f-stack/freebsd/contrib/zstd/lib/decompress/huf_decompress.c

1351 lines
54 KiB
C
Raw Normal View History

/* ******************************************************************
* huff0 huffman decoder,
* part of Finite State Entropy library
* Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Dependencies
****************************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h" /* BIT_* */
#include "../common/fse.h" /* to compress headers */
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/error_private.h"
/* **************************************************************
* Macros
****************************************************************/
/* These two optional macros force the use one way or another of the two
* Huffman decompression implementations. You can't force in both directions
* at the same time.
*/
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
defined(HUF_FORCE_DECOMPRESS_X2)
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
/* **************************************************************
* Byte alignment for workSpace management
****************************************************************/
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/* **************************************************************
* BMI2 Variant Wrappers
****************************************************************/
#if DYNAMIC_BMI2
#define HUF_DGEN(fn) \
\
static size_t fn##_default( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
if (bmi2) { \
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#else
#define HUF_DGEN(fn) \
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
{ \
(void)bmi2; \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#endif
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
{
DTableDesc dtd;
ZSTD_memcpy(&dtd, table, sizeof(dtd));
return dtd;
}
#ifndef HUF_FORCE_DECOMPRESS_X2
/*-***************************/
/* single-symbol decoding */
/*-***************************/
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX1; /* single-symbol decoding */
/**
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
* a time.
*/
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
U64 D4;
if (MEM_isLittleEndian()) {
D4 = symbol + (nbBits << 8);
} else {
D4 = (symbol << 8) + nbBits;
}
D4 *= 0x0001000100010001ULL;
return D4;
}
typedef struct {
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
} HUF_ReadDTableX1_Workspace;
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
{
return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
{
U32 tableLog = 0;
U32 nbSymbols = 0;
size_t iSize;
void* const dtPtr = DTable + 1;
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
if (HUF_isError(iSize)) return iSize;
/* Table header */
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
dtd.tableType = 0;
dtd.tableLog = (BYTE)tableLog;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
}
/* Compute symbols and rankStart given rankVal:
*
* rankVal already contains the number of values of each weight.
*
* symbols contains the symbols ordered by weight. First are the rankVal[0]
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
* symbols[0] is filled (but unused) to avoid a branch.
*
* rankStart contains the offset where each rank belongs in the DTable.
* rankStart[0] is not filled because there are no entries in the table for
* weight 0.
*/
{
int n;
int nextRankStart = 0;
int const unroll = 4;
int const nLimit = (int)nbSymbols - unroll + 1;
for (n=0; n<(int)tableLog+1; n++) {
U32 const curr = nextRankStart;
nextRankStart += wksp->rankVal[n];
wksp->rankStart[n] = curr;
}
for (n=0; n < nLimit; n += unroll) {
int u;
for (u=0; u < unroll; ++u) {
size_t const w = wksp->huffWeight[n+u];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
}
}
for (; n < (int)nbSymbols; ++n) {
size_t const w = wksp->huffWeight[n];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
}
}
/* fill DTable
* We fill all entries of each weight in order.
* That way length is a constant for each iteration of the outter loop.
* We can switch based on the length to a different inner loop which is
* optimized for that particular case.
*/
{
U32 w;
int symbol=wksp->rankVal[0];
int rankStart=0;
for (w=1; w<tableLog+1; ++w) {
int const symbolCount = wksp->rankVal[w];
int const length = (1 << w) >> 1;
int uStart = rankStart;
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
int s;
int u;
switch (length) {
case 1:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart] = D;
uStart += 1;
}
break;
case 2:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart+0] = D;
dt[uStart+1] = D;
uStart += 2;
}
break;
case 4:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
uStart += 4;
}
break;
case 8:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
MEM_write64(dt + uStart + 4, D4);
uStart += 8;
}
break;
default:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
for (u=0; u < length; u += 16) {
MEM_write64(dt + uStart + u + 0, D4);
MEM_write64(dt + uStart + u + 4, D4);
MEM_write64(dt + uStart + u + 8, D4);
MEM_write64(dt + uStart + u + 12, D4);
}
assert(u == length);
uStart += length;
}
break;
}
symbol += symbolCount;
rankStart += symbolCount * length;
}
}
return iSize;
}
FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
HINT_INLINE size_t
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
}
/* [0-3] symbols remaining */
if (MEM_32bits())
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
/* no more data to retrieve from bitstream, no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
return pEnd-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const void* dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
BIT_DStream_t bitD;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - 3;
const void* const dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
U32 endSignal = 1;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
for ( ; (endSignal) & (op4 < olimit) ; ) {
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
}
/* check corruption */
/* note : should not be necessary : op# advance in lock step, and we control op4.
