f-stack/freebsd/amd64/include/cpufunc.h

1019 lines
19 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
2017-04-21 10:43:26 +00:00
* Copyright (c) 2003 Peter Wemm.
* Copyright (c) 1993 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
2017-04-21 10:43:26 +00:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Functions to provide access to special i386 instructions.
* This in included in sys/systm.h, and that file should be
* used in preference to this.
*/
#ifndef _MACHINE_CPUFUNC_H_
#define _MACHINE_CPUFUNC_H_
#ifndef _SYS_CDEFS_H_
#error this file needs sys/cdefs.h as a prerequisite
#endif
struct region_descriptor;
#define readb(va) (*(volatile uint8_t *) (va))
#define readw(va) (*(volatile uint16_t *) (va))
#define readl(va) (*(volatile uint32_t *) (va))
#define readq(va) (*(volatile uint64_t *) (va))
#define writeb(va, d) (*(volatile uint8_t *) (va) = (d))
#define writew(va, d) (*(volatile uint16_t *) (va) = (d))
#define writel(va, d) (*(volatile uint32_t *) (va) = (d))
#define writeq(va, d) (*(volatile uint64_t *) (va) = (d))
#if defined(__GNUCLIKE_ASM) && defined(__CC_SUPPORTS___INLINE)
static __inline void
breakpoint(void)
{
__asm __volatile("int $3");
}
#define bsfl(mask) __builtin_ctz(mask)
2017-04-21 10:43:26 +00:00
#define bsfq(mask) __builtin_ctzl(mask)
2017-04-21 10:43:26 +00:00
#define bsrl(mask) (__builtin_clz(mask) ^ 0x1f)
2017-04-21 10:43:26 +00:00
#define bsrq(mask) (__builtin_clzl(mask) ^ 0x3f)
2017-04-21 10:43:26 +00:00
static __inline void
clflush(u_long addr)
{
__asm __volatile("clflush %0" : : "m" (*(char *)addr));
}
static __inline void
clflushopt(u_long addr)
{
__asm __volatile(".byte 0x66;clflush %0" : : "m" (*(char *)addr));
}
static __inline void
clwb(u_long addr)
{
__asm __volatile("clwb %0" : : "m" (*(char *)addr));
}
2017-04-21 10:43:26 +00:00
static __inline void
clts(void)
{
__asm __volatile("clts");
}
static __inline void
disable_intr(void)
{
__asm __volatile("cli" : : : "memory");
}
static __inline void
do_cpuid(u_int ax, u_int *p)
{
__asm __volatile("cpuid"
: "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
: "0" (ax));
}
static __inline void
cpuid_count(u_int ax, u_int cx, u_int *p)
{
__asm __volatile("cpuid"
: "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
: "0" (ax), "c" (cx));
}
static __inline void
enable_intr(void)
{
__asm __volatile("sti");
}
#ifdef _KERNEL
#define HAVE_INLINE_FFS
#define ffs(x) __builtin_ffs(x)
2017-04-21 10:43:26 +00:00
#define HAVE_INLINE_FFSL
#define ffsl(x) __builtin_ffsl(x)
2017-04-21 10:43:26 +00:00
#define HAVE_INLINE_FFSLL
#define ffsll(x) __builtin_ffsll(x)
2017-04-21 10:43:26 +00:00
#define HAVE_INLINE_FLS
static __inline __pure2 int
2017-04-21 10:43:26 +00:00
fls(int mask)
{
return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
}
#define HAVE_INLINE_FLSL
static __inline __pure2 int
2017-04-21 10:43:26 +00:00
flsl(long mask)
{
return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1);
}
#define HAVE_INLINE_FLSLL
static __inline __pure2 int
2017-04-21 10:43:26 +00:00
flsll(long long mask)
{
return (flsl((long)mask));
}
#endif /* _KERNEL */
static __inline void
halt(void)
{
__asm __volatile("hlt");
}
static __inline u_char
inb(u_int port)
{
u_char data;
__asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port));
return (data);
}
static __inline u_int
inl(u_int port)
{
u_int data;
__asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port));
return (data);
}
static __inline void
insb(u_int port, void *addr, size_t count)
{
__asm __volatile("rep; insb"
2017-04-21 10:43:26 +00:00
: "+D" (addr), "+c" (count)
: "d" (port)
: "memory");
}
static __inline void
insw(u_int port, void *addr, size_t count)
{
__asm __volatile("rep; insw"
2017-04-21 10:43:26 +00:00
: "+D" (addr), "+c" (count)
