f-stack/dpdk/drivers/ml/cnxk/mvtvm_ml_model.c

415 lines
13 KiB
C
Raw Normal View History

2025-01-10 11:50:43 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2023 Marvell.
*/
#include <archive.h>
#include <archive_entry.h>
#include <rte_mldev.h>
#include <mldev_utils.h>
#include <roc_api.h>
#include "cnxk_ml_dev.h"
#include "cnxk_ml_model.h"
#include "cnxk_ml_utils.h"
/* Objects list */
char mvtvm_object_list[ML_MVTVM_MODEL_OBJECT_MAX][RTE_ML_STR_MAX] = {"mod.so", "mod.json",
"mod.params"};
enum cnxk_ml_model_type
mvtvm_ml_model_type_get(struct rte_ml_model_params *params)
{
bool object_found[ML_MVTVM_MODEL_OBJECT_MAX] = {false, false, false};
struct archive_entry *entry;
struct archive *a;
uint8_t i;
int ret;
/* Assume as archive and check for read status */
a = archive_read_new();
archive_read_support_filter_all(a);
archive_read_support_format_all(a);
ret = archive_read_open_memory(a, params->addr, params->size);
if (ret != ARCHIVE_OK)
return ML_CNXK_MODEL_TYPE_UNKNOWN;
/* Parse buffer for available objects */
while (archive_read_next_header(a, &entry) == ARCHIVE_OK) {
for (i = 0; i < ML_MVTVM_MODEL_OBJECT_MAX; i++) {
if (!object_found[i] &&
(strcmp(archive_entry_pathname(entry), mvtvm_object_list[i]) == 0))
object_found[i] = true;
}
archive_read_data_skip(a);
}
/* Check if all objects are available */
for (i = 0; i < ML_MVTVM_MODEL_OBJECT_MAX; i++) {
if (!object_found[i]) {
plt_err("Object %s not found in archive!\n", mvtvm_object_list[i]);
return ML_CNXK_MODEL_TYPE_INVALID;
}
}
return ML_CNXK_MODEL_TYPE_TVM;
}
int
mvtvm_ml_model_blob_parse(struct rte_ml_model_params *params, struct mvtvm_ml_model_object *object)
{
bool object_found[ML_MVTVM_MODEL_OBJECT_MAX] = {false, false, false};
struct archive_entry *entry;
struct archive *a;
uint8_t i;
int ret;
/* Open archive */
a = archive_read_new();
archive_read_support_filter_all(a);
archive_read_support_format_all(a);
ret = archive_read_open_memory(a, params->addr, params->size);
if (ret != ARCHIVE_OK)
return archive_errno(a);
/* Read archive */
while (archive_read_next_header(a, &entry) == ARCHIVE_OK) {
for (i = 0; i < ML_MVTVM_MODEL_OBJECT_MAX; i++) {
if (!object_found[i] &&
(strcmp(archive_entry_pathname(entry), mvtvm_object_list[i]) == 0)) {
memcpy(object[i].name, mvtvm_object_list[i], RTE_ML_STR_MAX);
object[i].size = archive_entry_size(entry);
object[i].buffer = rte_malloc(NULL, object[i].size, 0);
if (archive_read_data(a, object[i].buffer, object[i].size) !=
object[i].size) {
plt_err("Failed to read object from model archive: %s",
object[i].name);
goto error;
}
object_found[i] = true;
}
}
archive_read_data_skip(a);
}
/* Check if all objects are parsed */
for (i = 0; i < ML_MVTVM_MODEL_OBJECT_MAX; i++) {
if (!object_found[i]) {
plt_err("Object %s not found in archive!\n", mvtvm_object_list[i]);
goto error;
}
}
return 0;
error:
for (i = 0; i < ML_MVTVM_MODEL_OBJECT_MAX; i++) {
rte_free(object[i].buffer);
}
return -EINVAL;
}
int
mvtvm_ml_model_get_layer_id(struct cnxk_ml_model *model, const char *layer_name, uint16_t *layer_id)
{
uint16_t i;
for (i = 0; i < model->mvtvm.metadata.model.nb_layers; i++) {
if (strcmp(model->layer[i].name, layer_name) == 0)
break;
}
if (i == model->mvtvm.metadata.model.nb_layers) {
