f-stack/freebsd/mips/rmi/dev/nlge/if_nlge.c

2564 lines
70 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* Copyright (c) 2003-2009 RMI Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of RMI Corporation, nor the names of its contributors,
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RMI_BSD */
/*
* The XLR device supports upto four 10/100/1000 Ethernet MACs and upto
* two 10G Ethernet MACs (of XGMII). Alternatively, each 10G port can used
* as a SPI-4 interface, with 8 ports per such interface. The MACs are
* encapsulated in another hardware block referred to as network accelerator,
* such that there are three instances of these in a XLR. One of them controls
* the four 1G RGMII ports while one each of the others controls an XGMII port.
* Enabling MACs requires configuring the corresponding network accelerator
* and the individual port.
* The XLS device supports upto 8 10/100/1000 Ethernet MACs or max 2 10G
* Ethernet MACs. The 1G MACs are of SGMII and 10G MACs are of XAUI
* interface. These ports are part of two network accelerators.
* The nlge driver configures and initializes non-SPI4 Ethernet ports in the
* XLR/XLS devices and enables data transfer on them.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/limits.h>
#include <sys/bus.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#define __RMAN_RESOURCE_VISIBLE
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/uma.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <machine/mips_opcode.h>
#include <machine/asm.h>
#include <machine/cpuregs.h>
#include <machine/intr_machdep.h>
#include <machine/clock.h> /* for DELAY */
#include <machine/bus.h>
#include <machine/resource.h>
#include <mips/rmi/interrupt.h>
#include <mips/rmi/msgring.h>
#include <mips/rmi/iomap.h>
#include <mips/rmi/pic.h>
#include <mips/rmi/board.h>
#include <mips/rmi/rmi_mips_exts.h>
#include <mips/rmi/rmi_boot_info.h>
#include <mips/rmi/dev/xlr/atx_cpld.h>
#include <mips/rmi/dev/xlr/xgmac_mdio.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/brgphyreg.h>
#include "miibus_if.h"
#include <mips/rmi/dev/nlge/if_nlge.h>
MODULE_DEPEND(nlna, nlge, 1, 1, 1);
MODULE_DEPEND(nlge, ether, 1, 1, 1);
MODULE_DEPEND(nlge, miibus, 1, 1, 1);
/* Network accelarator entry points */
static int nlna_probe(device_t);
static int nlna_attach(device_t);
static int nlna_detach(device_t);
static int nlna_suspend(device_t);
static int nlna_resume(device_t);
static int nlna_shutdown(device_t);
/* GMAC port entry points */
static int nlge_probe(device_t);
static int nlge_attach(device_t);
static int nlge_detach(device_t);
static int nlge_suspend(device_t);
static int nlge_resume(device_t);
static void nlge_init(void *);
static int nlge_ioctl(struct ifnet *, u_long, caddr_t);
static int nlge_tx(struct ifnet *ifp, struct mbuf *m);
static void nlge_rx(struct nlge_softc *sc, vm_paddr_t paddr, int len);
static int nlge_mii_write(struct device *, int, int, int);
static int nlge_mii_read(struct device *, int, int);
static void nlge_mac_mii_statchg(device_t);
static int nlge_mediachange(struct ifnet *ifp);
static void nlge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
/* Other internal/helper functions */
static void *get_buf(void);
static void nlna_add_to_port_set(struct nlge_port_set *pset,
struct nlge_softc *sc);
static void nlna_config_pde(struct nlna_softc *);
static void nlna_config_parser(struct nlna_softc *);
static void nlna_config_classifier(struct nlna_softc *);
static void nlna_config_fifo_spill_area(struct nlna_softc *sc);
static void nlna_config_translate_table(struct nlna_softc *sc);
static void nlna_config_common(struct nlna_softc *);
static void nlna_disable_ports(struct nlna_softc *sc);
static void nlna_enable_intr(struct nlna_softc *sc);
static void nlna_disable_intr(struct nlna_softc *sc);
static void nlna_enable_ports(struct nlna_softc *sc);
static void nlna_get_all_softc(device_t iodi_dev,
struct nlna_softc **sc_vec, uint32_t vec_sz);
static void nlna_hw_init(struct nlna_softc *sc);
static int nlna_is_last_active_na(struct nlna_softc *sc);
static void nlna_media_specific_config(struct nlna_softc *sc);
static void nlna_reset_ports(struct nlna_softc *sc,
struct xlr_gmac_block_t *blk);
static struct nlna_softc *nlna_sc_init(device_t dev,
struct xlr_gmac_block_t *blk);
static void nlna_setup_intr(struct nlna_softc *sc);
static void nlna_smp_update_pde(void *dummy __unused);
static void nlna_submit_rx_free_desc(struct nlna_softc *sc,
uint32_t n_desc);
static int nlge_gmac_config_speed(struct nlge_softc *, int quick);
static void nlge_hw_init(struct nlge_softc *sc);
static int nlge_if_init(struct nlge_softc *sc);
static void nlge_intr(void *arg);
static int nlge_irq_init(struct nlge_softc *sc);
static void nlge_irq_fini(struct nlge_softc *sc);
static void nlge_media_specific_init(struct nlge_softc *sc);
static void nlge_mii_init(device_t dev, struct nlge_softc *sc);
static int nlge_mii_read_internal(xlr_reg_t *mii_base, int phyaddr,
int regidx);
static void nlge_mii_write_internal(xlr_reg_t *mii_base, int phyaddr,
int regidx, int regval);
void nlge_msgring_handler(int bucket, int size, int code,
int stid, struct msgrng_msg *msg, void *data);
static void nlge_port_disable(struct nlge_softc *sc);
static void nlge_port_enable(struct nlge_softc *sc);
static void nlge_read_mac_addr(struct nlge_softc *sc);
static void nlge_sc_init(struct nlge_softc *sc, device_t dev,
struct xlr_gmac_port *port_info);
static void nlge_set_mac_addr(struct nlge_softc *sc);
static void nlge_set_port_attribs(struct nlge_softc *,
struct xlr_gmac_port *);
static void nlge_mac_set_rx_mode(struct nlge_softc *sc);
static void nlge_sgmii_init(struct nlge_softc *sc);
static int nlge_start_locked(struct ifnet *ifp, struct nlge_softc *sc,
struct mbuf *m);
static int prepare_fmn_message(struct nlge_softc *sc,
struct msgrng_msg *msg, uint32_t *n_entries, struct mbuf *m_head,
uint64_t fr_stid, struct nlge_tx_desc **tx_desc);
static void release_tx_desc(vm_paddr_t phy_addr);
static int send_fmn_msg_tx(struct nlge_softc *, struct msgrng_msg *,
uint32_t n_entries);
//#define DEBUG
#ifdef DEBUG
static int mac_debug = 1;
#undef PDEBUG
#define PDEBUG(fmt, args...) \
do {\
if (mac_debug) {\
printf("[%s@%d|%s]: cpu_%d: " fmt, \
__FILE__, __LINE__, __FUNCTION__, PCPU_GET(cpuid), ##args);\
}\
} while(0);
/* Debug/dump functions */
static void dump_reg(xlr_reg_t *addr, uint32_t offset, char *name);
static void dump_gmac_registers(struct nlge_softc *);
static void dump_na_registers(xlr_reg_t *base, int port_id);
static void dump_mac_stats(struct nlge_softc *sc);
static void dump_mii_regs(struct nlge_softc *sc) __attribute__((used));
static void dump_mii_data(struct mii_data *mii) __attribute__((used));
static void dump_board_info(struct xlr_board_info *);
static void dump_pcs_regs(struct nlge_softc *sc, int phy);
#else
#undef PDEBUG
#define PDEBUG(fmt, args...)
#define dump_reg(a, o, n) /* nop */
#define dump_gmac_registers(a) /* nop */
#define dump_na_registers(a, p) /* nop */
#define dump_board_info(b) /* nop */
#define dump_mac_stats(sc) /* nop */
#define dump_mii_regs(sc) /* nop */
#define dump_mii_data(mii) /* nop */
#define dump_pcs_regs(sc, phy) /* nop */
#endif
/* Wrappers etc. to export the driver entry points. */
static device_method_t nlna_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nlna_probe),
DEVMETHOD(device_attach, nlna_attach),
DEVMETHOD(device_detach, nlna_detach),
DEVMETHOD(device_shutdown, nlna_shutdown),
DEVMETHOD(device_suspend, nlna_suspend),
DEVMETHOD(device_resume, nlna_resume),
/* bus interface : TBD : what are these for ? */
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD_END
};
static driver_t nlna_driver = {
"nlna",
nlna_methods,
sizeof(struct nlna_softc)
};
static devclass_t nlna_devclass;
static device_method_t nlge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nlge_probe),
DEVMETHOD(device_attach, nlge_attach),
DEVMETHOD(device_detach, nlge_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, nlge_suspend),
DEVMETHOD(device_resume, nlge_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, nlge_mii_read),
DEVMETHOD(miibus_writereg, nlge_mii_write),
DEVMETHOD(miibus_statchg, nlge_mac_mii_statchg),
{0, 0}
};
static driver_t nlge_driver = {
"nlge",
nlge_methods,
sizeof(struct nlge_softc)
};
static devclass_t nlge_devclass;
DRIVER_MODULE(nlna, iodi, nlna_driver, nlna_devclass, 0, 0);
DRIVER_MODULE(nlge, nlna, nlge_driver, nlge_devclass, 0, 0);
DRIVER_MODULE(miibus, nlge, miibus_driver, miibus_devclass, 0, 0);
static uma_zone_t nl_tx_desc_zone;
/* Tunables. */
static int flow_classification = 0;
TUNABLE_INT("hw.nlge.flow_classification", &flow_classification);
#define NLGE_HW_CHKSUM 1
static __inline void
atomic_incr_long(unsigned long *addr)
{
/* XXX: fix for 64 bit */
unsigned int *iaddr = (unsigned int *)addr;
xlr_ldaddwu(1, iaddr);
}
static int
nlna_probe(device_t dev)
{
return (BUS_PROBE_DEFAULT);
}
/*
* Add all attached GMAC/XGMAC ports to the device tree. Port
* configuration is spread in two regions - common configuration
* for all ports in the NA and per-port configuration in MAC-specific
* region. This function does the following:
* - adds the ports to the device tree
* - reset the ports
* - do all the common initialization
* - invoke bus_generic_attach for per-port configuration
* - supply initial free rx descriptors to ports
* - initialize s/w data structures
* - finally, enable interrupts (only in the last NA).
*
* For reference, sample address space for common and per-port
* registers is given below.
*
* The address map for RNA0 is: (typical value)
*
* XLR_IO_BASE +--------------------------------------+ 0xbef0_0000
* | |
* | |
* | |
* | |
* | |
* | |
* GMAC0 ---> +--------------------------------------+ 0xbef0_c000
* | |
* | |
* (common) -> |......................................| 0xbef0_c400
* | |
* | (RGMII/SGMII: common registers) |
* | |
* GMAC1 ---> |--------------------------------------| 0xbef0_d000
* | |
* | |
* (common) -> |......................................| 0xbef0_d400
* | |
* | (RGMII/SGMII: common registers) |
* | |
* |......................................|
* and so on ....