: "d" (port)
: "memory");
}
static __inline void
insl(u_int port, void *addr, size_t count)
{
__asm __volatile("rep; insl"
2017-04-21 10:43:26 +00:00
: "+D" (addr), "+c" (count)
: "d" (port)
: "memory");
}
static __inline void
invd(void)
{
__asm __volatile("invd");
}
static __inline u_short
inw(u_int port)
{
u_short data;
__asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port));
return (data);
}
static __inline void
outb(u_int port, u_char data)
{
__asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port));
}
static __inline void
outl(u_int port, u_int data)
{
__asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port));
}
static __inline void
outsb(u_int port, const void *addr, size_t count)
{
__asm __volatile("rep; outsb"
2017-04-21 10:43:26 +00:00
: "+S" (addr), "+c" (count)
: "d" (port));
}
static __inline void
outsw(u_int port, const void *addr, size_t count)
{
__asm __volatile("rep; outsw"
2017-04-21 10:43:26 +00:00
: "+S" (addr), "+c" (count)
: "d" (port));
}
static __inline void
outsl(u_int port, const void *addr, size_t count)
{
__asm __volatile("rep; outsl"
2017-04-21 10:43:26 +00:00
: "+S" (addr), "+c" (count)
: "d" (port));
}
static __inline void
outw(u_int port, u_short data)
{
__asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port));
}
static __inline u_long
popcntq(u_long mask)
{
u_long result;
__asm __volatile("popcntq %1,%0" : "=r" (result) : "rm" (mask));
return (result);
}
static __inline void
lfence(void)
{
__asm __volatile("lfence" : : : "memory");
}
static __inline void
mfence(void)
{
__asm __volatile("mfence" : : : "memory");
}
static __inline void
sfence(void)
{
__asm __volatile("sfence" : : : "memory");
}
2017-04-21 10:43:26 +00:00
static __inline void
ia32_pause(void)
{
__asm __volatile("pause");
}
static __inline u_long
read_rflags(void)
{
u_long rf;
__asm __volatile("pushfq; popq %0" : "=r" (rf));
return (rf);
}
static __inline uint64_t
rdmsr(u_int msr)
{
uint32_t low, high;
__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
return (low | ((uint64_t)high << 32));
}
static __inline uint32_t
rdmsr32(u_int msr)
{
uint32_t low;
__asm __volatile("rdmsr" : "=a" (low) : "c" (msr) : "rdx");
return (low);
}
static __inline uint64_t
rdpmc(u_int pmc)
{
uint32_t low, high;
__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
return (low | ((uint64_t)high << 32));
}
static __inline uint64_t
rdtsc(void)
{
uint32_t low, high;
__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
return (low | ((uint64_t)high << 32));
}
static __inline uint64_t
rdtscp(void)
{
uint32_t low, high;
__asm __volatile("rdtscp" : "=a" (low), "=d" (high) : : "ecx");
return (low | ((uint64_t)high << 32));
}
2017-04-21 10:43:26 +00:00
static __inline uint32_t
rdtsc32(void)
{
uint32_t rv;
__asm __volatile("rdtsc" : "=a" (rv) : : "edx");
return (rv);
}
static __inline uint32_t
rdtscp32(void)
{
uint32_t rv;
__asm __volatile("rdtscp" : "=a" (rv) : : "ecx", "edx");
return (rv);
}
2017-04-21 10:43:26 +00:00
static __inline void
wbinvd(void)
{
__asm __volatile("wbinvd");
}
static __inline void
write_rflags(u_long rf)
{
__asm __volatile("pushq %0; popfq" : : "r" (rf));
}
static __inline void
wrmsr(u_int msr, uint64_t newval)
{
uint32_t low, high;
low = newval;
high = newval >> 32;
__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
}
static __inline void
load_cr0(u_long data)
{
__asm __volatile("movq %0,%%cr0" : : "r" (data));
}
static __inline u_long
rcr0(void)
{
u_long data;
__asm __volatile("movq %%cr0,%0" : "=r" (data));
return (data);
}
static __inline u_long
rcr2(void)
{
u_long data;
__asm __volatile("movq %%cr2,%0" : "=r" (data));
return (data);
}
static __inline void
load_cr3(u_long data)
{
__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
}
static __inline u_long