plt_err("Invalid layer name: %s", layer_name);
return -EINVAL;
}
if (model->layer[i].type != ML_CNXK_LAYER_TYPE_MRVL) {
plt_err("Invalid layer type, name: %s type: %d", layer_name, model->layer[i].type);
return -EINVAL;
}
*layer_id = i;
return 0;
}
static enum rte_ml_io_type
mvtvm_ml_io_type_map(DLDataType dltype)
{
switch (dltype.code) {
case kDLInt:
if (dltype.bits == 8)
return RTE_ML_IO_TYPE_INT8;
else if (dltype.bits == 16)
return RTE_ML_IO_TYPE_INT16;
else if (dltype.bits == 32)
return RTE_ML_IO_TYPE_INT32;
break;
case kDLUInt:
if (dltype.bits == 8)
return RTE_ML_IO_TYPE_UINT8;
else if (dltype.bits == 16)
return RTE_ML_IO_TYPE_UINT16;
else if (dltype.bits == 32)
return RTE_ML_IO_TYPE_UINT32;
break;
case kDLFloat:
if (dltype.bits == 8)
return RTE_ML_IO_TYPE_FP8;
else if (dltype.bits == 16)
return RTE_ML_IO_TYPE_FP16;
else if (dltype.bits == 32)
return RTE_ML_IO_TYPE_FP32;
break;
case kDLBfloat:
if (dltype.bits == 16)
return RTE_ML_IO_TYPE_BFLOAT16;
break;
default:
return RTE_ML_IO_TYPE_UNKNOWN;
}
return RTE_ML_IO_TYPE_UNKNOWN;
}
void
mvtvm_ml_model_io_info_set(struct cnxk_ml_model *model)
{
struct tvmdp_model_metadata *metadata;
int32_t i;
int32_t j;
if (model->subtype == ML_CNXK_MODEL_SUBTYPE_TVM_MRVL)
goto tvm_mrvl_model;
metadata = &model->mvtvm.metadata;
/* Inputs, set for layer_id = 0 */
model->mvtvm.info.nb_inputs = metadata->model.num_input;
model->mvtvm.info.total_input_sz_d = 0;
model->mvtvm.info.total_input_sz_q = 0;
for (i = 0; i < metadata->model.num_input; i++) {
rte_strscpy(model->mvtvm.info.input[i].name, metadata->input[i].name,
TVMDP_NAME_STRLEN);
model->mvtvm.info.input[i].dtype =
mvtvm_ml_io_type_map(metadata->input[i].datatype);
model->mvtvm.info.input[i].qtype =
mvtvm_ml_io_type_map(metadata->input[i].model_datatype);
model->mvtvm.info.input[i].nb_dims = metadata->input[i].ndim;
model->mvtvm.info.input[i].nb_elements = 1;
for (j = 0; j < metadata->input[i].ndim; j++) {
model->mvtvm.info.input[i].shape[j] = metadata->input[i].shape[j];
model->mvtvm.info.input[i].nb_elements *= metadata->input[i].shape[j];
}
model->mvtvm.info.input[i].sz_d =
model->mvtvm.info.input[i].nb_elements *
rte_ml_io_type_size_get(model->mvtvm.info.input[i].dtype);
model->mvtvm.info.input[i].sz_q =
model->mvtvm.info.input[i].nb_elements *
rte_ml_io_type_size_get(model->mvtvm.info.input[i].qtype);
model->mvtvm.info.input[i].scale = metadata->input[i].scale;
model->mvtvm.info.total_input_sz_d += model->mvtvm.info.input[i].sz_d;
model->mvtvm.info.total_input_sz_q += model->mvtvm.info.input[i].sz_q;
model->mvtvm.input_tensor[i].device = metadata->input[i].device;
model->mvtvm.input_tensor[i].ndim = metadata->input[i].ndim;
model->mvtvm.input_tensor[i].dtype = metadata->input[i].datatype;
model->mvtvm.input_tensor[i].shape = metadata->input[i].shape;
model->mvtvm.input_tensor[i].strides = NULL;
model->mvtvm.input_tensor[i].byte_offset = 0;
plt_ml_dbg("model_id = %u, input[%u] - sz_d = %u sz_q = %u", model->model_id, i,
model->mvtvm.info.input[i].sz_d, model->mvtvm.info.input[i].sz_q);
}
/* Outputs, set for nb_layers - 1 */
model->mvtvm.info.nb_outputs = metadata->model.num_output;
model->mvtvm.info.total_output_sz_d = 0;
model->mvtvm.info.total_output_sz_q = 0;
