) {
ho = &t->headers_out[0];
ho->ptr0 = hi_ptr0;
ho->ptr = hi_ptr;
ho_ptr = hi_ptr;
ho_nbytes = n_bytes;
n_headers_out = 1;
continue;
} else {
ho = &t->headers_out[n_headers_out - 1];
ho_ptr = ho->ptr;
ho_nbytes = ho->n_bytes;
}
}
if (ho_ptr + ho_nbytes == hi_ptr) {
ho_nbytes += n_bytes;
} else {
ho->n_bytes = ho_nbytes;
ho++;
ho->ptr0 = hi_ptr0;
ho->ptr = hi_ptr;
ho_ptr = hi_ptr;
ho_nbytes = n_bytes;
n_headers_out++;
}
}
if (ho)
ho->n_bytes = ho_nbytes;
t->n_headers_out = n_headers_out;
}
static inline void
__instr_hdr_emit_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
__instr_hdr_emit_many_exec(p, t, ip, 1);
}
static inline void
__instr_hdr_emit_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 1);
__instr_tx_exec(p, t, ip);
}
static inline void
__instr_hdr_emit2_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 2);
__instr_tx_exec(p, t, ip);
}
static inline void
__instr_hdr_emit3_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 3);
__instr_tx_exec(p, t, ip);
}
static inline void
__instr_hdr_emit4_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 4);
__instr_tx_exec(p, t, ip);
}
static inline void
__instr_hdr_emit5_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 5);
__instr_tx_exec(p, t, ip);
}
static inline void
__instr_hdr_emit6_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 6);
__instr_tx_exec(p, t, ip);
}
static inline void
__instr_hdr_emit7_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 7);
__instr_tx_exec(p, t, ip);
}
static inline void
__instr_hdr_emit8_tx_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 9 instructions are fused. ***\n", p->thread_id);
__instr_hdr_emit_many_exec(p, t, ip, 8);
__instr_tx_exec(p, t, ip);
}
/*
* validate.
*/
static inline void
__instr_hdr_validate_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint32_t header_id = ip->valid.header_id;
2023-09-13 12:21:49 +00:00
uint32_t struct_id = ip->valid.struct_id;
uint64_t valid_headers = t->valid_headers;
struct header_runtime *h = &t->headers[header_id];
2022-09-06 04:00:10 +00:00
TRACE("[Thread %2u] validate header %u\n", p->thread_id, header_id);
2023-09-13 12:21:49 +00:00
/* If this header is already valid, then its associated t->structs[] element is also valid
* and therefore it should not be modified. It could point to the packet buffer (in case of
* extracted header) and setting it to the default location (h->ptr0) would be incorrect.
*/
if (MASK64_BIT_GET(valid_headers, header_id))
return;
2022-09-06 04:00:10 +00:00
/* Headers. */
2023-09-13 12:21:49 +00:00
t->structs[struct_id] = h->ptr0;
t->valid_headers = MASK64_BIT_SET(valid_headers, header_id);
2022-09-06 04:00:10 +00:00
}
/*
* invalidate.
*/
static inline void
__instr_hdr_invalidate_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint32_t header_id = ip->valid.header_id;
TRACE("[Thread %2u] invalidate header %u\n", p->thread_id, header_id);
/* Headers. */
t->valid_headers = MASK64_BIT_CLR(t->valid_headers, header_id);
}
/*
* learn.
*/
static inline void
__instr_learn_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint64_t action_id = ip->learn.action_id;
2023-09-13 12:21:49 +00:00
uint32_t mf_first_arg_offset = ip->learn.mf_first_arg_offset;
uint32_t timeout_id = METADATA_READ(t, ip->learn.mf_timeout_id_offset,
ip->learn.mf_timeout_id_n_bits);
2022-09-06 04:00:10 +00:00
uint32_t learner_id = t->learner_id;
struct rte_swx_table_state *ts = &t->table_state[p->n_tables +
p->n_selectors + learner_id];
struct learner_runtime *l = &t->learners[learner_id];
struct learner_statistics *stats = &p->learner_stats[learner_id];
uint32_t status;
/* Table. */
status = rte_swx_table_learner_add(ts->obj,
l->mailbox,
t->time,
action_id,
2023-09-13 12:21:49 +00:00
&t->metadata[mf_first_arg_offset],
timeout_id);
2022-09-06 04:00:10 +00:00
TRACE("[Thread %2u] learner %u learn %s\n",
p->thread_id,
learner_id,
status ? "ok" : "error");
stats->n_pkts_learn[status] += 1;
}
2023-09-13 12:21:49 +00:00
/*
* rearm.
*/
static inline void
__instr_rearm_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip __rte_unused)
{
uint32_t learner_id = t->learner_id;
struct rte_swx_table_state *ts = &t->table_state[p->n_tables +
p->n_selectors + learner_id];
struct learner_runtime *l = &t->learners[learner_id];
struct learner_statistics *stats = &p->learner_stats[learner_id];
/* Table. */
rte_swx_table_learner_rearm(ts->obj, l->mailbox, t->time);
TRACE("[Thread %2u] learner %u rearm\n",
p->thread_id,
learner_id);
stats->n_pkts_rearm += 1;
}
static inline void
__instr_rearm_new_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint32_t timeout_id = METADATA_READ(t, ip->learn.mf_timeout_id_offset,
ip->learn.mf_timeout_id_n_bits);
uint32_t learner_id = t->learner_id;
struct rte_swx_table_state *ts = &t->table_state[p->n_tables +
p->n_selectors + learner_id];
struct learner_runtime *l = &t->learners[learner_id];
struct learner_statistics *stats = &p->learner_stats[learner_id];
/* Table. */
rte_swx_table_learner_rearm_new(ts->obj, l->mailbox, t->time, timeout_id);
TRACE("[Thread %2u] learner %u rearm with timeout ID %u\n",
p->thread_id,
learner_id,
timeout_id);
stats->n_pkts_rearm += 1;
}
2022-09-06 04:00:10 +00:00
/*
* forget.
