mirror of https://github.com/F-Stack/f-stack.git
214 lines
6.7 KiB
C
214 lines
6.7 KiB
C
|
/*-
|
||
|
* BSD LICENSE
|
||
|
*
|
||
|
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* * Neither the name of Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifndef __L3FWD_LPM_SSE_H__
|
||
|
#define __L3FWD_LPM_SSE_H__
|
||
|
|
||
|
#include "l3fwd_sse.h"
|
||
|
|
||
|
static inline __attribute__((always_inline)) uint16_t
|
||
|
lpm_get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
||
|
uint8_t portid)
|
||
|
{
|
||
|
uint32_t next_hop_ipv4;
|
||
|
uint8_t next_hop_ipv6;
|
||
|
struct ipv6_hdr *ipv6_hdr;
|
||
|
struct ipv4_hdr *ipv4_hdr;
|
||
|
struct ether_hdr *eth_hdr;
|
||
|
|
||
|
if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||
|
|
||
|
return (uint16_t) ((rte_lpm_lookup(qconf->ipv4_lookup_struct,
|
||
|
rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop_ipv4) == 0) ?
|
||
|
next_hop_ipv4 : portid);
|
||
|
|
||
|
} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||
|
ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
|
||
|
|
||
|
return (uint16_t) ((rte_lpm6_lookup(qconf->ipv6_lookup_struct,
|
||
|
ipv6_hdr->dst_addr, &next_hop_ipv6) == 0)
|
||
|
? next_hop_ipv6 : portid);
|
||
|
|
||
|
}
|
||
|
|
||
|
return portid;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* lpm_get_dst_port optimized routine for packets where dst_ipv4 is already
|
||
|
* precalculated. If packet is ipv6 dst_addr is taken directly from packet
|
||
|
* header and dst_ipv4 value is not used.
|
||
|
*/
|
||
|
static inline __attribute__((always_inline)) uint16_t
|
||
|
lpm_get_dst_port_with_ipv4(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
||
|
uint32_t dst_ipv4, uint8_t portid)
|
||
|
{
|
||
|
uint32_t next_hop_ipv4;
|
||
|
uint8_t next_hop_ipv6;
|
||
|
struct ipv6_hdr *ipv6_hdr;
|
||
|
struct ether_hdr *eth_hdr;
|
||
|
|
||
|
if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
|
||
|
return (uint16_t) ((rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4,
|
||
|
&next_hop_ipv4) == 0) ? next_hop_ipv4 : portid);
|
||
|
|
||
|
} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||
|
ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
|
||
|
|
||
|
return (uint16_t) ((rte_lpm6_lookup(qconf->ipv6_lookup_struct,
|
||
|
ipv6_hdr->dst_addr, &next_hop_ipv6) == 0)
|
||
|
? next_hop_ipv6 : portid);
|
||
|
|
||
|
}
|
||
|
|
||
|
return portid;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read packet_type and destination IPV4 addresses from 4 mbufs.
|
||
|
*/
|
||
|
static inline void
|
||
|
processx4_step1(struct rte_mbuf *pkt[FWDSTEP],
|
||
|
__m128i *dip,
|
||
|
uint32_t *ipv4_flag)
|
||
|
{
|
||
|
struct ipv4_hdr *ipv4_hdr;
|
||
|
struct ether_hdr *eth_hdr;
|
||
|
uint32_t x0, x1, x2, x3;
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
|
||
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||
|
x0 = ipv4_hdr->dst_addr;
|
||
|
ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4;
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
|
||
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||
|
x1 = ipv4_hdr->dst_addr;
|
||
|
ipv4_flag[0] &= pkt[1]->packet_type;
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
|
||
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||
|
x2 = ipv4_hdr->dst_addr;
|
||
|
ipv4_flag[0] &= pkt[2]->packet_type;
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
|
||
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||
|
x3 = ipv4_hdr->dst_addr;
|
||
|
ipv4_flag[0] &= pkt[3]->packet_type;
|
||
|
|
||
|
dip[0] = _mm_set_epi32(x3, x2, x1, x0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Lookup into LPM for destination port.