rcr3(void)
{
u_long data;
__asm __volatile("movq %%cr3,%0" : "=r" (data));
return (data);
}
static __inline void
load_cr4(u_long data)
{
__asm __volatile("movq %0,%%cr4" : : "r" (data));
}
static __inline u_long
rcr4(void)
{
u_long data;
__asm __volatile("movq %%cr4,%0" : "=r" (data));
return (data);
}
static __inline u_long
rxcr(u_int reg)
{
u_int low, high;
__asm __volatile("xgetbv" : "=a" (low), "=d" (high) : "c" (reg));
return (low | ((uint64_t)high << 32));
}
static __inline void
load_xcr(u_int reg, u_long val)
{
u_int low, high;
low = val;
high = val >> 32;
__asm __volatile("xsetbv" : : "c" (reg), "a" (low), "d" (high));
}
/*
* Global TLB flush (except for thise for pages marked PG_G)
*/
static __inline void
invltlb(void)
{
load_cr3(rcr3());
}
#ifndef CR4_PGE
#define CR4_PGE 0x00000080 /* Page global enable */
#endif
/*
* Perform the guaranteed invalidation of all TLB entries. This
* includes the global entries, and entries in all PCIDs, not only the
* current context. The function works both on non-PCID CPUs and CPUs
* with the PCID turned off or on. See IA-32 SDM Vol. 3a 4.10.4.1
* Operations that Invalidate TLBs and Paging-Structure Caches.
*/
static __inline void
invltlb_glob(void)
{
uint64_t cr4;
cr4 = rcr4();
load_cr4(cr4 & ~CR4_PGE);
/*
* Although preemption at this point could be detrimental to
* performance, it would not lead to an error. PG_G is simply
* ignored if CR4.PGE is clear. Moreover, in case this block
* is re-entered, the load_cr4() either above or below will
* modify CR4.PGE flushing the TLB.
*/
load_cr4(cr4 | CR4_PGE);
}
/*
* TLB flush for an individual page (even if it has PG_G).
* Only works on 486+ CPUs (i386 does not have PG_G).
*/
static __inline void
invlpg(u_long addr)
{
__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
}
#define INVPCID_ADDR 0
#define INVPCID_CTX 1
#define INVPCID_CTXGLOB 2
#define INVPCID_ALLCTX 3
struct invpcid_descr {
uint64_t pcid:12 __packed;
uint64_t pad:52 __packed;
uint64_t addr;
} __packed;
static __inline void
invpcid(struct invpcid_descr *d, int type)
{
__asm __volatile("invpcid (%0),%1"
: : "r" (d), "r" ((u_long)type) : "memory");
}
static __inline u_short
rfs(void)
{
u_short sel;
__asm __volatile("movw %%fs,%0" : "=rm" (sel));
return (sel);
}
static __inline u_short
rgs(void)
{
u_short sel;
__asm __volatile("movw %%gs,%0" : "=rm" (sel));
return (sel);
}
static __inline u_short
rss(void)
{
u_short sel;
__asm __volatile("movw %%ss,%0" : "=rm" (sel));
return (sel);
}
static __inline void
load_ds(u_short sel)
{
__asm __volatile("movw %0,%%ds" : : "rm" (sel));
}
static __inline void
load_es(u_short sel)
{
__asm __volatile("movw %0,%%es" : : "rm" (sel));
}
static __inline void
cpu_monitor(const void *addr, u_long extensions, u_int hints)
{
__asm __volatile("monitor"
: : "a" (addr), "c" (extensions), "d" (hints));
}
static __inline void
cpu_mwait(u_long extensions, u_int hints)
{
__asm __volatile("mwait" : : "a" (hints), "c" (extensions));
}
static __inline uint32_t
rdpkru(void)
{
uint32_t res;
__asm __volatile("rdpkru" : "=a" (res) : "c" (0) : "edx");
return (res);
}
static __inline void
wrpkru(uint32_t mask)
{
__asm __volatile("wrpkru" : : "a" (mask), "c" (0), "d" (0));
}
2017-04-21 10:43:26 +00:00
#ifdef _KERNEL
/* This is defined in <machine/specialreg.h> but is too painful to get to */
#ifndef MSR_FSBASE
#define MSR_FSBASE 0xc0000100
#endif
static __inline void
load_fs(u_short sel)
{
/* Preserve the fsbase value across the selector load */
__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
: : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
}
#ifndef MSR_GSBASE
#define MSR_GSBASE 0xc0000101
#endif
static __inline void
load_gs(u_short sel)
{
/*
* Preserve the gsbase value across the selector load.