*/
static inline void
__instr_forget_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip __rte_unused)
{
uint32_t learner_id = t->learner_id;
struct rte_swx_table_state *ts = &t->table_state[p->n_tables +
p->n_selectors + learner_id];
struct learner_runtime *l = &t->learners[learner_id];
struct learner_statistics *stats = &p->learner_stats[learner_id];
/* Table. */
rte_swx_table_learner_delete(ts->obj, l->mailbox);
TRACE("[Thread %2u] learner %u forget\n",
p->thread_id,
learner_id);
stats->n_pkts_forget += 1;
}
2023-09-13 12:21:49 +00:00
/*
* entryid.
*/
static inline void
__instr_entryid_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u]: entryid\n",
p->thread_id);
/* Meta-data. */
METADATA_WRITE(t, ip->mov.dst.offset, ip->mov.dst.n_bits, t->entry_id);
}
2022-09-06 04:00:10 +00:00
/*
* extern.
*/
static inline uint32_t
__instr_extern_obj_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint32_t obj_id = ip->ext_obj.ext_obj_id;
uint32_t func_id = ip->ext_obj.func_id;
struct extern_obj_runtime *obj = &t->extern_objs[obj_id];
rte_swx_extern_type_member_func_t func = obj->funcs[func_id];
uint32_t done;
TRACE("[Thread %2u] extern obj %u member func %u\n",
p->thread_id,
obj_id,
func_id);
done = func(obj->obj, obj->mailbox);
return done;
}
static inline uint32_t
__instr_extern_func_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint32_t ext_func_id = ip->ext_func.ext_func_id;
struct extern_func_runtime *ext_func = &t->extern_funcs[ext_func_id];
rte_swx_extern_func_t func = ext_func->func;
uint32_t done;
TRACE("[Thread %2u] extern func %u\n",
p->thread_id,
ext_func_id);
done = func(ext_func->mailbox);
return done;
}
2023-09-13 12:21:49 +00:00
/*
* hash.
*/
static inline void
__instr_hash_func_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint32_t hash_func_id = ip->hash_func.hash_func_id;
uint32_t dst_offset = ip->hash_func.dst.offset;
uint32_t n_dst_bits = ip->hash_func.dst.n_bits;
uint32_t src_struct_id = ip->hash_func.src.struct_id;
uint32_t src_offset = ip->hash_func.src.offset;
uint32_t n_src_bytes = ip->hash_func.src.n_bytes;
struct hash_func_runtime *func = &p->hash_func_runtime[hash_func_id];
uint8_t *src_ptr = t->structs[src_struct_id];
uint32_t result;
TRACE("[Thread %2u] hash %u\n",
p->thread_id,
hash_func_id);
result = func->func(&src_ptr[src_offset], n_src_bytes, 0);
METADATA_WRITE(t, dst_offset, n_dst_bits, result);
}
2022-09-06 04:00:10 +00:00
/*
* mov.
*/
static inline void
__instr_mov_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] mov\n", p->thread_id);
MOV(t, ip);
}
static inline void
__instr_mov_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] mov (mh)\n", p->thread_id);
MOV_MH(t, ip);
}
static inline void
__instr_mov_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] mov (hm)\n", p->thread_id);
MOV_HM(t, ip);
}
static inline void
__instr_mov_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] mov (hh)\n", p->thread_id);
MOV_HH(t, ip);
}
2023-09-13 12:21:49 +00:00
static inline void
__instr_mov_dma_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint8_t *dst_struct = t->structs[ip->mov.dst.struct_id];
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->mov.dst.offset];
uint32_t *dst32_ptr;
uint16_t *dst16_ptr;
uint8_t *dst8_ptr;
uint8_t *src_struct = t->structs[ip->mov.src.struct_id];
uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->mov.src.offset];
uint32_t *src32_ptr;
uint16_t *src16_ptr;
uint8_t *src8_ptr;
uint32_t n = ip->mov.dst.n_bits >> 3, i;
TRACE("[Thread %2u] mov (dma) %u bytes\n", p->thread_id, n);
/* 8-byte transfers. */
for (i = 0; i < n >> 3; i++)
*dst64_ptr++ = *src64_ptr++;
/* 4-byte transfers. */
n &= 7;
dst32_ptr = (uint32_t *)dst64_ptr;
src32_ptr = (uint32_t *)src64_ptr;
for (i = 0; i < n >> 2; i++)
*dst32_ptr++ = *src32_ptr++;
/* 2-byte transfers. */
n &= 3;
dst16_ptr = (uint16_t *)dst32_ptr;
src16_ptr = (uint16_t *)src32_ptr;
for (i = 0; i < n >> 1; i++)
*dst16_ptr++ = *src16_ptr++;
/* 1-byte transfer. */
n &= 1;
dst8_ptr = (uint8_t *)dst16_ptr;
src8_ptr = (uint8_t *)src16_ptr;
if (n)
*dst8_ptr = *src8_ptr;
}
static inline void
__instr_mov_128_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint8_t *dst_struct = t->structs[ip->mov.dst.struct_id];
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->mov.dst.offset];
uint8_t *src_struct = t->structs[ip->mov.src.struct_id];
uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->mov.src.offset];
TRACE("[Thread %2u] mov (128)\n", p->thread_id);
dst64_ptr[0] = src64_ptr[0];
dst64_ptr[1] = src64_ptr[1];
}
2022-09-06 04:00:10 +00:00
static inline void
__instr_mov_i_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] mov m.f %" PRIx64 "\n", p->thread_id, ip->mov.src_val);
MOV_I(t, ip);
}
/*
* dma.