for (i = 0; i < metadata->model.num_output; i++) {
rte_strscpy(model->mvtvm.info.output[i].name, metadata->output[i].name,
TVMDP_NAME_STRLEN);
model->mvtvm.info.output[i].dtype =
mvtvm_ml_io_type_map(metadata->output[i].datatype);
model->mvtvm.info.output[i].qtype =
mvtvm_ml_io_type_map(metadata->output[i].model_datatype);
model->mvtvm.info.output[i].nb_dims = metadata->output[i].ndim;
model->mvtvm.info.output[i].nb_elements = 1;
for (j = 0; j < metadata->output[i].ndim; j++) {
model->mvtvm.info.output[i].shape[j] = metadata->output[i].shape[j];
model->mvtvm.info.output[i].nb_elements *= metadata->output[i].shape[j];
}
model->mvtvm.info.output[i].sz_d =
model->mvtvm.info.output[i].nb_elements *
rte_ml_io_type_size_get(model->mvtvm.info.output[i].dtype);
model->mvtvm.info.output[i].sz_q =
model->mvtvm.info.output[i].nb_elements *
rte_ml_io_type_size_get(model->mvtvm.info.output[i].qtype);
model->mvtvm.info.output[i].scale = metadata->output[i].scale;
model->mvtvm.info.total_output_sz_d += model->mvtvm.info.output[i].sz_d;
model->mvtvm.info.total_output_sz_q += model->mvtvm.info.output[i].sz_q;
model->mvtvm.output_tensor[i].device = metadata->output[i].device;
model->mvtvm.output_tensor[i].ndim = metadata->output[i].ndim;
model->mvtvm.output_tensor[i].dtype = metadata->output[i].datatype;
model->mvtvm.output_tensor[i].shape = metadata->output[i].shape;
model->mvtvm.output_tensor[i].strides = NULL;
model->mvtvm.output_tensor[i].byte_offset = 0;
plt_ml_dbg("model_id = %u, output[%u] - sz_d = %u sz_q = %u", model->model_id, i,
model->mvtvm.info.output[i].sz_d, model->mvtvm.info.output[i].sz_q);
}
return;
tvm_mrvl_model:
cn10k_ml_layer_io_info_set(&model->mvtvm.info, &model->layer[0].glow.metadata);
}
struct cnxk_ml_io_info *
mvtvm_ml_model_io_info_get(struct cnxk_ml_model *model, uint16_t layer_id)
{
RTE_SET_USED(layer_id);
return &model->mvtvm.info;
}
void
mvtvm_ml_model_info_set(struct cnxk_ml_dev *cnxk_mldev, struct cnxk_ml_model *model)
{
struct tvmdp_model_metadata *metadata;
struct rte_ml_model_info *info;
struct rte_ml_io_info *output;
struct rte_ml_io_info *input;
uint8_t i;
info = PLT_PTR_CAST(model->info);
input = PLT_PTR_ADD(info, sizeof(struct rte_ml_model_info));
output = PLT_PTR_ADD(input, ML_CNXK_MODEL_MAX_INPUT_OUTPUT * sizeof(struct rte_ml_io_info));
/* Reset model info */
memset(info, 0, sizeof(struct rte_ml_model_info));
if (model->subtype == ML_CNXK_MODEL_SUBTYPE_TVM_MRVL)
goto tvm_mrvl_model;
metadata = &model->mvtvm.metadata;
rte_memcpy(info->name, metadata->model.name, TVMDP_NAME_STRLEN);
snprintf(info->version, RTE_ML_STR_MAX, "%u.%u.%u.%u", metadata->model.version[0],
metadata->model.version[1], metadata->model.version[2],
metadata->model.version[3]);
info->model_id = model->model_id;
info->device_id = cnxk_mldev->mldev->data->dev_id;
info->io_layout = RTE_ML_IO_LAYOUT_SPLIT;
info->min_batches = model->batch_size;
info->max_batches = model->batch_size;
info->nb_inputs = metadata->model.num_input;
info->input_info = input;
info->nb_outputs = metadata->model.num_output;
info->output_info = output;
info->wb_size = 0;
/* Set input info */
for (i = 0; i < info->nb_inputs; i++) {
rte_memcpy(input[i].name, metadata->input[i].name, MRVL_ML_INPUT_NAME_LEN);