*
* Ref: Figure 14-3 and Table 14-1 of XLR PRM
*/
static int
nlna_attach(device_t dev)
{
struct xlr_gmac_block_t *block_info;
device_t gmac_dev;
struct nlna_softc *sc;
int error;
int i;
int id;
id = device_get_unit(dev);
block_info = device_get_ivars(dev);
if (!block_info->enabled) {
return 0;
}
#ifdef DEBUG
dump_board_info(&xlr_board_info);
#endif
/* Initialize nlna state in softc structure */
sc = nlna_sc_init(dev, block_info);
/* Add device's for the ports controlled by this NA. */
if (block_info->type == XLR_GMAC) {
KASSERT(id < 2, ("No GMACs supported with this network"
"accelerator: %d", id));
for (i = 0; i < sc->num_ports; i++) {
gmac_dev = device_add_child(dev, "nlge", -1);
device_set_ivars(gmac_dev, &block_info->gmac_port[i]);
}
} else if (block_info->type == XLR_XGMAC) {
KASSERT(id > 0 && id <= 2, ("No XGMACs supported with this"
"network accelerator: %d", id));
gmac_dev = device_add_child(dev, "nlge", -1);
device_set_ivars(gmac_dev, &block_info->gmac_port[0]);
} else if (block_info->type == XLR_SPI4) {
/* SPI4 is not supported here */
device_printf(dev, "Unsupported: NA with SPI4 type");
return (ENOTSUP);
}
nlna_reset_ports(sc, block_info);
/* Initialize Network Accelarator registers. */
nlna_hw_init(sc);
error = bus_generic_attach(dev);
if (error) {
device_printf(dev, "failed to attach port(s)\n");
goto fail;
}
/* Send out the initial pool of free-descriptors for the rx path */
nlna_submit_rx_free_desc(sc, MAX_FRIN_SPILL);
/* S/w data structure initializations shared by all NA's. */
if (nl_tx_desc_zone == NULL) {
/* Create a zone for allocating tx descriptors */
nl_tx_desc_zone = uma_zcreate("NL Tx Desc",
sizeof(struct nlge_tx_desc), NULL, NULL, NULL, NULL,
XLR_CACHELINE_SIZE, 0);
}
/* Enable NA interrupts */
nlna_setup_intr(sc);
return (0);
fail:
return (error);
}
static int
nlna_detach(device_t dev)
{
struct nlna_softc *sc;
sc = device_get_softc(dev);
if (device_is_alive(dev)) {
nlna_disable_intr(sc);
/* This will make sure that per-port detach is complete
* and all traffic on the ports has been stopped. */
bus_generic_detach(dev);
uma_zdestroy(nl_tx_desc_zone);
}
return (0);
}
static int
nlna_suspend(device_t dev)
{
return (0);
}
static int
nlna_resume(device_t dev)
{
return (0);
}
static int
nlna_shutdown(device_t dev)
{
return (0);
}
/* GMAC port entry points */
static int
nlge_probe(device_t dev)
{
struct nlge_softc *sc;
struct xlr_gmac_port *port_info;
int index;
char *desc[] = { "RGMII", "SGMII", "RGMII/SGMII", "XGMAC", "XAUI",
"Unknown"};
port_info = device_get_ivars(dev);
index = (port_info->type < XLR_RGMII || port_info->type > XLR_XAUI) ?
5 : port_info->type;
device_set_desc_copy(dev, desc[index]);
sc = device_get_softc(dev);
nlge_sc_init(sc, dev, port_info);
nlge_port_disable(sc);
return (0);
}
static int
nlge_attach(device_t dev)
{
struct nlge_softc *sc;
struct nlna_softc *nsc;
int error;
sc = device_get_softc(dev);
nlge_if_init(sc);
nlge_mii_init(dev, sc);
error = nlge_irq_init(sc);
if (error)
return error;
nlge_hw_init(sc);
nsc = (struct nlna_softc *)device_get_softc(device_get_parent(dev));
nsc->child_sc[sc->instance] = sc;
return (0);
}
static int
nlge_detach(device_t dev)
{
struct nlge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->nlge_if;
if (device_is_attached(dev)) {
nlge_port_disable(sc);
nlge_irq_fini(sc);
ether_ifdetach(ifp);
bus_generic_detach(dev);
}
if (ifp)
if_free(ifp);
return (0);
}
static int
nlge_suspend(device_t dev)
{
return (0);
}
static int
nlge_resume(device_t dev)
{
return (0);
}
static void
nlge_init(void *addr)
{
struct nlge_softc *sc;
struct ifnet *ifp;
sc = (struct nlge_softc *)addr;
ifp = sc->nlge_if;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
nlge_gmac_config_speed(sc, 1);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
nlge_port_enable(sc);
if (sc->port_type == XLR_SGMII) {
dump_pcs_regs(sc, 27);
}
dump_gmac_registers(sc);
dump_mac_stats(sc);
}
static int
nlge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct mii_data *mii;
struct nlge_softc *sc;
struct ifreq *ifr;
int error;
sc = ifp->if_softc;
error = 0;
ifr = (struct ifreq *)data;
switch(command) {
case SIOCSIFFLAGS:
NLGE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
nlge_init(sc);
}
if (ifp->if_flags & IFF_PROMISC &&
!(sc->if_flags & IFF_PROMISC)) {
sc->if_flags |= IFF_PROMISC;
nlge_mac_set_rx_mode(sc);
} else if (!(ifp->if_flags & IFF_PROMISC) &&
sc->if_flags & IFF_PROMISC) {
sc->if_flags &= IFF_PROMISC;
nlge_mac_set_rx_mode(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
nlge_port_disable(sc);
}
}
sc->if_flags = ifp->if_flags;
NLGE_UNLOCK(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->mii_bus != NULL) {
mii = (struct mii_data *)device_get_softc(sc->mii_bus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/* This function is called from an interrupt handler */
void
nlge_msgring_handler(int bucket, int size, int code, int stid,
struct msgrng_msg *msg, void *data)
{
struct nlna_softc *na_sc;
struct nlge_softc *sc;
struct ifnet *ifp;
struct mbuf *m;
vm_paddr_t phys_addr;
uint32_t length;
int ctrl;
int tx_error;
int port;
int is_p2p;
is_p2p = 0;
tx_error = 0;
length = (msg->msg0 >> 40) & 0x3fff;
na_sc = (struct nlna_softc *)data;
if (length == 0) {
ctrl = CTRL_REG_FREE;
phys_addr = msg->msg0 & 0xffffffffffULL;
port = (msg->msg0 >> 54) & 0x0f;
is_p2p = (msg->msg0 >> 62) & 0x1;
tx_error = (msg->msg0 >> 58) & 0xf;
} else {
ctrl = CTRL_SNGL;
phys_addr = msg->msg0 & 0xffffffffe0ULL;
length = length - BYTE_OFFSET - MAC_CRC_LEN;
port = msg->msg0 & 0x0f;
}
sc = na_sc->child_sc[port];
if (sc == NULL) {
printf("Message (of %d len) with softc=NULL on %d port (type=%s)\n",
length, port, (ctrl == CTRL_SNGL ? "Pkt rx" :
"Freeback for tx packet"));
return;
}
if (ctrl == CTRL_REG_FREE || ctrl == CTRL_JUMBO_FREE) {
ifp = sc->nlge_if;
if (!tx_error) {
if (is_p2p) {
release_tx_desc(phys_addr);
} else {
#ifdef __mips_n64
m = (struct mbuf *)(uintptr_t)xlr_paddr_ld(phys_addr);
m->m_nextpkt = NULL;
#else
m = (struct mbuf *)(uintptr_t)phys_addr;
#endif
m_freem(m);
}
NLGE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_OACTIVE){
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
NLGE_UNLOCK(sc);
} else {
printf("ERROR: Tx fb error (%d) on port %d\n", tx_error,
port);
}
tx_error ?
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1) :
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
} else if (ctrl == CTRL_SNGL || ctrl == CTRL_START) {
/* Rx Packet */
nlge_rx(sc, phys_addr, length);
nlna_submit_rx_free_desc(na_sc, 1); /* return free descr to NA */
} else {
printf("[%s]: unrecognized ctrl=%d!\n", __func__, ctrl);
}
}
static int
nlge_tx(struct ifnet *ifp, struct mbuf *m)
{
return (nlge_start_locked(ifp, ifp->if_softc, m));
}
static int
nlge_start_locked(struct ifnet *ifp, struct nlge_softc *sc, struct mbuf *m)
{
struct msgrng_msg msg;
struct nlge_tx_desc *tx_desc;
uint64_t fr_stid;
uint32_t cpu;
uint32_t n_entries;
uint32_t tid;
int error, ret;
if (m == NULL)
return (0);
tx_desc = NULL;
error = 0;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING) ||
ifp->if_drv_flags & IFF_DRV_OACTIVE) {
error = ENXIO;
goto fail; // note: mbuf will get free'd
}
cpu = xlr_core_id();
tid = xlr_thr_id();
/* H/w threads [0, 2] --> bucket 6 and [1, 3] --> bucket 7 */
fr_stid = cpu * 8 + 6 + (tid % 2);
/*
* First, remove some freeback messages before transmitting
* any new packets. However, cap the number of messages
* drained to permit this thread to continue with its
* transmission.