*/
static inline void
__instr_dma_ht_many_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip,
uint32_t n_dma)
{
uint8_t *action_data = t->structs[0];
uint64_t valid_headers = t->valid_headers;
uint32_t i;
for (i = 0; i < n_dma; i++) {
uint32_t header_id = ip->dma.dst.header_id[i];
uint32_t struct_id = ip->dma.dst.struct_id[i];
uint32_t offset = ip->dma.src.offset[i];
uint32_t n_bytes = ip->dma.n_bytes[i];
struct header_runtime *h = &t->headers[header_id];
uint8_t *h_ptr0 = h->ptr0;
uint8_t *h_ptr = t->structs[struct_id];
void *dst = MASK64_BIT_GET(valid_headers, header_id) ?
h_ptr : h_ptr0;
void *src = &action_data[offset];
TRACE("[Thread %2u] dma h.s t.f\n", p->thread_id);
/* Headers. */
memcpy(dst, src, n_bytes);
t->structs[struct_id] = dst;
valid_headers = MASK64_BIT_SET(valid_headers, header_id);
}
t->valid_headers = valid_headers;
}
static inline void
__instr_dma_ht_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
__instr_dma_ht_many_exec(p, t, ip, 1);
}
static inline void
__instr_dma_ht2_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n", p->thread_id);
__instr_dma_ht_many_exec(p, t, ip, 2);
}
static inline void
__instr_dma_ht3_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n", p->thread_id);
__instr_dma_ht_many_exec(p, t, ip, 3);
}
static inline void
__instr_dma_ht4_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n", p->thread_id);
__instr_dma_ht_many_exec(p, t, ip, 4);
}
static inline void
__instr_dma_ht5_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n", p->thread_id);
__instr_dma_ht_many_exec(p, t, ip, 5);
}
static inline void
__instr_dma_ht6_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n", p->thread_id);
__instr_dma_ht_many_exec(p, t, ip, 6);
}
static inline void
__instr_dma_ht7_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n", p->thread_id);
__instr_dma_ht_many_exec(p, t, ip, 7);
}
static inline void
__instr_dma_ht8_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n", p->thread_id);
__instr_dma_ht_many_exec(p, t, ip, 8);
}
/*
* alu.
*/
static inline void
__instr_alu_add_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] add\n", p->thread_id);
ALU(t, ip, +);
}
static inline void
__instr_alu_add_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] add (mh)\n", p->thread_id);
ALU_MH(t, ip, +);
}
static inline void
__instr_alu_add_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] add (hm)\n", p->thread_id);
ALU_HM(t, ip, +);
}
static inline void
__instr_alu_add_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] add (hh)\n", p->thread_id);
ALU_HH(t, ip, +);
}
static inline void
__instr_alu_add_mi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] add (mi)\n", p->thread_id);
ALU_MI(t, ip, +);
}
static inline void
__instr_alu_add_hi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] add (hi)\n", p->thread_id);
ALU_HI(t, ip, +);
}
static inline void
__instr_alu_sub_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] sub\n", p->thread_id);
ALU(t, ip, -);
}
static inline void
__instr_alu_sub_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] sub (mh)\n", p->thread_id);
ALU_MH(t, ip, -);
}
static inline void
__instr_alu_sub_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] sub (hm)\n", p->thread_id);
ALU_HM(t, ip, -);
}
static inline void
__instr_alu_sub_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] sub (hh)\n", p->thread_id);
ALU_HH(t, ip, -);
}
static inline void
__instr_alu_sub_mi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] sub (mi)\n", p->thread_id);
ALU_MI(t, ip, -);
}
static inline void
__instr_alu_sub_hi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] sub (hi)\n", p->thread_id);
ALU_HI(t, ip, -);
}
static inline void
__instr_alu_shl_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shl\n", p->thread_id);
ALU(t, ip, <<);
}
static inline void
__instr_alu_shl_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shl (mh)\n", p->thread_id);
ALU_MH(t, ip, <<);
}
static inline void
__instr_alu_shl_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shl (hm)\n", p->thread_id);
ALU_HM(t, ip, <<);
}
static inline void
__instr_alu_shl_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shl (hh)\n", p->thread_id);
ALU_HH(t, ip, <<);
}
static inline void
__instr_alu_shl_mi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shl (mi)\n", p->thread_id);
ALU_MI(t, ip, <<);
}
static inline void
__instr_alu_shl_hi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shl (hi)\n", p->thread_id);
ALU_HI(t, ip, <<);
}
static inline void
__instr_alu_shr_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shr\n", p->thread_id);
ALU(t, ip, >>);
}
static inline void
__instr_alu_shr_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shr (mh)\n", p->thread_id);
ALU_MH(t, ip, >>);
}
static inline void
__instr_alu_shr_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shr (hm)\n", p->thread_id);
ALU_HM(t, ip, >>);
}
static inline void
__instr_alu_shr_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shr (hh)\n", p->thread_id);
ALU_HH(t, ip, >>);
}
static inline void
__instr_alu_shr_mi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shr (mi)\n", p->thread_id);
/* Structs. */
ALU_MI(t, ip, >>);
}
static inline void