* Note that we have to disable interrupts because the gsbase
* being trashed happens to be the kernel gsbase at the time.
*/
__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
: : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
}
#else
/* Usable by userland */
static __inline void
load_fs(u_short sel)
{
__asm __volatile("movw %0,%%fs" : : "rm" (sel));
}
static __inline void
load_gs(u_short sel)
{
__asm __volatile("movw %0,%%gs" : : "rm" (sel));
}
#endif
static __inline uint64_t
rdfsbase(void)
{
uint64_t x;
__asm __volatile("rdfsbase %0" : "=r" (x));
return (x);
}
static __inline void
wrfsbase(uint64_t x)
{
__asm __volatile("wrfsbase %0" : : "r" (x));
}
static __inline uint64_t
rdgsbase(void)
{
uint64_t x;
__asm __volatile("rdgsbase %0" : "=r" (x));
return (x);
}
static __inline void
wrgsbase(uint64_t x)
{
__asm __volatile("wrgsbase %0" : : "r" (x));
}
static __inline void
bare_lgdt(struct region_descriptor *addr)
{
__asm __volatile("lgdt (%0)" : : "r" (addr));
}
static __inline void
sgdt(struct region_descriptor *addr)
{
char *loc;
loc = (char *)addr;
__asm __volatile("sgdt %0" : "=m" (*loc) : : "memory");
}
2017-04-21 10:43:26 +00:00
static __inline void
lidt(struct region_descriptor *addr)
{
__asm __volatile("lidt (%0)" : : "r" (addr));
}
static __inline void
sidt(struct region_descriptor *addr)
{
char *loc;
loc = (char *)addr;
__asm __volatile("sidt %0" : "=m" (*loc) : : "memory");
}
2017-04-21 10:43:26 +00:00
static __inline void
lldt(u_short sel)
{
__asm __volatile("lldt %0" : : "r" (sel));
}
static __inline u_short
sldt(void)
{
u_short sel;
__asm __volatile("sldt %0" : "=r" (sel));
return (sel);
}
2017-04-21 10:43:26 +00:00
static __inline void
ltr(u_short sel)
{
__asm __volatile("ltr %0" : : "r" (sel));
}
static __inline uint32_t
read_tr(void)
{
u_short sel;
__asm __volatile("str %0" : "=r" (sel));
return (sel);
}
2017-04-21 10:43:26 +00:00
static __inline uint64_t
rdr0(void)
{
uint64_t data;
__asm __volatile("movq %%dr0,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr0(uint64_t dr0)
{
__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
}
static __inline uint64_t
rdr1(void)
{
uint64_t data;
__asm __volatile("movq %%dr1,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr1(uint64_t dr1)
{
__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
}
static __inline uint64_t
rdr2(void)
{
uint64_t data;
__asm __volatile("movq %%dr2,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr2(uint64_t dr2)
{
__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
}
static __inline uint64_t
rdr3(void)
{
uint64_t data;
__asm __volatile("movq %%dr3,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr3(uint64_t dr3)
{
__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
}
static __inline uint64_t
rdr6(void)
{
uint64_t data;
__asm __volatile("movq %%dr6,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr6(uint64_t dr6)
{
__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
}
static __inline uint64_t
rdr7(void)
{
uint64_t data;
__asm __volatile("movq %%dr7,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr7(uint64_t dr7)
{
__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
}
static __inline register_t
intr_disable(void)
{
register_t rflags;
rflags = read_rflags();
disable_intr();
return (rflags);
}
static __inline void
intr_restore(register_t rflags)
{
write_rflags(rflags);
}
static __inline void
stac(void)
{
__asm __volatile("stac" : : : "cc");
}