|
||
|
* If lookup fails, use incoming port (portid) as destination port.
|
||
|
*/
|
||
|
static inline void
|
||
|
processx4_step2(const struct lcore_conf *qconf,
|
||
|
__m128i dip,
|
||
|
uint32_t ipv4_flag,
|
||
|
uint8_t portid,
|
||
|
struct rte_mbuf *pkt[FWDSTEP],
|
||
|
uint16_t dprt[FWDSTEP])
|
||
|
{
|
||
|
rte_xmm_t dst;
|
||
|
const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
|
||
|
4, 5, 6, 7, 0, 1, 2, 3);
|
||
|
|
||
|
/* Byte swap 4 IPV4 addresses. */
|
||
|
dip = _mm_shuffle_epi8(dip, bswap_mask);
|
||
|
|
||
|
/* if all 4 packets are IPV4. */
|
||
|
if (likely(ipv4_flag)) {
|
||
|
rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dst.u32,
|
||
|
portid);
|
||
|
/* get rid of unused upper 16 bit for each dport. */
|
||
|
dst.x = _mm_packs_epi32(dst.x, dst.x);
|
||
|
*(uint64_t *)dprt = dst.u64[0];
|
||
|
} else {
|
||
|
dst.x = dip;
|
||
|
dprt[0] = lpm_get_dst_port_with_ipv4(qconf, pkt[0], dst.u32[0], portid);
|
||
|
dprt[1] = lpm_get_dst_port_with_ipv4(qconf, pkt[1], dst.u32[1], portid);
|
||
|
dprt[2] = lpm_get_dst_port_with_ipv4(qconf, pkt[2], dst.u32[2], portid);
|
||
|
dprt[3] = lpm_get_dst_port_with_ipv4(qconf, pkt[3], dst.u32[3], portid);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Buffer optimized handling of packets, invoked
|
||
|
* from main_loop.
|
||
|
*/
|
||
|
static inline void
|
||
|
l3fwd_lpm_send_packets(int nb_rx, struct rte_mbuf **pkts_burst,
|
||
|
uint8_t portid, struct lcore_conf *qconf)
|
||
|
{
|
||
|
int32_t j;
|
||
|
uint16_t dst_port[MAX_PKT_BURST];
|
||
|
__m128i dip[MAX_PKT_BURST / FWDSTEP];
|
||
|
uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP];
|
||
|
const int32_t k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||
|
|
||
|
for (j = 0; j != k; j += FWDSTEP)
|
||
|
processx4_step1(&pkts_burst[j], &dip[j / FWDSTEP],
|
||
|
&ipv4_flag[j / FWDSTEP]);
|
||
|
|
||
|
for (j = 0; j != k; j += FWDSTEP)
|
||
|
processx4_step2(qconf, dip[j / FWDSTEP],
|
||
|
ipv4_flag[j / FWDSTEP], portid, &pkts_burst[j], &dst_port[j]);
|
||
|
|
||
|
/* Classify last up to 3 packets one by one */
|
||
|
switch (nb_rx % FWDSTEP) {
|
||
|
case 3:
|
||
|
dst_port[j] = lpm_get_dst_port(qconf, pkts_burst[j], portid);
|
||
|
j++;
|
||
|
case 2:
|
||
|
dst_port[j] = lpm_get_dst_port(qconf, pkts_burst[j], portid);
|
||
|
j++;
|
||
|
case 1:
|
||
|
dst_port[j] = lpm_get_dst_port(qconf, pkts_burst[j], portid);
|
||
|
j++;
|
||
|
}
|
||
|
|
||
|
send_packets_multi(qconf, pkts_burst, dst_port, nb_rx);
|
||
|
}
|
||
|
|
||
|
#endif /* __L3FWD_LPM_SSE_H__ */
|