__instr_alu_shr_hi_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] shr (hi)\n", p->thread_id);
ALU_HI(t, ip, >>);
}
static inline void
__instr_alu_and_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] and\n", p->thread_id);
ALU(t, ip, &);
}
static inline void
__instr_alu_and_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] and (mh)\n", p->thread_id);
ALU_MH(t, ip, &);
}
static inline void
__instr_alu_and_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] and (hm)\n", p->thread_id);
ALU_HM_FAST(t, ip, &);
}
static inline void
__instr_alu_and_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] and (hh)\n", p->thread_id);
ALU_HH_FAST(t, ip, &);
}
static inline void
__instr_alu_and_i_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] and (i)\n", p->thread_id);
ALU_I(t, ip, &);
}
static inline void
__instr_alu_or_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] or\n", p->thread_id);
ALU(t, ip, |);
}
static inline void
__instr_alu_or_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] or (mh)\n", p->thread_id);
ALU_MH(t, ip, |);
}
static inline void
__instr_alu_or_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] or (hm)\n", p->thread_id);
ALU_HM_FAST(t, ip, |);
}
static inline void
__instr_alu_or_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] or (hh)\n", p->thread_id);
ALU_HH_FAST(t, ip, |);
}
static inline void
__instr_alu_or_i_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] or (i)\n", p->thread_id);
ALU_I(t, ip, |);
}
static inline void
__instr_alu_xor_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] xor\n", p->thread_id);
ALU(t, ip, ^);
}
static inline void
__instr_alu_xor_mh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] xor (mh)\n", p->thread_id);
ALU_MH(t, ip, ^);
}
static inline void
__instr_alu_xor_hm_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] xor (hm)\n", p->thread_id);
ALU_HM_FAST(t, ip, ^);
}
static inline void
__instr_alu_xor_hh_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] xor (hh)\n", p->thread_id);
ALU_HH_FAST(t, ip, ^);
}
static inline void
__instr_alu_xor_i_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
TRACE("[Thread %2u] xor (i)\n", p->thread_id);
ALU_I(t, ip, ^);
}
static inline void
__instr_alu_ckadd_field_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint8_t *dst_struct, *src_struct;
uint16_t *dst16_ptr, dst;
uint64_t *src64_ptr, src64, src64_mask, src;
uint64_t r;
TRACE("[Thread %2u] ckadd (field)\n", p->thread_id);
/* Structs. */
dst_struct = t->structs[ip->alu.dst.struct_id];
dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset];
dst = *dst16_ptr;
src_struct = t->structs[ip->alu.src.struct_id];
src64_ptr = (uint64_t *)&src_struct[ip->alu.src.offset];
src64 = *src64_ptr;
src64_mask = UINT64_MAX >> (64 - ip->alu.src.n_bits);
src = src64 & src64_mask;
2023-09-13 12:21:49 +00:00
/* Initialize the result with destination 1's complement. */
2022-09-06 04:00:10 +00:00
r = dst;
r = ~r & 0xFFFF;
/* The first input (r) is a 16-bit number. The second and the third
* inputs are 32-bit numbers. In the worst case scenario, the sum of the
* three numbers (output r) is a 34-bit number.
*/
r += (src >> 32) + (src & 0xFFFFFFFF);
/* The first input is a 16-bit number. The second input is an 18-bit
* number. In the worst case scenario, the sum of the two numbers is a
* 19-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
/* The first input is a 16-bit number (0 .. 0xFFFF). The second input is
* a 3-bit number (0 .. 7). Their sum is a 17-bit number (0 .. 0x10006).
*/
r = (r & 0xFFFF) + (r >> 16);
/* When the input r is (0 .. 0xFFFF), the output r is equal to the input
* r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 ..
* 0x10006), the output r is (0 .. 7). So no carry bit can be generated,
* therefore the output r is always a 16-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
2023-09-13 12:21:49 +00:00
/* Apply 1's complement to the result. */
2022-09-06 04:00:10 +00:00
r = ~r & 0xFFFF;
r = r ? r : 0xFFFF;
*dst16_ptr = (uint16_t)r;
}
static inline void
__instr_alu_cksub_field_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint8_t *dst_struct, *src_struct;
uint16_t *dst16_ptr, dst;
uint64_t *src64_ptr, src64, src64_mask, src;
uint64_t r;
TRACE("[Thread %2u] cksub (field)\n", p->thread_id);
/* Structs. */
dst_struct = t->structs[ip->alu.dst.struct_id];
dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset];
dst = *dst16_ptr;
src_struct = t->structs[ip->alu.src.struct_id];
src64_ptr = (uint64_t *)&src_struct[ip->alu.src.offset];
src64 = *src64_ptr;
src64_mask = UINT64_MAX >> (64 - ip->alu.src.n_bits);
src = src64 & src64_mask;
2023-09-13 12:21:49 +00:00
/* Initialize the result with destination 1's complement. */
2022-09-06 04:00:10 +00:00
r = dst;
r = ~r & 0xFFFF;
/* Subtraction in 1's complement arithmetic (i.e. a '- b) is the same as
* the following sequence of operations in 2's complement arithmetic:
* a '- b = (a - b) % 0xFFFF.
*
* In order to prevent an underflow for the below subtraction, in which
* a 33-bit number (the subtrahend) is taken out of a 16-bit number (the
* minuend), we first add a multiple of the 0xFFFF modulus to the
* minuend. The number we add to the minuend needs to be a 34-bit number
* or higher, so for readability reasons we picked the 36-bit multiple.