*
* Mask for buckets {6, 7} is 0xc0
*/
xlr_msgring_handler(0xc0, 4);
ret = prepare_fmn_message(sc, &msg, &n_entries, m, fr_stid, &tx_desc);
if (ret) {
error = (ret == 2) ? ENOBUFS : ENOTSUP;
goto fail;
}
ret = send_fmn_msg_tx(sc, &msg, n_entries);
if (ret != 0) {
error = EBUSY;
goto fail;
}
return (0);
fail:
if (tx_desc != NULL) {
uma_zfree(nl_tx_desc_zone, tx_desc);
}
if (m != NULL) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
NLGE_LOCK(sc);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
NLGE_UNLOCK(sc);
}
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
}
return (error);
}
static void
nlge_rx(struct nlge_softc *sc, vm_paddr_t paddr, int len)
{
struct ifnet *ifp;
struct mbuf *m;
uint64_t tm, mag;
uint32_t sr;
sr = xlr_enable_kx();
tm = xlr_paddr_ld(paddr - XLR_CACHELINE_SIZE);
mag = xlr_paddr_ld(paddr - XLR_CACHELINE_SIZE + sizeof(uint64_t));
xlr_restore_kx(sr);
m = (struct mbuf *)(intptr_t)tm;
if (mag != 0xf00bad) {
/* somebody else's packet. Error - FIXME in intialization */
printf("cpu %d: *ERROR* Not my packet paddr %jx\n",
xlr_core_id(), (uintmax_t)paddr);
return;
}
ifp = sc->nlge_if;
#ifdef NLGE_HW_CHKSUM
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
if (m->m_data[10] & 0x2) {
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (m->m_data[10] & 0x1) {
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
CSUM_PSEUDO_HDR);
m->m_pkthdr.csum_data = htons(0xffff);
}
}
m->m_data += NLGE_PREPAD_LEN;
len -= NLGE_PREPAD_LEN;
#else
m->m_pkthdr.csum_flags = 0;
#endif
/* align the data */
m->m_data += BYTE_OFFSET ;
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = ifp;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
(*ifp->if_input)(ifp, m);
}
static int
nlge_mii_write(struct device *dev, int phyaddr, int regidx, int regval)
{
struct nlge_softc *sc;
sc = device_get_softc(dev);
if (sc->port_type != XLR_XGMII)
nlge_mii_write_internal(sc->mii_base, phyaddr, regidx, regval);
return (0);
}
static int
nlge_mii_read(struct device *dev, int phyaddr, int regidx)
{
struct nlge_softc *sc;
int val;
sc = device_get_softc(dev);
val = (sc->port_type == XLR_XGMII) ? (0xffff) :
nlge_mii_read_internal(sc->mii_base, phyaddr, regidx);
return (val);
}
static void
nlge_mac_mii_statchg(device_t dev)
{
}
static int
nlge_mediachange(struct ifnet *ifp)
{
return 0;
}
static void
nlge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nlge_softc *sc;
struct mii_data *md;
md = NULL;
sc = ifp->if_softc;
if (sc->mii_bus)
md = device_get_softc(sc->mii_bus);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->link == xlr_mac_link_down)
return;
if (md != NULL)
ifmr->ifm_active = md->mii_media.ifm_cur->ifm_media;
ifmr->ifm_status |= IFM_ACTIVE;
}
static struct nlna_softc *
nlna_sc_init(device_t dev, struct xlr_gmac_block_t *blk)
{
struct nlna_softc *sc;
sc = device_get_softc(dev);
memset(sc, 0, sizeof(*sc));
sc->nlna_dev = dev;
sc->base = xlr_io_mmio(blk->baseaddr);
sc->rfrbucket = blk->station_rfr;
sc->station_id = blk->station_id;
sc->na_type = blk->type;
sc->mac_type = blk->mode;
sc->num_ports = blk->num_ports;
sc->mdio_set.port_vec = sc->mdio_sc;
sc->mdio_set.vec_sz = XLR_MAX_MACS;
return (sc);
}
/*
* Do:
* - Initialize common GMAC registers (index range 0x100-0x3ff).
*/
static void
nlna_hw_init(struct nlna_softc *sc)
{
/*
* Register message ring handler for the NA block, messages from
* the GMAC will have source station id to the first bucket of the
* NA FMN station, so register just that station id.
*/
if (register_msgring_handler(sc->station_id, sc->station_id + 1,
nlge_msgring_handler, sc)) {
panic("Couldn't register msgring handler\n");
}
nlna_config_fifo_spill_area(sc);
nlna_config_pde(sc);
nlna_config_common(sc);
nlna_config_parser(sc);
nlna_config_classifier(sc);
}
/*
* Enable interrupts on all the ports controlled by this NA. For now, we
* only care about the MII interrupt and this has to be enabled only
* on the port id0.
*
* This function is not in-sync with the regular way of doing things - it
* executes only in the context of the last active network accelerator (and
* thereby has some ugly accesses in the device tree). Though inelegant, it
* is necessary to do it this way as the per-port interrupts can be
* setup/enabled only after all the network accelerators have been
* initialized.
*/
static void
nlna_setup_intr(struct nlna_softc *sc)
{
struct nlna_softc *na_sc[XLR_MAX_NLNA];
struct nlge_port_set *pset;
struct xlr_gmac_port *port_info;
device_t iodi_dev;
int i, j;
if (!nlna_is_last_active_na(sc))
return ;
/* Collect all nlna softc pointers */
memset(na_sc, 0, sizeof(*na_sc) * XLR_MAX_NLNA);
iodi_dev = device_get_parent(sc->nlna_dev);
nlna_get_all_softc(iodi_dev, na_sc, XLR_MAX_NLNA);
/* Setup the MDIO interrupt lists. */
/*
* MDIO interrupts are coarse - a single interrupt line provides
* information about one of many possible ports. To figure out the
* exact port on which action is to be taken, all of the ports
* linked to an MDIO interrupt should be read. To enable this,
* ports need to add themselves to port sets.
*/
for (i = 0; i < XLR_MAX_NLNA; i++) {
if (na_sc[i] == NULL)
continue;
for (j = 0; j < na_sc[i]->num_ports; j++) {
/* processing j-th port on i-th NA */
port_info = device_get_ivars(
na_sc[i]->child_sc[j]->nlge_dev);
pset = &na_sc[port_info->mdint_id]->mdio_set;
nlna_add_to_port_set(pset, na_sc[i]->child_sc[j]);
}
}
/* Enable interrupts */
for (i = 0; i < XLR_MAX_NLNA; i++) {
if (na_sc[i] != NULL && na_sc[i]->na_type != XLR_XGMAC) {
nlna_enable_intr(na_sc[i]);
}
}
}
static void
nlna_add_to_port_set(struct nlge_port_set *pset, struct nlge_softc *sc)
{
int i;
/* step past the non-NULL elements */
for (i = 0; i < pset->vec_sz && pset->port_vec[i] != NULL; i++) ;
if (i < pset->vec_sz)
pset->port_vec[i] = sc;
else
printf("warning: internal error: out-of-bounds for MDIO array");
}
static void
nlna_enable_intr(struct nlna_softc *sc)
{
int i;
for (i = 0; i < sc->num_ports; i++) {
if (sc->child_sc[i]->instance == 0)
NLGE_WRITE(sc->child_sc[i]->base, R_INTMASK,
(1 << O_INTMASK__MDInt));
}
}
static void
nlna_disable_intr(struct nlna_softc *sc)
{
int i;
for (i = 0; i < sc->num_ports; i++) {
if (sc->child_sc[i]->instance == 0)
NLGE_WRITE(sc->child_sc[i]->base, R_INTMASK, 0);
}
}
static int
nlna_is_last_active_na(struct nlna_softc *sc)
{
int id;
id = device_get_unit(sc->nlna_dev);
return (id == 2 || xlr_board_info.gmac_block[id + 1].enabled == 0);
}
static void
nlna_submit_rx_free_desc(struct nlna_softc *sc, uint32_t n_desc)
{
struct msgrng_msg msg;
void *ptr;
uint32_t msgrng_flags;
int i, n, stid, ret, code;
if (n_desc > 1) {
PDEBUG("Sending %d free-in descriptors to station=%d\n", n_desc,
sc->rfrbucket);
}
stid = sc->rfrbucket;
code = (sc->na_type == XLR_XGMAC) ? MSGRNG_CODE_XGMAC : MSGRNG_CODE_MAC;
memset(&msg, 0, sizeof(msg));
for (i = 0; i < n_desc; i++) {
ptr = get_buf();
if (!ptr) {
ret = -ENOMEM;
device_printf(sc->nlna_dev, "Cannot allocate mbuf\n");
break;
}
/* Send the free Rx desc to the MAC */
msg.msg0 = vtophys(ptr) & 0xffffffffe0ULL;
n = 0;
do {
msgrng_flags = msgrng_access_enable();
ret = message_send(1, code, stid, &msg);
msgrng_restore(msgrng_flags);
KASSERT(n++ < 100000, ("Too many credit fails in rx path\n"));
} while (ret != 0);
}
}
static __inline__ void *
nlna_config_spill(xlr_reg_t *base, int reg_start_0, int reg_start_1,
int reg_size, int size)
{
void *spill;
uint64_t phys_addr;
uint32_t spill_size;
spill_size = size;
spill = contigmalloc((spill_size + XLR_CACHELINE_SIZE), M_DEVBUF,
M_NOWAIT | M_ZERO, 0, 0xffffffff, XLR_CACHELINE_SIZE, 0);
if (spill == NULL || ((vm_offset_t) spill & (XLR_CACHELINE_SIZE - 1))) {
panic("Unable to allocate memory for spill area!\n");
}
phys_addr = vtophys(spill);
PDEBUG("Allocated spill %d bytes at %llx\n", size, phys_addr);
NLGE_WRITE(base, reg_start_0, (phys_addr >> 5) & 0xffffffff);
NLGE_WRITE(base, reg_start_1, (phys_addr >> 37) & 0x07);
NLGE_WRITE(base, reg_size, spill_size);
return (spill);
}
/*
* Configure the 6 FIFO's that are used by the network accelarator to
* communicate with the rest of the XLx device. 4 of the FIFO's are for
* packets from NA --> cpu (called Class FIFO's) and 2 are for feeding
* the NA with free descriptors.
*/
static void
nlna_config_fifo_spill_area(struct nlna_softc *sc)
{
sc->frin_spill = nlna_config_spill(sc->base,
R_REG_FRIN_SPILL_MEM_START_0,
R_REG_FRIN_SPILL_MEM_START_1,
R_REG_FRIN_SPILL_MEM_SIZE,
MAX_FRIN_SPILL *
sizeof(struct fr_desc));
sc->frout_spill = nlna_config_spill(sc->base,
R_FROUT_SPILL_MEM_START_0,
R_FROUT_SPILL_MEM_START_1,
R_FROUT_SPILL_MEM_SIZE,
MAX_FROUT_SPILL *
sizeof(struct fr_desc));
sc->class_0_spill = nlna_config_spill(sc->base,
R_CLASS0_SPILL_MEM_START_0,
R_CLASS0_SPILL_MEM_START_1,
R_CLASS0_SPILL_MEM_SIZE,
MAX_CLASS_0_SPILL *
sizeof(union rx_tx_desc));
sc->class_1_spill = nlna_config_spill(sc->base,
R_CLASS1_SPILL_MEM_START_0,
R_CLASS1_SPILL_MEM_START_1,
R_CLASS1_SPILL_MEM_SIZE,
MAX_CLASS_1_SPILL *
sizeof(union rx_tx_desc));
sc->class_2_spill = nlna_config_spill(sc->base,
R_CLASS2_SPILL_MEM_START_0,
R_CLASS2_SPILL_MEM_START_1,
R_CLASS2_SPILL_MEM_SIZE,
MAX_CLASS_2_SPILL *
sizeof(union rx_tx_desc));
sc->class_3_spill = nlna_config_spill(sc->base,
R_CLASS3_SPILL_MEM_START_0,
R_CLASS3_SPILL_MEM_START_1,
R_CLASS3_SPILL_MEM_SIZE,
MAX_CLASS_3_SPILL *
sizeof(union rx_tx_desc));
}
/* Set the CPU buckets that receive packets from the NA class FIFOs. */
static void
nlna_config_pde(struct nlna_softc *sc)
{
uint64_t bucket_map;
uint32_t cpumask;
int i, cpu, bucket;
cpumask = 0x1;
#ifdef SMP
/*
* nlna may be called before SMP start in a BOOTP/NFSROOT
* setup. we will distribute packets to other cpus only when
* the SMP is started.