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
const void *cSrc,
size_t cSrcSize,
const HUF_DTable *DTable);
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
HUF_DGEN(HUF_decompress4X1_usingDTable_internal)
size_t HUF_decompress1X1_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
size_t HUF_decompress4X1_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 0) return ERROR(GENERIC);
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
}
#endif /* HUF_FORCE_DECOMPRESS_X2 */
#ifndef HUF_FORCE_DECOMPRESS_X1
/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
/* HUF_fillDTableX2Level2() :
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 sizeLog, const U32 consumed,
const U32* rankValOrigin, const int minWeight,
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
U32 nbBitsBaseline, U16 baseSeq)
{
HUF_DEltX2 DElt;
U32 rankVal[HUF_TABLELOG_MAX + 1];
/* get pre-calculated rankVal */
ZSTD_memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill skipped values */
if (minWeight>1) {
U32 i, skipSize = rankVal[minWeight];
MEM_writeLE16(&(DElt.sequence), baseSeq);
DElt.nbBits = (BYTE)(consumed);
DElt.length = 1;
for (i = 0; i < skipSize; i++)
DTable[i] = DElt;
}
/* fill DTable */
{ U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
const U32 symbol = sortedSymbols[s].symbol;
const U32 weight = sortedSymbols[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 length = 1 << (sizeLog-nbBits);
const U32 start = rankVal[weight];
U32 i = start;
const U32 end = start + length;
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
DElt.nbBits = (BYTE)(nbBits + consumed);
DElt.length = 2;
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
rankVal[weight] += length;
} }
}
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList, const U32 sortedListSize,
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32 rankVal[HUF_TABLELOG_MAX + 1];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
U32 s;
ZSTD_memcpy(rankVal, rankValOrigin, sizeof(rankVal));
/* fill DTable */
for (s=0; s<sortedListSize; s++) {
const U16 symbol = sortedList[s].symbol;
const U32 weight = sortedList[s].weight;
const U32 nbBits = nbBitsBaseline - weight;
const U32 start = rankVal[weight];
const U32 length = 1 << (targetLog-nbBits);
if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
U32 sortedRank;
int minWeight = nbBits + scaleLog;
if (minWeight < 1) minWeight = 1;
sortedRank = rankStart[minWeight];
HUF_fillDTableX2Level2(DTable+start, targetLog-nbBits, nbBits,
rankValOrigin[nbBits], minWeight,
sortedList+sortedRank, sortedListSize-sortedRank,
nbBitsBaseline, symbol);
} else {
HUF_DEltX2 DElt;
MEM_writeLE16(&(DElt.sequence), symbol);
DElt.nbBits = (BYTE)(nbBits);
DElt.length = 1;
{ U32 const end = start + length;
U32 u;
for (u = start; u < end; u++) DTable[u] = DElt;
} }
rankVal[weight] += length;
}
}
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
U32 tableLog, maxW, sizeOfSort, nbSymbols;
DTableDesc dtd = HUF_getDTableDesc(DTable);
U32 const maxTableLog = dtd.maxTableLog;
size_t iSize;
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
U32 *rankStart;
rankValCol_t* rankVal;
U32* rankStats;
U32* rankStart0;
sortedSymbol_t* sortedSymbol;
BYTE* weightList;
size_t spaceUsed32 = 0;
rankVal = (rankValCol_t *)((U32 *)workSpace + spaceUsed32);
spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2;
rankStats = (U32 *)workSpace + spaceUsed32;
spaceUsed32 += HUF_TABLELOG_MAX + 1;
rankStart0 = (U32 *)workSpace + spaceUsed32;
spaceUsed32 += HUF_TABLELOG_MAX + 2;
sortedSymbol = (sortedSymbol_t *)workSpace + (spaceUsed32 * sizeof(U32)) / sizeof(sortedSymbol_t);
spaceUsed32 += HUF_ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2;
weightList = (BYTE *)((U32 *)workSpace + spaceUsed32);
spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;
if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge);
rankStart = rankStart0 + 1;
ZSTD_memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1));
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
/* find maxWeight */
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{ U32 w, nextRankStart = 0;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankStart;
nextRankStart += rankStats[w];
rankStart[w] = curr;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
sizeOfSort = nextRankStart;
}
/* sort symbols by weight */
{ U32 s;
for (s=0; s<nbSymbols; s++) {
U32 const w = weightList[s];
U32 const r = rankStart[w]++;
sortedSymbol[r].symbol = (BYTE)s;
sortedSymbol[r].weight = (BYTE)w;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{ U32* const rankVal0 = rankVal[0];
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
U32 nextRankVal = 0;
U32 w;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankVal;
nextRankVal += rankStats[w] << (w+rescale);
rankVal0[w] = curr;
} }
{ U32 const minBits = tableLog+1 - maxW;
U32 consumed;
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
U32* const rankValPtr = rankVal[consumed];
U32 w;
for (w = 1; w < maxW+1; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } } }
HUF_fillDTableX2(dt, maxTableLog,
sortedSymbol, sizeOfSort,
rankStart0, rankVal, maxW,
tableLog+1);
dtd.tableLog = (BYTE)maxTableLog;