* We are effectively turning the 16-bit minuend into a 36-bit number:
* (a - b) % 0xFFFF = (a + 0xFFFF00000 - b) % 0xFFFF.
*/
r += 0xFFFF00000ULL; /* The output r is a 36-bit number. */
/* A 33-bit number is subtracted from a 36-bit number (the input r). The
* result (the output r) is a 36-bit number.
*/
r -= (src >> 32) + (src & 0xFFFFFFFF);
/* The first input is a 16-bit number. The second input is a 20-bit
* number. Their sum is a 21-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
/* The first input is a 16-bit number (0 .. 0xFFFF). The second input is
* a 5-bit number (0 .. 31). The sum is a 17-bit number (0 .. 0x1001E).
*/
r = (r & 0xFFFF) + (r >> 16);
/* When the input r is (0 .. 0xFFFF), the output r is equal to the input
* r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 ..
* 0x1001E), the output r is (0 .. 31). So no carry bit can be
* generated, therefore the output r is always a 16-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
2023-09-13 12:21:49 +00:00
/* Apply 1's complement to the result. */
2022-09-06 04:00:10 +00:00
r = ~r & 0xFFFF;
r = r ? r : 0xFFFF;
*dst16_ptr = (uint16_t)r;
}
static inline void
__instr_alu_ckadd_struct20_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
uint8_t *dst_struct, *src_struct;
2023-09-13 12:21:49 +00:00
uint16_t *dst16_ptr, dst;
2022-09-06 04:00:10 +00:00
uint32_t *src32_ptr;
uint64_t r0, r1;
TRACE("[Thread %2u] ckadd (struct of 20 bytes)\n", p->thread_id);
/* Structs. */
dst_struct = t->structs[ip->alu.dst.struct_id];
dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset];
2023-09-13 12:21:49 +00:00
dst = *dst16_ptr;
2022-09-06 04:00:10 +00:00
src_struct = t->structs[ip->alu.src.struct_id];
src32_ptr = (uint32_t *)&src_struct[0];
2023-09-13 12:21:49 +00:00
/* Initialize the result with destination 1's complement. */
r0 = dst;
r0 = ~r0 & 0xFFFF;
r0 += src32_ptr[0]; /* The output r0 is a 33-bit number. */
2022-09-06 04:00:10 +00:00
r1 = src32_ptr[1]; /* r1 is a 32-bit number. */
2023-09-13 12:21:49 +00:00
r0 += src32_ptr[2]; /* The output r0 is a 34-bit number. */
2022-09-06 04:00:10 +00:00
r1 += src32_ptr[3]; /* The output r1 is a 33-bit number. */
r0 += r1 + src32_ptr[4]; /* The output r0 is a 35-bit number. */
/* The first input is a 16-bit number. The second input is a 19-bit
* number. Their sum is a 20-bit number.
*/
r0 = (r0 & 0xFFFF) + (r0 >> 16);
/* The first input is a 16-bit number (0 .. 0xFFFF). The second input is
* a 4-bit number (0 .. 15). The sum is a 17-bit number (0 .. 0x1000E).
*/
r0 = (r0 & 0xFFFF) + (r0 >> 16);
/* When the input r is (0 .. 0xFFFF), the output r is equal to the input
* r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 ..
* 0x1000E), the output r is (0 .. 15). So no carry bit can be
* generated, therefore the output r is always a 16-bit number.
*/
r0 = (r0 & 0xFFFF) + (r0 >> 16);
2023-09-13 12:21:49 +00:00
/* Apply 1's complement to the result. */
2022-09-06 04:00:10 +00:00
r0 = ~r0 & 0xFFFF;
r0 = r0 ? r0 : 0xFFFF;
*dst16_ptr = (uint16_t)r0;
}
static inline void
__instr_alu_ckadd_struct_exec(struct rte_swx_pipeline *p __rte_unused,
struct thread *t,
const struct instruction *ip)
{
2023-09-13 12:21:49 +00:00
uint32_t src_header_id = ip->alu.src.n_bits; /* The src header ID is stored here. */
uint32_t n_src_header_bytes = t->headers[src_header_id].n_bytes;
2022-09-06 04:00:10 +00:00
uint8_t *dst_struct, *src_struct;
2023-09-13 12:21:49 +00:00
uint16_t *dst16_ptr, dst;
2022-09-06 04:00:10 +00:00
uint32_t *src32_ptr;
2023-09-13 12:21:49 +00:00
uint64_t r;
2022-09-06 04:00:10 +00:00
uint32_t i;
2023-09-13 12:21:49 +00:00
if (n_src_header_bytes == 20) {
__instr_alu_ckadd_struct20_exec(p, t, ip);
return;
}
2022-09-06 04:00:10 +00:00
TRACE("[Thread %2u] ckadd (struct)\n", p->thread_id);
/* Structs. */
dst_struct = t->structs[ip->alu.dst.struct_id];
dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset];
2023-09-13 12:21:49 +00:00
dst = *dst16_ptr;
2022-09-06 04:00:10 +00:00
src_struct = t->structs[ip->alu.src.struct_id];
src32_ptr = (uint32_t *)&src_struct[0];
2023-09-13 12:21:49 +00:00
/* Initialize the result with destination 1's complement. */
r = dst;
r = ~r & 0xFFFF;
/* The max number of 32-bit words in a 32K-byte header is 2^13.
* Therefore, in the worst case scenario, a 45-bit number is added to a
* 16-bit number (the input r), so the output r is 46-bit number.