*/
if (smp_started)
cpumask = xlr_hw_thread_mask;
#endif
bucket_map = 0;
for (i = 0; i < 32; i++) {
if (cpumask & (1 << i)) {
cpu = i;
/* use bucket 0 and 1 on every core for NA msgs */
bucket = cpu/4 * 8;
bucket_map |= (3ULL << bucket);
}
}
NLGE_WRITE(sc->base, R_PDE_CLASS_0, (bucket_map & 0xffffffff));
NLGE_WRITE(sc->base, R_PDE_CLASS_0 + 1, ((bucket_map >> 32) & 0xffffffff));
NLGE_WRITE(sc->base, R_PDE_CLASS_1, (bucket_map & 0xffffffff));
NLGE_WRITE(sc->base, R_PDE_CLASS_1 + 1, ((bucket_map >> 32) & 0xffffffff));
NLGE_WRITE(sc->base, R_PDE_CLASS_2, (bucket_map & 0xffffffff));
NLGE_WRITE(sc->base, R_PDE_CLASS_2 + 1, ((bucket_map >> 32) & 0xffffffff));
NLGE_WRITE(sc->base, R_PDE_CLASS_3, (bucket_map & 0xffffffff));
NLGE_WRITE(sc->base, R_PDE_CLASS_3 + 1, ((bucket_map >> 32) & 0xffffffff));
}
/*
* Update the network accelerator packet distribution engine for SMP.
* On bootup, we have just the boot hw thread handling all packets, on SMP
* start, we can start distributing packets across all the cores which are up.
*/
static void
nlna_smp_update_pde(void *dummy __unused)
{
device_t iodi_dev;
struct nlna_softc *na_sc[XLR_MAX_NLNA];
int i;
printf("Updating packet distribution for SMP\n");
iodi_dev = devclass_get_device(devclass_find("iodi"), 0);
nlna_get_all_softc(iodi_dev, na_sc, XLR_MAX_NLNA);
for (i = 0; i < XLR_MAX_NLNA; i++) {
if (na_sc[i] == NULL)
continue;
nlna_disable_ports(na_sc[i]);
nlna_config_pde(na_sc[i]);
nlna_config_translate_table(na_sc[i]);
nlna_enable_ports(na_sc[i]);
}
}
SYSINIT(nlna_smp_update_pde, SI_SUB_SMP, SI_ORDER_ANY, nlna_smp_update_pde,
NULL);
static void
nlna_config_translate_table(struct nlna_softc *sc)
{
uint32_t cpu_mask;
uint32_t val;
int bkts[32]; /* one bucket is assumed for each cpu */
int b1, b2, c1, c2, i, j, k;
int use_bkt;
if (!flow_classification)
return;
use_bkt = 1;
if (smp_started)
cpu_mask = xlr_hw_thread_mask;
else
return;
printf("Using %s-based distribution\n", (use_bkt) ? "bucket" : "class");
j = 0;
for(i = 0; i < 32; i++) {
if ((1 << i) & cpu_mask){
/* for each cpu, mark the 4+threadid bucket */
bkts[j] = ((i / 4) * 8) + (i % 4);
j++;
}
}
/*configure the 128 * 9 Translation table to send to available buckets*/
k = 0;
c1 = 3;
c2 = 0;
for(i = 0; i < 64; i++) {
/* Get the next 2 pairs of (class, bucket):
(c1, b1), (c2, b2).
c1, c2 limited to {0, 1, 2, 3}
i.e, the 4 classes defined by h/w
b1, b2 limited to { bkts[i], where 0 <= i < j}
i.e, the set of buckets computed in the
above loop.
*/
c1 = (c1 + 1) & 3;
c2 = (c1 + 1) & 3;
b1 = bkts[k];
k = (k + 1) % j;
b2 = bkts[k];
k = (k + 1) % j;
PDEBUG("Translation table[%d] b1=%d b2=%d c1=%d c2=%d\n",
i, b1, b2, c1, c2);
val = ((c1 << 23) | (b1 << 17) | (use_bkt << 16) |
(c2 << 7) | (b2 << 1) | (use_bkt << 0));
NLGE_WRITE(sc->base, R_TRANSLATETABLE + i, val);
c1 = c2;
}
}
static void
nlna_config_parser(struct nlna_softc *sc)
{
uint32_t val;
/*
* Mark it as ETHERNET type.
*/
NLGE_WRITE(sc->base, R_L2TYPE_0, 0x01);
#ifndef NLGE_HW_CHKSUM
if (!flow_classification)
return;
#endif
/* Use 7bit CRChash for flow classification with 127 as CRC polynomial*/
NLGE_WRITE(sc->base, R_PARSERCONFIGREG, ((0x7f << 8) | (1 << 1)));
/* configure the parser : L2 Type is configured in the bootloader */
/* extract IP: src, dest protocol */
NLGE_WRITE(sc->base, R_L3CTABLE,
(9 << 20) | (1 << 19) | (1 << 18) | (0x01 << 16) |
(0x0800 << 0));
NLGE_WRITE(sc->base, R_L3CTABLE + 1,
(9 << 25) | (1 << 21) | (12 << 14) | (4 << 10) | (16 << 4) | 4);
#ifdef NLGE_HW_CHKSUM
device_printf(sc->nlna_dev, "Enabled h/w support to compute TCP/IP"
" checksum\n");
#endif
/* Configure to extract SRC port and Dest port for TCP and UDP pkts */
NLGE_WRITE(sc->base, R_L4CTABLE, 6);
NLGE_WRITE(sc->base, R_L4CTABLE + 2, 17);
val = ((0 << 21) | (2 << 17) | (2 << 11) | (2 << 7));
NLGE_WRITE(sc->base, R_L4CTABLE + 1, val);
NLGE_WRITE(sc->base, R_L4CTABLE + 3, val);
}
static void
nlna_config_classifier(struct nlna_softc *sc)
{
int i;
if (sc->mac_type == XLR_XGMII) { /* TBD: XGMII init sequence */
/* xgmac translation table doesn't have sane values on reset */
for (i = 0; i < 64; i++)
NLGE_WRITE(sc->base, R_TRANSLATETABLE + i, 0x0);
/*
* use upper 7 bits of the parser extract to index the
* translate table
*/
NLGE_WRITE(sc->base, R_PARSERCONFIGREG, 0x0);
}
}
/*
* Complete a bunch of h/w register initializations that are common for all the
* ports controlled by a NA.
*/
static void
nlna_config_common(struct nlna_softc *sc)
{
struct xlr_gmac_block_t *block_info;
struct stn_cc *gmac_cc_config;
int i;
block_info = device_get_ivars(sc->nlna_dev);
gmac_cc_config = block_info->credit_config;
for (i = 0; i < MAX_NUM_MSGRNG_STN_CC; i++) {
NLGE_WRITE(sc->base, R_CC_CPU0_0 + i,
gmac_cc_config->counters[i >> 3][i & 0x07]);
}
NLGE_WRITE(sc->base, R_MSG_TX_THRESHOLD, 3);
NLGE_WRITE(sc->base, R_DMACR0, 0xffffffff);
NLGE_WRITE(sc->base, R_DMACR1, 0xffffffff);
NLGE_WRITE(sc->base, R_DMACR2, 0xffffffff);
NLGE_WRITE(sc->base, R_DMACR3, 0xffffffff);
NLGE_WRITE(sc->base, R_FREEQCARVE, 0);
nlna_media_specific_config(sc);
}
static void
nlna_media_specific_config(struct nlna_softc *sc)
{
struct bucket_size *bucket_sizes;
bucket_sizes = xlr_board_info.bucket_sizes;
switch (sc->mac_type) {
case XLR_RGMII:
case XLR_SGMII:
case XLR_XAUI:
NLGE_WRITE(sc->base, R_GMAC_JFR0_BUCKET_SIZE,
bucket_sizes->bucket[MSGRNG_STNID_GMACJFR_0]);
NLGE_WRITE(sc->base, R_GMAC_RFR0_BUCKET_SIZE,
bucket_sizes->bucket[MSGRNG_STNID_GMACRFR_0]);
NLGE_WRITE(sc->base, R_GMAC_JFR1_BUCKET_SIZE,
bucket_sizes->bucket[MSGRNG_STNID_GMACJFR_1]);
NLGE_WRITE(sc->base, R_GMAC_RFR1_BUCKET_SIZE,
bucket_sizes->bucket[MSGRNG_STNID_GMACRFR_1]);
if (sc->mac_type == XLR_XAUI) {
NLGE_WRITE(sc->base, R_TXDATAFIFO0, (224 << 16));
}
break;
case XLR_XGMII:
NLGE_WRITE(sc->base, R_XGS_RFR_BUCKET_SIZE,
bucket_sizes->bucket[sc->rfrbucket]);
default:
break;
}
}
static void
nlna_reset_ports(struct nlna_softc *sc, struct xlr_gmac_block_t *blk)
{
xlr_reg_t *addr;
int i;
uint32_t rx_ctrl;
/* Refer Section 13.9.3 in the PRM for the reset sequence */
for (i = 0; i < sc->num_ports; i++) {
addr = xlr_io_mmio(blk->gmac_port[i].base_addr);
/* 1. Reset RxEnable in MAC_CONFIG */
switch (sc->mac_type) {
case XLR_RGMII:
case XLR_SGMII:
NLGE_UPDATE(addr, R_MAC_CONFIG_1, 0,
(1 << O_MAC_CONFIG_1__rxen));
break;
case XLR_XAUI:
case XLR_XGMII:
NLGE_UPDATE(addr, R_RX_CONTROL, 0,
(1 << O_RX_CONTROL__RxEnable));
break;
default:
printf("Error: Unsupported port_type=%d\n",
sc->mac_type);
}
/* 1.1 Wait for RxControl.RxHalt to be set */
do {
rx_ctrl = NLGE_READ(addr, R_RX_CONTROL);
} while (!(rx_ctrl & 0x2));
/* 2. Set the soft reset bit in RxControl */
NLGE_UPDATE(addr, R_RX_CONTROL, (1 << O_RX_CONTROL__SoftReset),
(1 << O_RX_CONTROL__SoftReset));
/* 2.1 Wait for RxControl.SoftResetDone to be set */
do {
rx_ctrl = NLGE_READ(addr, R_RX_CONTROL);
} while (!(rx_ctrl & 0x8));
/* 3. Clear the soft reset bit in RxControl */
NLGE_UPDATE(addr, R_RX_CONTROL, 0,
(1 << O_RX_CONTROL__SoftReset));
/* Turn off tx/rx on the port. */
NLGE_UPDATE(addr, R_RX_CONTROL, 0,
(1 << O_RX_CONTROL__RxEnable));
NLGE_UPDATE(addr, R_TX_CONTROL, 0,
(1 << O_TX_CONTROL__TxEnable));
}
}
static void
nlna_disable_ports(struct nlna_softc *sc)
{
int i;
for (i = 0; i < sc->num_ports; i++) {
if (sc->child_sc[i] != NULL)
nlge_port_disable(sc->child_sc[i]);
}
}
static void
nlna_enable_ports(struct nlna_softc *sc)
{
device_t nlge_dev, *devlist;
struct nlge_softc *port_sc;
int i, numdevs;
device_get_children(sc->nlna_dev, &devlist, &numdevs);
for (i = 0; i < numdevs; i++) {
nlge_dev = devlist[i];
if (nlge_dev == NULL)
continue;
port_sc = device_get_softc(nlge_dev);
if (port_sc->nlge_if->if_drv_flags & IFF_DRV_RUNNING)
nlge_port_enable(port_sc);
}
free(devlist, M_TEMP);
}
static void
nlna_get_all_softc(device_t iodi_dev, struct nlna_softc **sc_vec,
uint32_t vec_sz)
{
device_t na_dev;
int i;
for (i = 0; i < vec_sz; i++) {
sc_vec[i] = NULL;
na_dev = device_find_child(iodi_dev, "nlna", i);
if (na_dev != NULL)