input[i].nb_dims = metadata->input[i].ndim;
input[i].shape = &model->mvtvm.info.input[i].shape[0];
input[i].type = model->mvtvm.info.input[i].qtype;
input[i].nb_elements = model->mvtvm.info.input[i].nb_elements;
input[i].size = model->mvtvm.info.input[i].nb_elements *
rte_ml_io_type_size_get(model->mvtvm.info.input[i].qtype);
}
/* Set output info */
for (i = 0; i < info->nb_outputs; i++) {
rte_memcpy(output[i].name, metadata->output[i].name, MRVL_ML_OUTPUT_NAME_LEN);
output[i].nb_dims = metadata->output[i].ndim;
output[i].shape = &model->mvtvm.info.output[i].shape[0];
output[i].type = model->mvtvm.info.output[i].qtype;
output[i].nb_elements = model->mvtvm.info.output[i].nb_elements;
output[i].size = model->mvtvm.info.output[i].nb_elements *
rte_ml_io_type_size_get(model->mvtvm.info.output[i].qtype);
}
return;
tvm_mrvl_model:
cn10k_ml_model_info_set(cnxk_mldev, model, &model->mvtvm.info,
&model->layer[0].glow.metadata);
metadata = &model->mvtvm.metadata;
strlcpy(info->name, metadata->model.name, TVMDP_NAME_STRLEN);
info->io_layout = RTE_ML_IO_LAYOUT_PACKED;
}
void
mvtvm_ml_layer_print(struct cnxk_ml_dev *cnxk_mldev, struct cnxk_ml_layer *layer, FILE *fp)
{
char str[STR_LEN];
uint8_t i;
/* Print debug info */
cnxk_ml_print_line(fp, LINE_LEN);
fprintf(fp, " Layer Information (Layer ID: %u, Name: %s)\n",
cnxk_mldev->index_map[layer->index].layer_id, layer->name);
cnxk_ml_print_line(fp, LINE_LEN);
fprintf(fp, "%*s : %u\n", FIELD_LEN, "layer_id",
cnxk_mldev->index_map[layer->index].layer_id);
fprintf(fp, "%*s : %s\n", FIELD_LEN, "name", layer->name);
fprintf(fp, "%*s : %d\n", FIELD_LEN, "type", layer->type);
fprintf(fp, "%*s : 0x%016lx\n", FIELD_LEN, "layer", PLT_U64_CAST(layer));
fprintf(fp, "%*s : %u\n", FIELD_LEN, "batch_size", layer->batch_size);
/* Print model state */
if (layer->state == ML_CNXK_LAYER_STATE_LOADED)
fprintf(fp, "%*s : %s\n", FIELD_LEN, "state", "loaded");
if (layer->state == ML_CNXK_LAYER_STATE_JOB_ACTIVE)
fprintf(fp, "%*s : %s\n", FIELD_LEN, "state", "job_active");
if (layer->state == ML_CNXK_LAYER_STATE_STARTED)
fprintf(fp, "%*s : %s\n", FIELD_LEN, "state", "started");
fprintf(fp, "%*s : %u\n", FIELD_LEN, "num_inputs", layer->info.nb_inputs);
fprintf(fp, "%*s : %u\n", FIELD_LEN, "num_outputs", layer->info.nb_outputs);
fprintf(fp, "\n");
cnxk_ml_print_line(fp, LINE_LEN);
fprintf(fp, "%8s %16s %12s\n", "input", "input_name", "input_type");
cnxk_ml_print_line(fp, LINE_LEN);
for (i = 0; i < layer->info.nb_inputs; i++) {
fprintf(fp, "%8u ", i);
fprintf(fp, "%*s ", 16, layer->info.input[i].name);
rte_ml_io_type_to_str(layer->info.input[i].qtype, str, STR_LEN);
fprintf(fp, "%*s ", 12, str);
}
fprintf(fp, "\n");
cnxk_ml_print_line(fp, LINE_LEN);
fprintf(fp, "\n");
cnxk_ml_print_line(fp, LINE_LEN);
fprintf(fp, "%8s %16s %12s\n", "output", "output_name", "output_type");
cnxk_ml_print_line(fp, LINE_LEN);
for (i = 0; i < layer->info.nb_outputs; i++) {
fprintf(fp, "%8u ", i);
fprintf(fp, "%*s ", 16, layer->info.output[i].name);
rte_ml_io_type_to_str(layer->info.output[i].qtype, str, STR_LEN);
fprintf(fp, "%*s ", 12, str);
fprintf(fp, "\n");
}
fprintf(fp, "\n");
cnxk_ml_print_line(fp, LINE_LEN);
fprintf(fp, "\n");
}