2022-09-06 04:00:10 +00:00
*/
2023-09-13 12:21:49 +00:00
for (i = 0; i < n_src_header_bytes / 4; i++, src32_ptr++)
2022-09-06 04:00:10 +00:00
r += *src32_ptr;
2023-09-13 12:21:49 +00:00
/* The first input is a 16-bit number. The second input is a 30-bit
* number. Their sum is a 31-bit number.
2022-09-06 04:00:10 +00:00
*/
r = (r & 0xFFFF) + (r >> 16);
/* The first input is a 16-bit number (0 .. 0xFFFF). The second input is
2023-09-13 12:21:49 +00:00
* a 15-bit number (0 .. 0x7FFF). The sum is a 17-bit number (0 .. 0x17FFE).
2022-09-06 04:00:10 +00:00
*/
r = (r & 0xFFFF) + (r >> 16);
/* When the input r is (0 .. 0xFFFF), the output r is equal to the input
* r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 ..
2023-09-13 12:21:49 +00:00
* 0x17FFE), the output r is (0 .. 0x7FFF). So no carry bit can be
2022-09-06 04:00:10 +00:00
* generated, therefore the output r is always a 16-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
2023-09-13 12:21:49 +00:00
/* Apply 1's complement to the result. */
2022-09-06 04:00:10 +00:00
r = ~r & 0xFFFF;
r = r ? r : 0xFFFF;
*dst16_ptr = (uint16_t)r;
}
/*
* Register array.
*/
static inline uint64_t *
instr_regarray_regarray(struct rte_swx_pipeline *p, const struct instruction *ip)
{
struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id];
return r->regarray;
}
static inline uint64_t
instr_regarray_idx_hbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id];
uint8_t *idx_struct = t->structs[ip->regarray.idx.struct_id];
uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->regarray.idx.offset];
uint64_t idx64 = *idx64_ptr;
uint64_t idx64_mask = UINT64_MAX >> (64 - ip->regarray.idx.n_bits);
uint64_t idx = idx64 & idx64_mask & r->size_mask;
return idx;
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
static inline uint64_t
instr_regarray_idx_nbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id];
uint8_t *idx_struct = t->structs[ip->regarray.idx.struct_id];
uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->regarray.idx.offset];
uint64_t idx64 = *idx64_ptr;
uint64_t idx = (ntoh64(idx64) >> (64 - ip->regarray.idx.n_bits)) & r->size_mask;
return idx;
}
#else
#define instr_regarray_idx_nbo instr_regarray_idx_hbo
#endif
static inline uint64_t
instr_regarray_idx_imm(struct rte_swx_pipeline *p, const struct instruction *ip)
{
struct regarray_runtime *r = &p->regarray_runtime[ip->regarray.regarray_id];
uint64_t idx = ip->regarray.idx_val & r->size_mask;
return idx;
}
static inline uint64_t
instr_regarray_src_hbo(struct thread *t, const struct instruction *ip)
{
uint8_t *src_struct = t->structs[ip->regarray.dstsrc.struct_id];
uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->regarray.dstsrc.offset];
uint64_t src64 = *src64_ptr;
uint64_t src64_mask = UINT64_MAX >> (64 - ip->regarray.dstsrc.n_bits);
uint64_t src = src64 & src64_mask;
return src;
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
static inline uint64_t
instr_regarray_src_nbo(struct thread *t, const struct instruction *ip)
{
uint8_t *src_struct = t->structs[ip->regarray.dstsrc.struct_id];
uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->regarray.dstsrc.offset];
uint64_t src64 = *src64_ptr;
uint64_t src = ntoh64(src64) >> (64 - ip->regarray.dstsrc.n_bits);
return src;
}
#else
#define instr_regarray_src_nbo instr_regarray_src_hbo
#endif
static inline void
instr_regarray_dst_hbo_src_hbo_set(struct thread *t, const struct instruction *ip, uint64_t src)
{
uint8_t *dst_struct = t->structs[ip->regarray.dstsrc.struct_id];
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->regarray.dstsrc.offset];
uint64_t dst64 = *dst64_ptr;
uint64_t dst64_mask = UINT64_MAX >> (64 - ip->regarray.dstsrc.n_bits);
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask);
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
static inline void
instr_regarray_dst_nbo_src_hbo_set(struct thread *t, const struct instruction *ip, uint64_t src)
{
uint8_t *dst_struct = t->structs[ip->regarray.dstsrc.struct_id];
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->regarray.dstsrc.offset];
uint64_t dst64 = *dst64_ptr;
uint64_t dst64_mask = UINT64_MAX >> (64 - ip->regarray.dstsrc.n_bits);
src = hton64(src) >> (64 - ip->regarray.dstsrc.n_bits);
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask);
}
#else
#define instr_regarray_dst_nbo_src_hbo_set instr_regarray_dst_hbo_src_hbo_set
#endif
static inline void
__instr_regprefetch_rh_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regprefetch (r[h])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
rte_prefetch0(&regarray[idx]);
}
static inline void
__instr_regprefetch_rm_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regprefetch (r[m])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
rte_prefetch0(&regarray[idx]);
}
static inline void
__instr_regprefetch_ri_exec(struct rte_swx_pipeline *p,
struct thread *t __rte_unused,
const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regprefetch (r[i])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
rte_prefetch0(&regarray[idx]);
}
static inline void
__instr_regrd_hrh_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regrd (h = r[h])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
instr_regarray_dst_nbo_src_hbo_set(t, ip, regarray[idx]);
}
static inline void
__instr_regrd_hrm_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regrd (h = r[m])\n", p->thread_id);
/* Structs. */
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
instr_regarray_dst_nbo_src_hbo_set(t, ip, regarray[idx]);
}
static inline void
__instr_regrd_mrh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regrd (m = r[h])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
instr_regarray_dst_hbo_src_hbo_set(t, ip, regarray[idx]);
}
static inline void
__instr_regrd_mrm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regrd (m = r[m])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
instr_regarray_dst_hbo_src_hbo_set(t, ip, regarray[idx]);
}
static inline void