sc_vec[i] = device_get_softc(na_dev);
}
}
static void
nlge_port_disable(struct nlge_softc *sc)
{
struct ifnet *ifp;
xlr_reg_t *base;
uint32_t rd;
int id, port_type;
id = sc->id;
port_type = sc->port_type;
base = sc->base;
ifp = sc->nlge_if;
NLGE_UPDATE(base, R_RX_CONTROL, 0x0, 1 << O_RX_CONTROL__RxEnable);
do {
rd = NLGE_READ(base, R_RX_CONTROL);
} while (!(rd & (1 << O_RX_CONTROL__RxHalt)));
NLGE_UPDATE(base, R_TX_CONTROL, 0, 1 << O_TX_CONTROL__TxEnable);
do {
rd = NLGE_READ(base, R_TX_CONTROL);
} while (!(rd & (1 << O_TX_CONTROL__TxIdle)));
switch (port_type) {
case XLR_RGMII:
case XLR_SGMII:
NLGE_UPDATE(base, R_MAC_CONFIG_1, 0,
((1 << O_MAC_CONFIG_1__rxen) |
(1 << O_MAC_CONFIG_1__txen)));
break;
case XLR_XGMII:
case XLR_XAUI:
NLGE_UPDATE(base, R_XGMAC_CONFIG_1, 0,
((1 << O_XGMAC_CONFIG_1__hsttfen) |
(1 << O_XGMAC_CONFIG_1__hstrfen)));
break;
default:
panic("Unknown MAC type on port %d\n", id);
}
if (ifp) {
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
}
static void
nlge_port_enable(struct nlge_softc *sc)
{
struct xlr_gmac_port *self;
xlr_reg_t *base;
base = sc->base;
self = device_get_ivars(sc->nlge_dev);
if (xlr_board_info.is_xls && sc->port_type == XLR_RGMII)
NLGE_UPDATE(base, R_RX_CONTROL, (1 << O_RX_CONTROL__RGMII),
(1 << O_RX_CONTROL__RGMII));
NLGE_UPDATE(base, R_RX_CONTROL, (1 << O_RX_CONTROL__RxEnable),
(1 << O_RX_CONTROL__RxEnable));
NLGE_UPDATE(base, R_TX_CONTROL,
(1 << O_TX_CONTROL__TxEnable | RGE_TX_THRESHOLD_BYTES),
(1 << O_TX_CONTROL__TxEnable | 0x3fff));
switch (sc->port_type) {
case XLR_RGMII:
case XLR_SGMII:
NLGE_UPDATE(base, R_MAC_CONFIG_1,
((1 << O_MAC_CONFIG_1__rxen) | (1 << O_MAC_CONFIG_1__txen)),
((1 << O_MAC_CONFIG_1__rxen) | (1 << O_MAC_CONFIG_1__txen)));
break;
case XLR_XGMII:
case XLR_XAUI:
NLGE_UPDATE(base, R_XGMAC_CONFIG_1,
((1 << O_XGMAC_CONFIG_1__hsttfen) | (1 << O_XGMAC_CONFIG_1__hstrfen)),
((1 << O_XGMAC_CONFIG_1__hsttfen) | (1 << O_XGMAC_CONFIG_1__hstrfen)));
break;
default:
panic("Unknown MAC type on port %d\n", sc->id);
}
}
static void
nlge_mac_set_rx_mode(struct nlge_softc *sc)
{
uint32_t regval;
regval = NLGE_READ(sc->base, R_MAC_FILTER_CONFIG);
if (sc->if_flags & IFF_PROMISC) {
regval |= (1 << O_MAC_FILTER_CONFIG__BROADCAST_EN) |
(1 << O_MAC_FILTER_CONFIG__PAUSE_FRAME_EN) |
(1 << O_MAC_FILTER_CONFIG__ALL_MCAST_EN) |
(1 << O_MAC_FILTER_CONFIG__ALL_UCAST_EN);
} else {
regval &= ~((1 << O_MAC_FILTER_CONFIG__PAUSE_FRAME_EN) |
(1 << O_MAC_FILTER_CONFIG__ALL_UCAST_EN));
}
NLGE_WRITE(sc->base, R_MAC_FILTER_CONFIG, regval);
}
static void
nlge_sgmii_init(struct nlge_softc *sc)
{
xlr_reg_t *mmio_gpio;
int phy;
if (sc->port_type != XLR_SGMII)
return;
nlge_mii_write_internal(sc->serdes_addr, 26, 0, 0x6DB0);
nlge_mii_write_internal(sc->serdes_addr, 26, 1, 0xFFFF);
nlge_mii_write_internal(sc->serdes_addr, 26, 2, 0xB6D0);
nlge_mii_write_internal(sc->serdes_addr, 26, 3, 0x00FF);
nlge_mii_write_internal(sc->serdes_addr, 26, 4, 0x0000);
nlge_mii_write_internal(sc->serdes_addr, 26, 5, 0x0000);
nlge_mii_write_internal(sc->serdes_addr, 26, 6, 0x0005);
nlge_mii_write_internal(sc->serdes_addr, 26, 7, 0x0001);
nlge_mii_write_internal(sc->serdes_addr, 26, 8, 0x0000);
nlge_mii_write_internal(sc->serdes_addr, 26, 9, 0x0000);
nlge_mii_write_internal(sc->serdes_addr, 26,10, 0x0000);
/* program GPIO values for serdes init parameters */
DELAY(100);
mmio_gpio = xlr_io_mmio(XLR_IO_GPIO_OFFSET);
xlr_write_reg(mmio_gpio, 0x20, 0x7e6802);
xlr_write_reg(mmio_gpio, 0x10, 0x7104);
DELAY(100);
/*
* This kludge is needed to setup serdes (?) clock correctly on some
* XLS boards
*/
if ((xlr_boot1_info.board_major_version == RMI_XLR_BOARD_ARIZONA_XI ||
xlr_boot1_info.board_major_version == RMI_XLR_BOARD_ARIZONA_XII) &&
xlr_boot1_info.board_minor_version == 4) {
/* use 125 Mhz instead of 156.25Mhz ref clock */
DELAY(100);
xlr_write_reg(mmio_gpio, 0x10, 0x7103);
xlr_write_reg(mmio_gpio, 0x21, 0x7103);
DELAY(100);
}
/* enable autoneg - more magic */
phy = sc->phy_addr % 4 + 27;
nlge_mii_write_internal(sc->pcs_addr, phy, 0, 0x1000);
DELAY(100000);
nlge_mii_write_internal(sc->pcs_addr, phy, 0, 0x0200);
DELAY(100000);
}
static void
nlge_intr(void *arg)
{
struct nlge_port_set *pset;
struct nlge_softc *sc;
struct nlge_softc *port_sc;
xlr_reg_t *base;
uint32_t intreg;
uint32_t intr_status;
int i;
sc = arg;
if (sc == NULL) {
printf("warning: No port registered for interrupt\n");
return;
}
base = sc->base;
intreg = NLGE_READ(base, R_INTREG);
if (intreg & (1 << O_INTREG__MDInt)) {
pset = sc->mdio_pset;
if (pset == NULL) {
printf("warning: No ports for MDIO interrupt\n");
return;
}
for (i = 0; i < pset->vec_sz; i++) {
port_sc = pset->port_vec[i];
if (port_sc == NULL)
continue;
/* Ack phy interrupt - clear on read*/
intr_status = nlge_mii_read_internal(port_sc->mii_base,
port_sc->phy_addr, 26);
PDEBUG("Phy_%d: int_status=0x%08x\n", port_sc->phy_addr,
intr_status);
if (!(intr_status & 0x8000)) {
/* no interrupt for this port */
continue;
}
if (intr_status & 0x2410) {
/* update link status for port */
nlge_gmac_config_speed(port_sc, 1);
} else {
printf("%s: Unsupported phy interrupt"
" (0x%08x)\n",
device_get_nameunit(port_sc->nlge_dev),
intr_status);
}
}
}
/* Clear the NA interrupt */
xlr_write_reg(base, R_INTREG, 0xffffffff);
return;
}
static int
nlge_irq_init(struct nlge_softc *sc)
{
struct resource irq_res;
struct nlna_softc *na_sc;
struct xlr_gmac_block_t *block_info;
device_t na_dev;
int ret;
int irq_num;
na_dev = device_get_parent(sc->nlge_dev);
block_info = device_get_ivars(na_dev);
irq_num = block_info->baseirq + sc->instance;
irq_res.__r_i = (struct resource_i *)(intptr_t) (irq_num);
ret = bus_setup_intr(sc->nlge_dev, &irq_res,
INTR_TYPE_NET | INTR_MPSAFE, NULL, nlge_intr, sc, NULL);
if (ret) {
nlge_detach(sc->nlge_dev);
device_printf(sc->nlge_dev, "couldn't set up irq: error=%d\n",
ret);
return (ENXIO);
}
PDEBUG("Setup intr for dev=%s, irq=%d\n",
device_get_nameunit(sc->nlge_dev), irq_num);
if (sc->instance == 0) {
na_sc = device_get_softc(na_dev);
sc->mdio_pset = &na_sc->mdio_set;
}
return (0);
}
static void
nlge_irq_fini(struct nlge_softc *sc)
{
}
static void
nlge_hw_init(struct nlge_softc *sc)
{
struct xlr_gmac_port *port_info;
xlr_reg_t *base;
base = sc->base;
port_info = device_get_ivars(sc->nlge_dev);
sc->tx_bucket_id = port_info->tx_bucket_id;
/* each packet buffer is 1536 bytes */
NLGE_WRITE(base, R_DESC_PACK_CTRL,
(1 << O_DESC_PACK_CTRL__MaxEntry) |
#ifdef NLGE_HW_CHKSUM
(1 << O_DESC_PACK_CTRL__PrePadEnable) |
#endif
(MAX_FRAME_SIZE << O_DESC_PACK_CTRL__RegularSize));
NLGE_WRITE(base, R_STATCTRL, ((1 << O_STATCTRL__Sten) |
(1 << O_STATCTRL__ClrCnt)));
NLGE_WRITE(base, R_L2ALLOCCTRL, 0xffffffff);
NLGE_WRITE(base, R_INTMASK, 0);
nlge_set_mac_addr(sc);
nlge_media_specific_init(sc);
}
static void
nlge_sc_init(struct nlge_softc *sc, device_t dev,
struct xlr_gmac_port *port_info)
{
memset(sc, 0, sizeof(*sc));
sc->nlge_dev = dev;
sc->id = device_get_unit(dev);
nlge_set_port_attribs(sc, port_info);
}
static void
nlge_media_specific_init(struct nlge_softc *sc)
{
struct mii_data *media;
struct bucket_size *bucket_sizes;
bucket_sizes = xlr_board_info.bucket_sizes;
switch (sc->port_type) {
case XLR_RGMII:
case XLR_SGMII:
case XLR_XAUI:
NLGE_UPDATE(sc->base, R_DESC_PACK_CTRL,
(BYTE_OFFSET << O_DESC_PACK_CTRL__ByteOffset),
(W_DESC_PACK_CTRL__ByteOffset <<
O_DESC_PACK_CTRL__ByteOffset));
NLGE_WRITE(sc->base, R_GMAC_TX0_BUCKET_SIZE + sc->instance,
bucket_sizes->bucket[sc->tx_bucket_id]);
if (sc->port_type != XLR_XAUI) {
nlge_gmac_config_speed(sc, 1);
if (sc->mii_bus) {
media = (struct mii_data *)device_get_softc(
sc->mii_bus);
}
}
break;
case XLR_XGMII:
NLGE_WRITE(sc->base, R_BYTEOFFSET0, 0x2);
NLGE_WRITE(sc->base, R_XGMACPADCALIBRATION, 0x30);
NLGE_WRITE(sc->base, R_XGS_TX0_BUCKET_SIZE,
bucket_sizes->bucket[sc->tx_bucket_id]);
break;
default:
break;
}
}
/*
* Read the MAC address from the XLR boot registers. All port addresses
* are identical except for the lowest octet.