dtd.tableType = 1;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
return iSize;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
ZSTD_memcpy(op, dt+val, 2);
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
ZSTD_memcpy(op, dt+val, 1);
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
else {
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
} }
return 1;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
HINT_INLINE size_t
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
/* closer to end : up to 2 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
if (p < pEnd)
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
return p-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BIT_DStream_t bitD;
/* Init */
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - (sizeof(size_t)-1);
const void* const dtPtr = DTable+1;
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal = 1;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* 16-32 symbols per loop (4-8 symbols per stream) */
for ( ; (endSignal) & (op4 < olimit); ) {
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
#else
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = (U32)LIKELY(
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
#endif
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
HUF_DGEN(HUF_decompress4X2_usingDTable_internal)
size_t HUF_decompress1X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
}
size_t HUF_decompress4X2_usingDTable(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc dtd = HUF_getDTableDesc(DTable);
if (dtd.tableType != 1) return ERROR(GENERIC);
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
}
static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
workSpace, wkspSize);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
}
#endif /* HUF_FORCE_DECOMPRESS_X1 */
/* ***********************************/
/* Universal decompression selectors */
/* ***********************************/
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#else
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#endif
}
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#else
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
#endif
}
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
{
/* single, double, quad */
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
};
#endif
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
{
assert(dstSize > 0);
assert(dstSize <= 128*1024);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dstSize;
(void)cSrcSize;
return 0;
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dstSize;
(void)cSrcSize;
return 1;
#else
/* decoder timing evaluation */
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, to reduce cache eviction */
return DTime1 < DTime0;
}
#endif
}
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
size_t dstSize, const void* cSrc,
size_t cSrcSize, void* workSpace,
size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#else
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize):
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
#endif
}
}
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#else
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize):
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize);
#endif
}
}
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#else
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#endif
}
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
}
#endif
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#else
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
#endif
}
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#else
return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
#endif
}
}
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_readDTableX1(HUF_DTable* DTable, const void* src, size_t srcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_readDTableX1_wksp(DTable, src, srcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X1_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X1_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X1_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
}
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_readDTableX2_wksp(DTable, src, srcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress1X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
#endif
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress4X1_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
return HUF_decompress4X1_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
}
#endif
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
static const decompressionAlgo decompress[2] = { HUF_decompress4X1, HUF_decompress4X2 };
#endif
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1(dst, dstSize, cSrc, cSrcSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);
#else
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
#endif
}
}
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
#else
return algoNb ? HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
#endif
}
}
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize)
{
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
workSpace, sizeof(workSpace));
}
#endif