__instr_regrd_hri_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regrd (h = r[i])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
instr_regarray_dst_nbo_src_hbo_set(t, ip, regarray[idx]);
}
static inline void
__instr_regrd_mri_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx;
TRACE("[Thread %2u] regrd (m = r[i])\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
instr_regarray_dst_hbo_src_hbo_set(t, ip, regarray[idx]);
}
static inline void
__instr_regwr_rhh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[h] = h)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
src = instr_regarray_src_nbo(t, ip);
regarray[idx] = src;
}
static inline void
__instr_regwr_rhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[h] = m)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
src = instr_regarray_src_hbo(t, ip);
regarray[idx] = src;
}
static inline void
__instr_regwr_rmh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[m] = h)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
src = instr_regarray_src_nbo(t, ip);
regarray[idx] = src;
}
static inline void
__instr_regwr_rmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[m] = m)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
src = instr_regarray_src_hbo(t, ip);
regarray[idx] = src;
}
static inline void
__instr_regwr_rhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[h] = i)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
src = ip->regarray.dstsrc_val;
regarray[idx] = src;
}
static inline void
__instr_regwr_rmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[m] = i)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
src = ip->regarray.dstsrc_val;
regarray[idx] = src;
}
static inline void
__instr_regwr_rih_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[i] = h)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
src = instr_regarray_src_nbo(t, ip);
regarray[idx] = src;
}
static inline void
__instr_regwr_rim_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[i] = m)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
src = instr_regarray_src_hbo(t, ip);
regarray[idx] = src;
}
static inline void
__instr_regwr_rii_exec(struct rte_swx_pipeline *p,
struct thread *t __rte_unused,
const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regwr (r[i] = i)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
src = ip->regarray.dstsrc_val;
regarray[idx] = src;
}
static inline void
__instr_regadd_rhh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[h] += h)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
src = instr_regarray_src_nbo(t, ip);
regarray[idx] += src;
}
static inline void
__instr_regadd_rhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[h] += m)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
src = instr_regarray_src_hbo(t, ip);
regarray[idx] += src;
}
static inline void
__instr_regadd_rmh_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[m] += h)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
src = instr_regarray_src_nbo(t, ip);
regarray[idx] += src;
}
static inline void
__instr_regadd_rmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[m] += m)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
src = instr_regarray_src_hbo(t, ip);
regarray[idx] += src;
}
static inline void
__instr_regadd_rhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[h] += i)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_nbo(p, t, ip);
src = ip->regarray.dstsrc_val;
regarray[idx] += src;
}
static inline void
__instr_regadd_rmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[m] += i)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_hbo(p, t, ip);
src = ip->regarray.dstsrc_val;
regarray[idx] += src;
}
static inline void
__instr_regadd_rih_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[i] += h)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
src = instr_regarray_src_nbo(t, ip);
regarray[idx] += src;
}
static inline void
__instr_regadd_rim_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[i] += m)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
src = instr_regarray_src_hbo(t, ip);
regarray[idx] += src;
}
static inline void
__instr_regadd_rii_exec(struct rte_swx_pipeline *p,
struct thread *t __rte_unused,
const struct instruction *ip)
{
uint64_t *regarray, idx, src;
TRACE("[Thread %2u] regadd (r[i] += i)\n", p->thread_id);
regarray = instr_regarray_regarray(p, ip);
idx = instr_regarray_idx_imm(p, ip);
src = ip->regarray.dstsrc_val;
regarray[idx] += src;
}
/*
* metarray.
*/
static inline struct meter *
instr_meter_idx_hbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct metarray_runtime *r = &p->metarray_runtime[ip->meter.metarray_id];
uint8_t *idx_struct = t->structs[ip->meter.idx.struct_id];
uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->meter.idx.offset];
uint64_t idx64 = *idx64_ptr;
uint64_t idx64_mask = UINT64_MAX >> (64 - (ip)->meter.idx.n_bits);
uint64_t idx = idx64 & idx64_mask & r->size_mask;
return &r->metarray[idx];
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
static inline struct meter *
instr_meter_idx_nbo(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct metarray_runtime *r = &p->metarray_runtime[ip->meter.metarray_id];
uint8_t *idx_struct = t->structs[ip->meter.idx.struct_id];
uint64_t *idx64_ptr = (uint64_t *)&idx_struct[ip->meter.idx.offset];
uint64_t idx64 = *idx64_ptr;
uint64_t idx = (ntoh64(idx64) >> (64 - ip->meter.idx.n_bits)) & r->size_mask;
return &r->metarray[idx];
}
#else
#define instr_meter_idx_nbo instr_meter_idx_hbo
#endif
static inline struct meter *
instr_meter_idx_imm(struct rte_swx_pipeline *p, const struct instruction *ip)
{
struct metarray_runtime *r = &p->metarray_runtime[ip->meter.metarray_id];
uint64_t idx = ip->meter.idx_val & r->size_mask;
return &r->metarray[idx];
}
static inline uint32_t
instr_meter_length_hbo(struct thread *t, const struct instruction *ip)
{
uint8_t *src_struct = t->structs[ip->meter.length.struct_id];
uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->meter.length.offset];
uint64_t src64 = *src64_ptr;