*/
static void
nlge_read_mac_addr(struct nlge_softc *sc)
{
int i, j;
for (i = 0, j = 40; i < ETHER_ADDR_LEN && j >= 0; i++, j-= 8)
sc->dev_addr[i] = (xlr_boot1_info.mac_addr >> j) & 0xff;
sc->dev_addr[i - 1] += sc->id; /* last octet is port-specific */
}
/*
* Write the MAC address to the XLR MAC port. Also, set the address
* masks and MAC filter configuration.
*/
static void
nlge_set_mac_addr(struct nlge_softc *sc)
{
NLGE_WRITE(sc->base, R_MAC_ADDR0,
((sc->dev_addr[5] << 24) | (sc->dev_addr[4] << 16) |
(sc->dev_addr[3] << 8) | (sc->dev_addr[2])));
NLGE_WRITE(sc->base, R_MAC_ADDR0 + 1,
((sc->dev_addr[1] << 24) | (sc-> dev_addr[0] << 16)));
NLGE_WRITE(sc->base, R_MAC_ADDR_MASK2, 0xffffffff);
NLGE_WRITE(sc->base, R_MAC_ADDR_MASK2 + 1, 0xffffffff);
NLGE_WRITE(sc->base, R_MAC_ADDR_MASK3, 0xffffffff);
NLGE_WRITE(sc->base, R_MAC_ADDR_MASK3 + 1, 0xffffffff);
NLGE_WRITE(sc->base, R_MAC_FILTER_CONFIG,
(1 << O_MAC_FILTER_CONFIG__BROADCAST_EN) |
(1 << O_MAC_FILTER_CONFIG__ALL_MCAST_EN) |
(1 << O_MAC_FILTER_CONFIG__MAC_ADDR0_VALID));
if (sc->port_type == XLR_RGMII || sc->port_type == XLR_SGMII) {
NLGE_UPDATE(sc->base, R_IPG_IFG, MAC_B2B_IPG, 0x7f);
}
}
static int
nlge_if_init(struct nlge_softc *sc)
{
struct ifnet *ifp;
device_t dev;
int error;
error = 0;
dev = sc->nlge_dev;
NLGE_LOCK_INIT(sc, device_get_nameunit(dev));
ifp = sc->nlge_if = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_capabilities = 0;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_ioctl = nlge_ioctl;
ifp->if_init = nlge_init;
ifp->if_hwassist = 0;
ifp->if_snd.ifq_drv_maxlen = RGE_TX_Q_SIZE;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifmedia_init(&sc->nlge_mii.mii_media, 0, nlge_mediachange,
nlge_mediastatus);
ifmedia_add(&sc->nlge_mii.mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->nlge_mii.mii_media, IFM_ETHER | IFM_AUTO);
sc->nlge_mii.mii_media.ifm_media = sc->nlge_mii.mii_media.ifm_cur->ifm_media;
nlge_read_mac_addr(sc);
ether_ifattach(ifp, sc->dev_addr);
/* override if_transmit : per ifnet(9), do it after if_attach */
ifp->if_transmit = nlge_tx;
fail:
return (error);
}
static void
nlge_mii_init(device_t dev, struct nlge_softc *sc)
{
int error;
if (sc->port_type != XLR_XAUI && sc->port_type != XLR_XGMII) {
NLGE_WRITE(sc->mii_base, R_MII_MGMT_CONFIG, 0x07);
}
error = mii_attach(dev, &sc->mii_bus, sc->nlge_if, nlge_mediachange,
nlge_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr, MII_OFFSET_ANY,
0);
if (error) {
device_printf(dev, "attaching PHYs failed\n");
sc->mii_bus = NULL;
}
if (sc->mii_bus != NULL) {
/*
* Enable all MDIO interrupts in the phy. RX_ER bit seems to get
* set about every 1 sec in GigE mode, ignore it for now...
*/
nlge_mii_write_internal(sc->mii_base, sc->phy_addr, 25,
0xfffffffe);
}
}
/*
* Read a PHY register.
*
* Input parameters:
* mii_base - Base address of MII
* phyaddr - PHY's address
* regidx = index of register to read
*
* Return value:
* value read, or 0 if an error occurred.
*/
static int
nlge_mii_read_internal(xlr_reg_t *mii_base, int phyaddr, int regidx)
{
int i, val;
/* setup the phy reg to be used */
NLGE_WRITE(mii_base, R_MII_MGMT_ADDRESS,
(phyaddr << 8) | (regidx << 0));
/* Issue the read command */
NLGE_WRITE(mii_base, R_MII_MGMT_COMMAND,
(1 << O_MII_MGMT_COMMAND__rstat));
/* poll for the read cycle to complete */
for (i = 0; i < PHY_STATUS_RETRIES; i++) {
if (NLGE_READ(mii_base, R_MII_MGMT_INDICATORS) == 0)
break;
}
/* clear the read cycle */
NLGE_WRITE(mii_base, R_MII_MGMT_COMMAND, 0);
if (i == PHY_STATUS_RETRIES) {
return (0xffffffff);
}
val = NLGE_READ(mii_base, R_MII_MGMT_STATUS);
return (val);
}
/*
* Write a value to a PHY register.
*
* Input parameters:
* mii_base - Base address of MII
* phyaddr - PHY to use
* regidx - register within the PHY
* regval - data to write to register
*
* Return value:
* nothing
*/
static void
nlge_mii_write_internal(xlr_reg_t *mii_base, int phyaddr, int regidx,
int regval)
{
int i;
NLGE_WRITE(mii_base, R_MII_MGMT_ADDRESS,
(phyaddr << 8) | (regidx << 0));
/* Write the data which starts the write cycle */
NLGE_WRITE(mii_base, R_MII_MGMT_WRITE_DATA, regval);
/* poll for the write cycle to complete */
for (i = 0; i < PHY_STATUS_RETRIES; i++) {
if (NLGE_READ(mii_base, R_MII_MGMT_INDICATORS) == 0)
break;
}
}
/*
* Function to optimize the use of p2d descriptors for the given PDU.
* As it is on the fast-path (called during packet transmission), it
* described in more detail than the initialization functions.
*
* Input: mbuf chain (MC), pointer to fmn message
* Input constraints: None
* Output: FMN message to transmit the data in MC
* Return values: 0 - success
* 1 - MC cannot be handled (see Limitations below)
* 2 - MC cannot be handled presently (maybe worth re-trying)
* Other output: Number of entries filled in the FMN message
*
* Output structure/constraints:
* 1. Max 3 p2d's + 1 zero-len (ZL) p2d with virtual address of MC.
* 2. 3 p2d's + 1 p2p with max 14 p2d's (ZL p2d not required in this case).
* 3. Each p2d points to physically contiguous chunk of data (subject to
* entire MC requiring max 17 p2d's).
* Limitations:
* 1. MC's that require more than 17 p2d's are not handled.
* Benefits: MC's that require <= 3 p2d's avoid the overhead of allocating
* the p2p structure. Small packets (which typically give low
* performance) are expected to have a small MC that takes
* advantage of this.
*/
static int
prepare_fmn_message(struct nlge_softc *sc, struct msgrng_msg *fmn_msg,
uint32_t *n_entries, struct mbuf *mbuf_chain, uint64_t fb_stn_id,
struct nlge_tx_desc **tx_desc)
{
struct mbuf *m;
struct nlge_tx_desc *p2p;
uint64_t *cur_p2d;
uint64_t fbpaddr;
vm_offset_t buf;
vm_paddr_t paddr;
int msg_sz, p2p_sz, len, frag_sz;
/* Num entries per FMN msg is 4 for XLR/XLS */
const int FMN_SZ = sizeof(*fmn_msg) / sizeof(uint64_t);
msg_sz = p2p_sz = 0;
p2p = NULL;
cur_p2d = &fmn_msg->msg0;
for (m = mbuf_chain; m != NULL; m = m->m_next) {
buf = (vm_offset_t) m->m_data;
len = m->m_len;
while (len) {
if (msg_sz == (FMN_SZ - 1)) {
p2p = uma_zalloc(nl_tx_desc_zone, M_NOWAIT);
if (p2p == NULL) {
return (2);
}
/*
* Save the virtual address in the descriptor,
* it makes freeing easy.