static __inline void
clac(void)
{
__asm __volatile("clac" : : : "cc");
}
enum {
SGX_ECREATE = 0x0,
SGX_EADD = 0x1,
SGX_EINIT = 0x2,
SGX_EREMOVE = 0x3,
SGX_EDGBRD = 0x4,
SGX_EDGBWR = 0x5,
SGX_EEXTEND = 0x6,
SGX_ELDU = 0x8,
SGX_EBLOCK = 0x9,
SGX_EPA = 0xA,
SGX_EWB = 0xB,
SGX_ETRACK = 0xC,
};
enum {
SGX_PT_SECS = 0x00,
SGX_PT_TCS = 0x01,
SGX_PT_REG = 0x02,
SGX_PT_VA = 0x03,
SGX_PT_TRIM = 0x04,
};
int sgx_encls(uint32_t eax, uint64_t rbx, uint64_t rcx, uint64_t rdx);
static __inline int
sgx_ecreate(void *pginfo, void *secs)
{
return (sgx_encls(SGX_ECREATE, (uint64_t)pginfo,
(uint64_t)secs, 0));
}
static __inline int
sgx_eadd(void *pginfo, void *epc)
{
return (sgx_encls(SGX_EADD, (uint64_t)pginfo,
(uint64_t)epc, 0));
}
static __inline int
sgx_einit(void *sigstruct, void *secs, void *einittoken)
{
return (sgx_encls(SGX_EINIT, (uint64_t)sigstruct,
(uint64_t)secs, (uint64_t)einittoken));
}
static __inline int
sgx_eextend(void *secs, void *epc)
{
return (sgx_encls(SGX_EEXTEND, (uint64_t)secs,
(uint64_t)epc, 0));
}
static __inline int
sgx_epa(void *epc)
{
return (sgx_encls(SGX_EPA, SGX_PT_VA, (uint64_t)epc, 0));
}
static __inline int
sgx_eldu(uint64_t rbx, uint64_t rcx,
uint64_t rdx)
{
return (sgx_encls(SGX_ELDU, rbx, rcx, rdx));
}
static __inline int
sgx_eremove(void *epc)
{
return (sgx_encls(SGX_EREMOVE, 0, (uint64_t)epc, 0));
}
2017-04-21 10:43:26 +00:00
#else /* !(__GNUCLIKE_ASM && __CC_SUPPORTS___INLINE) */
int breakpoint(void);
u_int bsfl(u_int mask);
u_int bsrl(u_int mask);
void clflush(u_long addr);
void clts(void);
void cpuid_count(u_int ax, u_int cx, u_int *p);
void disable_intr(void);
void do_cpuid(u_int ax, u_int *p);
void enable_intr(void);
void halt(void);
void ia32_pause(void);
u_char inb(u_int port);
u_int inl(u_int port);
void insb(u_int port, void *addr, size_t count);
void insl(u_int port, void *addr, size_t count);
void insw(u_int port, void *addr, size_t count);
register_t intr_disable(void);
void intr_restore(register_t rf);
void invd(void);
void invlpg(u_int addr);
void invltlb(void);
u_short inw(u_int port);
void lidt(struct region_descriptor *addr);
void lldt(u_short sel);
void load_cr0(u_long cr0);
void load_cr3(u_long cr3);
void load_cr4(u_long cr4);
void load_dr0(uint64_t dr0);
void load_dr1(uint64_t dr1);
void load_dr2(uint64_t dr2);
void load_dr3(uint64_t dr3);
void load_dr6(uint64_t dr6);
void load_dr7(uint64_t dr7);
void load_fs(u_short sel);
void load_gs(u_short sel);
void ltr(u_short sel);
void outb(u_int port, u_char data);
void outl(u_int port, u_int data);
void outsb(u_int port, const void *addr, size_t count);
void outsl(u_int port, const void *addr, size_t count);
void outsw(u_int port, const void *addr, size_t count);
void outw(u_int port, u_short data);
u_long rcr0(void);
u_long rcr2(void);
u_long rcr3(void);
u_long rcr4(void);
uint64_t rdmsr(u_int msr);
uint32_t rdmsr32(u_int msr);
uint64_t rdpmc(u_int pmc);
uint64_t rdr0(void);
uint64_t rdr1(void);
uint64_t rdr2(void);
uint64_t rdr3(void);
uint64_t rdr6(void);
uint64_t rdr7(void);
uint64_t rdtsc(void);
u_long read_rflags(void);
u_int rfs(void);
u_int rgs(void);
void wbinvd(void);
void write_rflags(u_int rf);
void wrmsr(u_int msr, uint64_t newval);
#endif /* __GNUCLIKE_ASM && __CC_SUPPORTS___INLINE */
void reset_dbregs(void);
#ifdef _KERNEL
int rdmsr_safe(u_int msr, uint64_t *val);
int wrmsr_safe(u_int msr, uint64_t newval);
#endif
#endif /* !_MACHINE_CPUFUNC_H_ */