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->meter.length.n_bits);
uint64_t src = src64 & src64_mask;
return (uint32_t)src;
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
static inline uint32_t
instr_meter_length_nbo(struct thread *t, const struct instruction *ip)
{
uint8_t *src_struct = t->structs[ip->meter.length.struct_id];
uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->meter.length.offset];
uint64_t src64 = *src64_ptr;
uint64_t src = ntoh64(src64) >> (64 - ip->meter.length.n_bits);
return (uint32_t)src;
}
#else
#define instr_meter_length_nbo instr_meter_length_hbo
#endif
static inline enum rte_color
instr_meter_color_in_hbo(struct thread *t, const struct instruction *ip)
{
uint8_t *src_struct = t->structs[ip->meter.color_in.struct_id];
uint64_t *src64_ptr = (uint64_t *)&src_struct[ip->meter.color_in.offset];
uint64_t src64 = *src64_ptr;
uint64_t src64_mask = UINT64_MAX >> (64 - ip->meter.color_in.n_bits);
uint64_t src = src64 & src64_mask;
return (enum rte_color)src;
}
static inline void
instr_meter_color_out_hbo_set(struct thread *t,
const struct instruction *ip,
enum rte_color color_out)
{
uint8_t *dst_struct = t->structs[ip->meter.color_out.struct_id];
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[ip->meter.color_out.offset];
uint64_t dst64 = *dst64_ptr;
uint64_t dst64_mask = UINT64_MAX >> (64 - ip->meter.color_out.n_bits);
uint64_t src = (uint64_t)color_out;
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask);
}
static inline void
__instr_metprefetch_h_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
struct meter *m;
TRACE("[Thread %2u] metprefetch (h)\n", p->thread_id);
m = instr_meter_idx_nbo(p, t, ip);
rte_prefetch0(m);
}
static inline void
__instr_metprefetch_m_exec(struct rte_swx_pipeline *p,
struct thread *t,
const struct instruction *ip)
{
struct meter *m;
TRACE("[Thread %2u] metprefetch (m)\n", p->thread_id);
m = instr_meter_idx_hbo(p, t, ip);
rte_prefetch0(m);
}
static inline void
__instr_metprefetch_i_exec(struct rte_swx_pipeline *p,
struct thread *t __rte_unused,
const struct instruction *ip)
{
struct meter *m;
TRACE("[Thread %2u] metprefetch (i)\n", p->thread_id);
m = instr_meter_idx_imm(p, ip);
rte_prefetch0(m);
}
static inline void
__instr_meter_hhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (hhm)\n", p->thread_id);
m = instr_meter_idx_nbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_nbo(t, ip);
color_in = instr_meter_color_in_hbo(t, ip);
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_hhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (hhi)\n", p->thread_id);
m = instr_meter_idx_nbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_nbo(t, ip);
color_in = (enum rte_color)ip->meter.color_in_val;
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_hmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (hmm)\n", p->thread_id);
m = instr_meter_idx_nbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_hbo(t, ip);
color_in = instr_meter_color_in_hbo(t, ip);
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_hmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (hmi)\n", p->thread_id);
m = instr_meter_idx_nbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_hbo(t, ip);
color_in = (enum rte_color)ip->meter.color_in_val;
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_mhm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (mhm)\n", p->thread_id);
m = instr_meter_idx_hbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_nbo(t, ip);
color_in = instr_meter_color_in_hbo(t, ip);
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_mhi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (mhi)\n", p->thread_id);
m = instr_meter_idx_hbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_nbo(t, ip);
color_in = (enum rte_color)ip->meter.color_in_val;
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_mmm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (mmm)\n", p->thread_id);
m = instr_meter_idx_hbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_hbo(t, ip);
color_in = instr_meter_color_in_hbo(t, ip);
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_mmi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (mmi)\n", p->thread_id);
m = instr_meter_idx_hbo(p, t, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_hbo(t, ip);
color_in = (enum rte_color)ip->meter.color_in_val;
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_ihm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (ihm)\n", p->thread_id);
m = instr_meter_idx_imm(p, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_nbo(t, ip);
color_in = instr_meter_color_in_hbo(t, ip);
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_ihi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (ihi)\n", p->thread_id);
m = instr_meter_idx_imm(p, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_nbo(t, ip);
color_in = (enum rte_color)ip->meter.color_in_val;
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_imm_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (imm)\n", p->thread_id);
m = instr_meter_idx_imm(p, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_hbo(t, ip);
color_in = instr_meter_color_in_hbo(t, ip);
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
static inline void
__instr_meter_imi_exec(struct rte_swx_pipeline *p, struct thread *t, const struct instruction *ip)
{
struct meter *m;
uint64_t time, n_pkts, n_bytes;
uint32_t length;
enum rte_color color_in, color_out;
TRACE("[Thread %2u] meter (imi)\n", p->thread_id);
m = instr_meter_idx_imm(p, ip);
rte_prefetch0(m->n_pkts);
time = rte_get_tsc_cycles();
length = instr_meter_length_hbo(t, ip);
color_in = (enum rte_color)ip->meter.color_in_val;
color_out = rte_meter_trtcm_color_aware_check(&m->m,
&m->profile->profile,
time,
length,
color_in);
color_out &= m->color_mask;
n_pkts = m->n_pkts[color_out];
n_bytes = m->n_bytes[color_out];
instr_meter_color_out_hbo_set(t, ip, color_out);
m->n_pkts[color_out] = n_pkts + 1;
m->n_bytes[color_out] = n_bytes + length;
}
#endif