*/
p2p->frag[XLR_MAX_TX_FRAGS] =
(uint64_t)(vm_offset_t)p2p;
cur_p2d = &p2p->frag[0];
} else if (msg_sz == (FMN_SZ - 2 + XLR_MAX_TX_FRAGS)) {
uma_zfree(nl_tx_desc_zone, p2p);
return (1);
}
paddr = vtophys(buf);
frag_sz = PAGE_SIZE - (buf & PAGE_MASK);
if (len < frag_sz)
frag_sz = len;
*cur_p2d++ = (127ULL << 54) | ((uint64_t)frag_sz << 40)
| paddr;
msg_sz++;
if (p2p != NULL)
p2p_sz++;
len -= frag_sz;
buf += frag_sz;
}
}
if (msg_sz == 0) {
printf("Zero-length mbuf chain ??\n");
*n_entries = msg_sz ;
return (0);
}
/* set eop in most-recent p2d */
cur_p2d[-1] |= (1ULL << 63);
#ifdef __mips_n64
/*
* On n64, we cannot store our mbuf pointer(64 bit) in the freeback
* message (40bit available), so we put the mbuf in m_nextpkt and
* use the physical addr of that in freeback message.
*/
mbuf_chain->m_nextpkt = mbuf_chain;
fbpaddr = vtophys(&mbuf_chain->m_nextpkt);
#else
/* Careful, don't sign extend when going to 64bit */
fbpaddr = (uint64_t)(uintptr_t)mbuf_chain;
#endif
*cur_p2d = (1ULL << 63) | ((uint64_t)fb_stn_id << 54) | fbpaddr;
*tx_desc = p2p;
if (p2p != NULL) {
paddr = vtophys(p2p);
p2p_sz++;
fmn_msg->msg3 = (1ULL << 62) | ((uint64_t)fb_stn_id << 54) |
((uint64_t)(p2p_sz * 8) << 40) | paddr;
*n_entries = FMN_SZ;
} else {
*n_entries = msg_sz + 1;
}
return (0);
}
static int
send_fmn_msg_tx(struct nlge_softc *sc, struct msgrng_msg *msg,
uint32_t n_entries)
{
uint32_t msgrng_flags;
int ret;
int i = 0;
do {
msgrng_flags = msgrng_access_enable();
ret = message_send(n_entries, MSGRNG_CODE_MAC,
sc->tx_bucket_id, msg);
msgrng_restore(msgrng_flags);
if (ret == 0)
return (0);
i++;
} while (i < 100000);
device_printf(sc->nlge_dev, "Too many credit fails in tx path\n");
return (1);
}
static void
release_tx_desc(vm_paddr_t paddr)
{
struct nlge_tx_desc *tx_desc;
uint32_t sr;
uint64_t vaddr;
paddr += (XLR_MAX_TX_FRAGS * sizeof(uint64_t));
sr = xlr_enable_kx();
vaddr = xlr_paddr_ld(paddr);
xlr_restore_kx(sr);
tx_desc = (struct nlge_tx_desc*)(intptr_t)vaddr;
uma_zfree(nl_tx_desc_zone, tx_desc);
}
static void *
get_buf(void)
{
struct mbuf *m_new;
uint64_t *md;
#ifdef INVARIANTS
vm_paddr_t temp1, temp2;
#endif
if ((m_new = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR)) == NULL)
return (NULL);
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_adj(m_new, XLR_CACHELINE_SIZE - ((uintptr_t)m_new->m_data & 0x1f));
md = (uint64_t *)m_new->m_data;
md[0] = (intptr_t)m_new; /* Back Ptr */
md[1] = 0xf00bad;
m_adj(m_new, XLR_CACHELINE_SIZE);
#ifdef INVARIANTS
temp1 = vtophys((vm_offset_t) m_new->m_data);
temp2 = vtophys((vm_offset_t) m_new->m_data + 1536);
if ((temp1 + 1536) != temp2)
panic("ALLOCED BUFFER IS NOT CONTIGUOUS\n");
#endif
return ((void *)m_new->m_data);
}
static int
nlge_gmac_config_speed(struct nlge_softc *sc, int quick)
{
struct mii_data *md;
xlr_reg_t *mmio;
int bmsr, n_tries, max_tries;
int core_ctl[] = { 0x2, 0x1, 0x0, 0x1 };
int sgmii_speed[] = { SGMII_SPEED_10,
SGMII_SPEED_100,
SGMII_SPEED_1000,
SGMII_SPEED_100 }; /* default to 100Mbps */
char *speed_str[] = { "10",
"100",
"1000",
"unknown, defaulting to 100" };
int link_state = LINK_STATE_DOWN;
if (sc->port_type == XLR_XAUI || sc->port_type == XLR_XGMII)
return 0;
md = NULL;
mmio = sc->base;
if (sc->mii_base != NULL) {
max_tries = (quick == 1) ? 100 : 4000;
bmsr = 0;
for (n_tries = 0; n_tries < max_tries; n_tries++) {
bmsr = nlge_mii_read_internal(sc->mii_base,
sc->phy_addr, MII_BMSR);
if ((bmsr & BMSR_ACOMP) && (bmsr & BMSR_LINK))
break; /* Auto-negotiation is complete
and link is up */
DELAY(1000);
}
bmsr &= BMSR_LINK;
sc->link = (bmsr == 0) ? xlr_mac_link_down : xlr_mac_link_up;
sc->speed = nlge_mii_read_internal(sc->mii_base, sc->phy_addr, 28);
sc->speed = (sc->speed >> 3) & 0x03;
if (sc->link == xlr_mac_link_up) {
link_state = LINK_STATE_UP;
nlge_sgmii_init(sc);
}
if (sc->mii_bus)
md = (struct mii_data *)device_get_softc(sc->mii_bus);
}
if (sc->port_type != XLR_RGMII)
NLGE_WRITE(mmio, R_INTERFACE_CONTROL, sgmii_speed[sc->speed]);
if (sc->speed == xlr_mac_speed_10 || sc->speed == xlr_mac_speed_100 ||
sc->speed == xlr_mac_speed_rsvd) {
NLGE_WRITE(mmio, R_MAC_CONFIG_2, 0x7117);
} else if (sc->speed == xlr_mac_speed_1000) {
NLGE_WRITE(mmio, R_MAC_CONFIG_2, 0x7217);
if (md != NULL) {
ifmedia_set(&md->mii_media, IFM_MAKEWORD(IFM_ETHER,
IFM_1000_T, IFM_FDX, md->mii_instance));
}
}
NLGE_WRITE(mmio, R_CORECONTROL, core_ctl[sc->speed]);
if_link_state_change(sc->nlge_if, link_state);
printf("%s: [%sMbps]\n", device_get_nameunit(sc->nlge_dev),
speed_str[sc->speed]);
return (0);
}
/*
* This function is called for each port that was added to the device tree
* and it initializes the following port attributes:
* - type
* - base (base address to access port-specific registers)
* - mii_base
* - phy_addr
*/
static void
nlge_set_port_attribs(struct nlge_softc *sc,
struct xlr_gmac_port *port_info)
{
sc->instance = port_info->instance % 4; /* TBD: will not work for SPI-4 */
sc->port_type = port_info->type;
sc->base = xlr_io_mmio(port_info->base_addr);
sc->mii_base = xlr_io_mmio(port_info->mii_addr);
if (port_info->pcs_addr != 0)
sc->pcs_addr = xlr_io_mmio(port_info->pcs_addr);
if (port_info->serdes_addr != 0)
sc->serdes_addr = xlr_io_mmio(port_info->serdes_addr);
sc->phy_addr = port_info->phy_addr;
PDEBUG("Port%d: base=%p, mii_base=%p, phy_addr=%d\n", sc->id, sc->base,
sc->mii_base, sc->phy_addr);
}
/* ------------------------------------------------------------------------ */
/* Debug dump functions */
#ifdef DEBUG
static void
dump_reg(xlr_reg_t *base, uint32_t offset, char *name)
{
int val;
val = NLGE_READ(base, offset);
printf("%-30s: 0x%8x 0x%8x\n", name, offset, val);
}
#define STRINGIFY(x) #x
static void
dump_na_registers(xlr_reg_t *base_addr, int port_id)
{
PDEBUG("Register dump for NA (of port=%d)\n", port_id);
dump_reg(base_addr, R_PARSERCONFIGREG, STRINGIFY(R_PARSERCONFIGREG));
PDEBUG("Tx bucket sizes\n");
dump_reg(base_addr, R_GMAC_JFR0_BUCKET_SIZE,
STRINGIFY(R_GMAC_JFR0_BUCKET_SIZE));
dump_reg(base_addr, R_GMAC_RFR0_BUCKET_SIZE,
STRINGIFY(R_GMAC_RFR0_BUCKET_SIZE));
dump_reg(base_addr, R_GMAC_TX0_BUCKET_SIZE,
STRINGIFY(R_GMAC_TX0_BUCKET_SIZE));
dump_reg(base_addr, R_GMAC_TX1_BUCKET_SIZE,
STRINGIFY(R_GMAC_TX1_BUCKET_SIZE));
dump_reg(base_addr, R_GMAC_TX2_BUCKET_SIZE,
STRINGIFY(R_GMAC_TX2_BUCKET_SIZE));
dump_reg(base_addr, R_GMAC_TX3_BUCKET_SIZE,
STRINGIFY(R_GMAC_TX3_BUCKET_SIZE));
dump_reg(base_addr, R_GMAC_JFR1_BUCKET_SIZE,
STRINGIFY(R_GMAC_JFR1_BUCKET_SIZE));
dump_reg(base_addr, R_GMAC_RFR1_BUCKET_SIZE,
STRINGIFY(R_GMAC_RFR1_BUCKET_SIZE));
dump_reg(base_addr, R_TXDATAFIFO0, STRINGIFY(R_TXDATAFIFO0));
dump_reg(base_addr, R_TXDATAFIFO1, STRINGIFY(R_TXDATAFIFO1));
}
static void
dump_gmac_registers(struct nlge_softc *sc)
{
xlr_reg_t *base_addr = sc->base;
int port_id = sc->instance;
PDEBUG("Register dump for port=%d\n", port_id);
if (sc->port_type == XLR_RGMII || sc->port_type == XLR_SGMII) {
dump_reg(base_addr, R_MAC_CONFIG_1, STRINGIFY(R_MAC_CONFIG_1));
dump_reg(base_addr, R_MAC_CONFIG_2, STRINGIFY(R_MAC_CONFIG_2));
dump_reg(base_addr, R_IPG_IFG, STRINGIFY(R_IPG_IFG));
dump_reg(base_addr, R_HALF_DUPLEX, STRINGIFY(R_HALF_DUPLEX));
dump_reg(base_addr, R_MAXIMUM_FRAME_LENGTH,
STRINGIFY(R_MAXIMUM_FRAME_LENGTH));
dump_reg(base_addr, R_TEST, STRINGIFY(R_TEST));
dump_reg(base_addr, R_MII_MGMT_CONFIG,
STRINGIFY(R_MII_MGMT_CONFIG));
dump_reg(base_addr, R_MII_MGMT_COMMAND,
STRINGIFY(R_MII_MGMT_COMMAND));
dump_reg(base_addr, R_MII_MGMT_ADDRESS,
STRINGIFY(R_MII_MGMT_ADDRESS));
dump_reg(base_addr, R_MII_MGMT_WRITE_DATA,
STRINGIFY(R_MII_MGMT_WRITE_DATA));
dump_reg(base_addr, R_MII_MGMT_STATUS,
STRINGIFY(R_MII_MGMT_STATUS));
dump_reg(base_addr, R_MII_MGMT_INDICATORS,
STRINGIFY(R_MII_MGMT_INDICATORS));
dump_reg(base_addr, R_INTERFACE_CONTROL,
STRINGIFY(R_INTERFACE_CONTROL));
dump_reg(base_addr, R_INTERFACE_STATUS,
STRINGIFY(R_INTERFACE_STATUS));
} else if (sc->port_type == XLR_XAUI || sc->port_type == XLR_XGMII) {
dump_reg(base_addr, R_XGMAC_CONFIG_0,
STRINGIFY(R_XGMAC_CONFIG_0));
dump_reg(base_addr, R_XGMAC_CONFIG_1,
STRINGIFY(R_XGMAC_CONFIG_1));
dump_reg(base_addr, R_XGMAC_CONFIG_2,
STRINGIFY(R_XGMAC_CONFIG_2));
dump_reg(base_addr, R_XGMAC_CONFIG_3,
STRINGIFY(R_XGMAC_CONFIG_3));
dump_reg(base_addr, R_XGMAC_STATION_ADDRESS_LS,
STRINGIFY(R_XGMAC_STATION_ADDRESS_LS));
dump_reg(base_addr, R_XGMAC_STATION_ADDRESS_MS,
STRINGIFY(R_XGMAC_STATION_ADDRESS_MS));
dump_reg(base_addr, R_XGMAC_MAX_FRAME_LEN,
STRINGIFY(R_XGMAC_MAX_FRAME_LEN));
dump_reg(base_addr, R_XGMAC_REV_LEVEL,
STRINGIFY(R_XGMAC_REV_LEVEL));
dump_reg(base_addr, R_XGMAC_MIIM_COMMAND,
STRINGIFY(R_XGMAC_MIIM_COMMAND));
dump_reg(base_addr, R_XGMAC_MIIM_FILED,
STRINGIFY(R_XGMAC_MIIM_FILED));
dump_reg(base_addr, R_XGMAC_MIIM_CONFIG,
STRINGIFY(R_XGMAC_MIIM_CONFIG));
dump_reg(base_addr, R_XGMAC_MIIM_LINK_FAIL_VECTOR,
STRINGIFY(R_XGMAC_MIIM_LINK_FAIL_VECTOR));
dump_reg(base_addr, R_XGMAC_MIIM_INDICATOR,
STRINGIFY(R_XGMAC_MIIM_INDICATOR));
}
dump_reg(base_addr, R_MAC_ADDR0, STRINGIFY(R_MAC_ADDR0));
dump_reg(base_addr, R_MAC_ADDR0 + 1, STRINGIFY(R_MAC_ADDR0+1));
dump_reg(base_addr, R_MAC_ADDR1, STRINGIFY(R_MAC_ADDR1));
dump_reg(base_addr, R_MAC_ADDR2, STRINGIFY(R_MAC_ADDR2));
dump_reg(base_addr, R_MAC_ADDR3, STRINGIFY(R_MAC_ADDR3));
dump_reg(base_addr, R_MAC_ADDR_MASK2, STRINGIFY(R_MAC_ADDR_MASK2));
dump_reg(base_addr, R_MAC_ADDR_MASK3, STRINGIFY(R_MAC_ADDR_MASK3));
dump_reg(base_addr, R_MAC_FILTER_CONFIG, STRINGIFY(R_MAC_FILTER_CONFIG));
dump_reg(base_addr, R_TX_CONTROL, STRINGIFY(R_TX_CONTROL));
dump_reg(base_addr, R_RX_CONTROL, STRINGIFY(R_RX_CONTROL));
dump_reg(base_addr, R_DESC_PACK_CTRL, STRINGIFY(R_DESC_PACK_CTRL));
dump_reg(base_addr, R_STATCTRL, STRINGIFY(R_STATCTRL));
dump_reg(base_addr, R_L2ALLOCCTRL, STRINGIFY(R_L2ALLOCCTRL));
dump_reg(base_addr, R_INTMASK, STRINGIFY(R_INTMASK));
dump_reg(base_addr, R_INTREG, STRINGIFY(R_INTREG));
dump_reg(base_addr, R_TXRETRY, STRINGIFY(R_TXRETRY));
dump_reg(base_addr, R_CORECONTROL, STRINGIFY(R_CORECONTROL));
dump_reg(base_addr, R_BYTEOFFSET0, STRINGIFY(R_BYTEOFFSET0));
dump_reg(base_addr, R_BYTEOFFSET1, STRINGIFY(R_BYTEOFFSET1));
dump_reg(base_addr, R_L2TYPE_0, STRINGIFY(R_L2TYPE_0));
dump_na_registers(base_addr, port_id);
}
static void
dump_fmn_cpu_credits_for_gmac(struct xlr_board_info *board, int gmac_id)
{
struct stn_cc *cc;
int gmac_bucket_ids[] = { 97, 98, 99, 100, 101, 103 };
int j, k, r, c;
int n_gmac_buckets;
n_gmac_buckets = nitems(gmac_bucket_ids);
for (j = 0; j < 8; j++) { // for each cpu
cc = board->credit_configs[j];
printf("Credits for Station CPU_%d ---> GMAC buckets (tx path)\n", j);
for (k = 0; k < n_gmac_buckets; k++) {
r = gmac_bucket_ids[k] / 8;
c = gmac_bucket_ids[k] % 8;
printf (" --> gmac%d_bucket_%-3d: credits=%d\n", gmac_id,
gmac_bucket_ids[k], cc->counters[r][c]);
}
}
}
static void
dump_fmn_gmac_credits(struct xlr_board_info *board, int gmac_id)
{
struct stn_cc *cc;
int j, k;
cc = board->gmac_block[gmac_id].credit_config;
printf("Credits for Station: GMAC_%d ---> CPU buckets (rx path)\n", gmac_id);
for (j = 0; j < 8; j++) { // for each cpu
printf(" ---> cpu_%d\n", j);
for (k = 0; k < 8; k++) { // for each bucket in cpu
printf(" ---> bucket_%d: credits=%d\n", j * 8 + k,
cc->counters[j][k]);
}
}
}
static void
dump_board_info(struct xlr_board_info *board)
{
struct xlr_gmac_block_t *gm;
int i, k;
printf("cpu=%x ", xlr_revision());
printf("board_version: major=%llx, minor=%llx\n",
xlr_boot1_info.board_major_version,
xlr_boot1_info.board_minor_version);
printf("is_xls=%d, nr_cpus=%d, usb=%s, cfi=%s, ata=%s\npci_irq=%d,"
"gmac_ports=%d\n", board->is_xls, board->nr_cpus,
board->usb ? "Yes" : "No", board->cfi ? "Yes": "No",
board->ata ? "Yes" : "No", board->pci_irq, board->gmacports);
printf("FMN: Core-station bucket sizes\n");
for (i = 0; i < 128; i++) {
if (i && ((i % 16) == 0))
printf("\n");
printf ("b[%d] = %d ", i, board->bucket_sizes->bucket[i]);
}
printf("\n");
for (i = 0; i < 3; i++) {
gm = &board->gmac_block[i];
printf("RNA_%d: type=%d, enabled=%s, mode=%d, station_id=%d,"
"station_txbase=%d, station_rfr=%d ", i, gm->type,
gm->enabled ? "Yes" : "No", gm->mode, gm->station_id,
gm->station_txbase, gm->station_rfr);
printf("n_ports=%d, baseaddr=%p, baseirq=%d, baseinst=%d\n",
gm->num_ports, (xlr_reg_t *)gm->baseaddr, gm->baseirq,
gm->baseinst);
}
for (k = 0; k < 3; k++) { // for each NA
dump_fmn_cpu_credits_for_gmac(board, k);
dump_fmn_gmac_credits(board, k);
}
}
static void
dump_mac_stats(struct nlge_softc *sc)
{
xlr_reg_t *addr;
uint32_t pkts_tx, pkts_rx;
addr = sc->base;
pkts_rx = NLGE_READ(sc->base, R_RPKT);
pkts_tx = NLGE_READ(sc->base, R_TPKT);
printf("[nlge_%d mac stats]: pkts_tx=%u, pkts_rx=%u\n", sc->id, pkts_tx,
pkts_rx);
if (pkts_rx > 0) {
uint32_t r;
/* dump all rx counters. we need this because pkts_rx includes
bad packets. */
for (r = R_RFCS; r <= R_ROVR; r++)
printf("[nlge_%d mac stats]: [0x%x]=%u\n", sc->id, r,
NLGE_READ(sc->base, r));
}
if (pkts_tx > 0) {
uint32_t r;
/* dump all tx counters. might be useful for debugging. */
for (r = R_TMCA; r <= R_TFRG; r++) {
if ((r == (R_TNCL + 1)) || (r == (R_TNCL + 2)))
continue;
printf("[nlge_%d mac stats]: [0x%x]=%u\n", sc->id, r,
NLGE_READ(sc->base, r));
}
}
}
static void
dump_mii_regs(struct nlge_softc *sc)
{
uint32_t mii_regs[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xa, 0xf, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e};
int i, n_regs;
if (sc->mii_base == NULL || sc->mii_bus == NULL)
return;
n_regs = nitems(mii_regs);
for (i = 0; i < n_regs; i++) {
printf("[mii_0x%x] = %x\n", mii_regs[i],
nlge_mii_read_internal(sc->mii_base, sc->phy_addr,
mii_regs[i]));
}
}
static void
dump_ifmedia(struct ifmedia *ifm)
{
printf("ifm_mask=%08x, ifm_media=%08x, cur=%p\n", ifm->ifm_mask,
ifm->ifm_media, ifm->ifm_cur);
if (ifm->ifm_cur != NULL) {
printf("Cur attribs: ifmedia_entry.ifm_media=%08x,"
" ifmedia_entry.ifm_data=%08x\n", ifm->ifm_cur->ifm_media,
ifm->ifm_cur->ifm_data);
}
}
static void
dump_mii_data(struct mii_data *mii)
{
dump_ifmedia(&mii->mii_media);
printf("ifp=%p, mii_instance=%d, mii_media_status=%08x,"
" mii_media_active=%08x\n", mii->mii_ifp, mii->mii_instance,
mii->mii_media_status, mii->mii_media_active);
}
static void
dump_pcs_regs(struct nlge_softc *sc, int phy)
{
int i, val;
printf("PCS regs from %p for phy=%d\n", sc->pcs_addr, phy);
for (i = 0; i < 18; i++) {
if (i == 2 || i == 3 || (i >= 9 && i <= 14))
continue;
val = nlge_mii_read_internal(sc->pcs_addr, phy, i);
printf("PHY:%d pcs[0x%x] is 0x%x\n", phy, i, val);
}
}
#endif